留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶层对复合材料多螺栓连接力学性能及钉载分配的影响

唐玉玲 任煜赫 张峻霞 韩露 姜美姣

唐玉玲, 任煜赫, 张峻霞, 等. 胶层对复合材料多螺栓连接力学性能及钉载分配的影响[J]. 复合材料学报, 2023, 40(6): 3601-3612. doi: 10.13801/j.cnki.fhclxb.20220809.002
引用本文: 唐玉玲, 任煜赫, 张峻霞, 等. 胶层对复合材料多螺栓连接力学性能及钉载分配的影响[J]. 复合材料学报, 2023, 40(6): 3601-3612. doi: 10.13801/j.cnki.fhclxb.20220809.002
TANG Yuling, REN Yuhe, ZHANG Junxia, et al. Effect of the adhesive layer on mechanical properties and load distribution in multi-bolt composite joints[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3601-3612. doi: 10.13801/j.cnki.fhclxb.20220809.002
Citation: TANG Yuling, REN Yuhe, ZHANG Junxia, et al. Effect of the adhesive layer on mechanical properties and load distribution in multi-bolt composite joints[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3601-3612. doi: 10.13801/j.cnki.fhclxb.20220809.002

胶层对复合材料多螺栓连接力学性能及钉载分配的影响

doi: 10.13801/j.cnki.fhclxb.20220809.002
基金项目: 国家自然科学基金(11272105);天津市科技计划项目(20JCYBJC01430)
详细信息
    通讯作者:

    张峻霞,博士,教授,博士生导师,研究方向为轻量化结构设计 E-mail: zjx@tust.edu.cn

  • 中图分类号: TB332

Effect of the adhesive layer on mechanical properties and load distribution in multi-bolt composite joints

Funds: National Natural Science Foundation of China (11272105); Science and Technology Planning Project of Tianjin (20JCYBJC01430)
  • 摘要: 通过试验和数值方法研究了单搭接复合材料胶螺混合连接在拉伸载荷下的力学性能及钉载分配。测试了多螺栓机械连接和胶螺混合连接的破坏载荷、失效模式和钉载分配,结果显示两种连接方式下连接层合板的破坏模式均为拉伸破坏与挤压破坏的混合失效模式,胶螺混合连接中胶层的破坏模式为胶层剥离。胶层的存在使混合连接的钉载分配更加不均衡,因此机械连接的整体结构破坏载荷要略大于胶螺混合连接。采用ABAQUS显示求解器建立了多螺栓机械连接和胶螺混合连接的渐进损伤模型,用VUMAT子程序预测复合材料的损伤,并利用粘结单元模拟胶层的失效。该模型可以有效预测结构的破坏载荷、失效模式和钉载分配。给出了混合连接中胶层的损伤演化过程,分析了加载过程中胶层对钉载分配的影响。钉载分配结果显示:机械连接的钉载分配呈现两边高,中间低的“盆状”分布,混合连接胶层延迟了螺栓受载,并改变了钉载分配的比例,使得最外侧螺栓承担了更大的载荷,加速了结构的破坏。

     

  • 图  1  连接试件几何结构

    Figure  1.  Geometric structure diagram of joints

    图  2  拉伸试验加载图

    Figure  2.  Tensile test loading diagram

    图  3  单搭接五排螺栓连接弹簧质量模型

    Figure  3.  Single-lap five-row bolt joints spring mass model

    KB−j—Stiffness of bolt; Kij—Stiffness of composite plates; F—Load

    图  4  多螺栓机械连接与胶螺混合连接复合材料试件有限元模型

    Figure  4.  Finite element model of composite specimens for multi-bolt mechanical joints and hybrid bonded/bolted joints

    U1, U2, U3—Translating degrees of freedom in X, Y and Z directions

    图  5  渐进失效分析方法的流程图

    Figure  5.  Flowchart of the progressive failure analysis method

    图  6  机械连接载荷-位移曲线

    Figure  6.  Load-displacement curve of mechanical joints

    JX—Mechanical connection

    图  7  混合连接载荷-位移曲线

    Figure  7.  Load-displacement curve of hybrid joints

    HH—Mixed rubber screw connection

    图  8  (a) 机械连接试验与数值模拟破坏模式对比;(b) 机械连接失效云图;(c) 混合连接失效云图

    Figure  8.  (a) Comparison of failure modes between mechanical joints test and numerical simulations; (b) Mechanical joints failure stress nephogram; (c) Hybrid joints failure stress nephogram

    图  9  混合连接胶层损坏前后应力分布云图

    Figure  9.  Cloud map of stress distribution before and after the damage of the hybrid joints adhesive layer

