留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-塑钢混杂纤维再生混凝土单轴压缩动态力学性能试验

冯俊杰 尹冠生 刘柱 梁建红 张云杰 牛志强 王鹏博

冯俊杰, 尹冠生, 刘柱, 等. 钢-塑钢混杂纤维再生混凝土单轴压缩动态力学性能试验[J]. 复合材料学报, 2021, 39(0): 1-17
引用本文: 冯俊杰, 尹冠生, 刘柱, 等. 钢-塑钢混杂纤维再生混凝土单轴压缩动态力学性能试验[J]. 复合材料学报, 2021, 39(0): 1-17
Junjie FENG, Guansheng YIN, Zhu LIU, Jianhong LIANG, Yunjie ZHANG, Zhiqiang NIU, Pengbo WANG. Experiment on dynamic mechanical properties of hooked-end steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete under uniaxial compression[J]. Acta Materiae Compositae Sinica.
Citation: Junjie FENG, Guansheng YIN, Zhu LIU, Jianhong LIANG, Yunjie ZHANG, Zhiqiang NIU, Pengbo WANG. Experiment on dynamic mechanical properties of hooked-end steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete under uniaxial compression[J]. Acta Materiae Compositae Sinica.

钢-塑钢混杂纤维再生混凝土单轴压缩动态力学性能试验

基金项目: 长安大学博士研究生创新能力培养资助项目(300203211121);陕西省交通运输厅交通科研项目(21-67K);长安大学相变蓄能建筑材料创新开放实验室项目(2018CXSY06);河南省科技厅科技攻关项目(182102311091);郑州科技学院自然科学项目(2017-XYZK-002)
详细信息
    通讯作者:

    尹冠生,博士,教授,博士生导师,研究方向为混凝土结构  E-mail: yings@chd.edu.cn

  • 中图分类号: TV431+.3

Experiment on dynamic mechanical properties of hooked-end steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete under uniaxial compression

  • 