    图  10  机械连接的试验、数值模拟及理论计算钉载分配对比

    Figure  10.  Comparison of load distribution by experiment, numerical simulation and theoretical calculation of mechanical joints

    图  11  层合板损伤演化过程

    Figure  11.  Damage evolution process of laminate

    图  12  混合连接胶层损伤演化过程

    Figure  12.  Damage evolution process of hybrid joints adhesive layer

    图  13  机械连接钉载随位移的变化

    Figure  13.  Variation of bolt load with displacement in mechanical joints

    图  14  混合连接钉载随位移的变化

    Figure  14.  Variation of bolt load with displacement in hybrid joints

    表  1  X850-MG IM复合材料参数

    Table  1.   Composite material parameters of X850-MG IM

    ${E_{11}}$/GPa${E_{22}}$/GPa${E_{33}}$/GPa${\nu _{12}}$/GPa${\nu _{13}}$/GPa${\nu _{23}}$/GPa${G_{12}}$/GPa${G_{13}}$/GPa${G_{23}}$/GPa
    1758.378.370.340.340.344.494.493.5
    ${X_{\text{T}}}$/MPa${Y_{\text{T}}}$/MPa${Z_{\text{T}}}$/MPa${X_{\text{C}}}$/MPa${Y_{\text{C}}}$/MPa${Z_{\text{C}}}$/MPa${S_{ 12}}$/MPa${S_{ 13}}$/MPa${S_{ 23}}$/MPa
    307188881747271271143143143
    Notes: IM—Intermediate modulus; E11, E22, E33—Elastic modulus in directions 1, 2 and 3; G12, G13, G23—Shear modulus in directions 12, 13 and 23; S12, S13, S23—Shear strength in directions 12, 13 and 23; ν12, ν13, ν23—Poisson's ratio in directions 12, 13 and 23; XT, YT, ZT—Tensile strength in directions X, Y and Z; XC, YC, ZC—Compressive strength in directions X, Y and Z.
    下载: 导出CSV

    表  2  多螺栓机械连接与胶螺混合连接复合材料试件试验与数值模拟破坏载荷对比

    Table  2.   Comparison of failure load between multi-bolt mechanical joints and hybrid bonded/bolted joints composite specimen test and numerical simulation

    Text peak load/kNAverage/kNNumerical simulation/kNError/%
    Mechanical jointsJX-1208.7205.6192.26.5
    JX-2205.4
    JX-3208.6
    JX-4199.5
    Hybrid bonded/bolted jointsHH-1184.3183.3181.70.09
    HH-2180.3
    HH-3186.1
    HH-4182.5
    下载: 导出CSV
  • [1] LIU Fengrui, YAO Wanting, ZHAO Libin, et al. An improved 2D finite element model for bolt load distribution analysis of composite multi-bolt single-lap joints[J]. Composite Structures,2020,253:112770.
    [2] ZHANG Hongzhuang, LI Changyou, XU Mengtao, et al. A novel method for damage analysis of CFRP single-lap bolted, bonded and hybrid joints under compression[J]. Composite Structures,2020,251:112636. doi: 10.1016/j.compstruct.2020.112636
    [3] BODJONA K, FIELDING S, HEIDARI-RARANI M, et al. Effect of adhesive layer compliance on strength of single-lap hybrid bonded-bolted joints[J]. Composite Structures,2021,261:113324. doi: 10.1016/j.compstruct.2020.113324
    [4] ABDELKERIM D S E, WANG X, IBRAHIM H A, et al. Static and fatigue behavior of pultruded FRP multi-bolted joints with basalt FRP and hybrid steel-FRP bolts[J]. Composite Structures,2019,220:324-337. doi: 10.1016/j.compstruct.2019.03.085
    [5] COELHO A M G, MOTTRAM J T. A review of the behaviour and analysis of bolted con-nections and joints in pultruded fibre reinforced polymers[J]. Materials & Design,2015,74:86-107.
    [6] ZHANG Hanyu, ZHANG Lei, LIU Zhao, et al. Numerical analysis of hybrid (bonded/bolted) FRP composite joints: A review[J]. Composite Structures,2021,262(2):113606.
    [7] LI Xiaoqi, CHENG Xiaoquan, GUO Xin, et al. Tensile pro-perties of a hybrid bonded/bolted joint: Parameter study[J]. Composite Structures,2020,245:112329. doi: 10.1016/j.compstruct.2020.112329
    [8] 邹鹏, 倪迎鸽, 毕雪, 等. 胶螺混合连接在复合材料结构中的研究进展[J]. 航空工程进展, 2021, 12(1):1-12. doi: 10.16615/j.cnki.1674-8190.2021.01.001

    ZOU Peng, NI Yingge, BI Xue, et al. Research progress of glue-screw hybrid connection in composite structures[J]. Advances in Aeronautical Engineering,2021,12(1):1-12(in Chinese). doi: 10.16615/j.cnki.1674-8190.2021.01.001
    [9] 张超禹, 郑艳萍, 熊勇坚, 等. CFRP与铝板胶螺混合连接结构拉伸性能研究[J]. 复合材料科学与工程, 2020(8):12-17.

    ZHANG Chaoyu, ZHENG Yanping, XIONG Yongjian, et al. Research on tensile properties of CFRP and aluminum plate glue-screw hybrid connection structure[J]. Compo-site Materials Science and Engineering,2020(8):12-17(in Chinese).
    [10] VALLÉE T, TANNERT T, MEENA R, et al. Dimensioning method for bolted, adhesively bonded, and hybrid joints involving fibre-reinforced-polymers[J]. Composites Part B: Engineering,2013,46:179-187. doi: 10.1016/j.compositesb.2012.09.074
    [11] 胡春幸, 侯玉亮, 铁瑛, 等. 不同胶接参数对 CFRP 层合板单搭胶接结构强度的影响及优化设计[J]. 机械工程学报, 2021, 57(8):154-165. doi: 10.3901/JME.2021.08.154

    HU Chunxing, HOU Yuliang, TIE Ying, et al. Influence of different bonding parameters on the structural strength and optimal design of single-lap bonding of CFRP lami-nates[J]. Chinese Journal of Mechanical Engineering,2021,57(8):154-165(in Chinese). doi: 10.3901/JME.2021.08.154
    [12] ARMENTANI E, LAISO M, CAPUTO, et al. Numerical FEM evaluation for the structural behaviour of a hybrid (bonded/bolted) single-lap composite joint[J]. Procedia Structural Integrity,2018,8:137-153. doi: 10.1016/j.prostr.2017.12.015
    [13] SZEPTYŃSKI P, NOWAK M. Qualitative analysis of the influence of the non-linear material characteristics of flexible adhesive on the performance of lap joints[J]. Compo-site Structures,2021,260:113539. doi: 10.1016/j.compstruct.2020.113539
    [14] 刘志明, 许昶. 碳纤维增强环氧树脂复合材料与铝板胶螺混合连接接头失效仿真[J]. 复合材料学报, 2019, 36(10):2308-2315. doi: 10.13801/j.cnki.fhclxb.20181217.002

    LIU Zhiming, XU Chang. Failure simulation of carbon fiber reinforced epoxy resin composites and aluminum plate glue-screw hybrid joints[J]. Journal of Composite Materials,2019,36(10):2308-2315(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181217.002
    [15] STEIN N, MARDANI H, BECKER W. An efficient analysis model for functionally graded adhesive single lap joints[J]. International Journal of Adhesion and Adhesives,2016,70:117-125. doi: 10.1016/j.ijadhadh.2016.06.001
    [16] 陈龙, 陈普会. 复合材料-钛合金混合结构多钉连接钉载分布及有限元计算[J]. 航空工程进展, 2020, 11(5):679-685. doi: 10.16615/j.cnki.1674-8190.2020.05.010

    CHEN Long, CHEN Puhui. Load distribution and finite element calculation of composite material-titanium alloy hybrid structure multi-nail connection[J]. Advances in Aeronautical Engineering,2020,11(5):679-685(in Chinese). doi: 10.16615/j.cnki.1674-8190.2020.05.010
    [17] EGAN B, MCCARTHY C T, MCCARTHY M A, et al. Static and high-rate loading of single and multi-bolt carbon-epoxy aircraft fuselage joints[J]. Composites Part A: Applied Science and Manufacturing,2013,53:97-108. doi: 10.1016/j.compositesa.2013.05.006
    [18] ZHANG Fa, HU Zhendong, GAO Limin, et al. Investigation on in-plane shear behavior of large-size composite plates with multi-bolt joints[J]. Composite Structures,2020,232:111553. doi: 10.1016/j.compstruct.2019.111553
    [19] ASTM. Standard test method for bearing response of polymer matrix composite laminates: ASTM-D5961/D5961 M[S]. West Conshohcken: ASTM, 1996.
    [20] ABAQUS. ABAQUS Version 6.10, Dassault Systemes[M]. Providence: ABAQUS, 2010.
    [21] 李鹏. 复材层合板多钉螺接钉载分配和强度预测方法的研究[D]. 南京: 南京航空航天大学, 2019.

    LI Peng. Research on the load distribution and strength prediction method of multi-nail screw connections of composite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  655
  • HTML全文浏览量:  368
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-07-18
  • 录用日期:  2022-07-22
  • 网络出版日期:  2022-08-09
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回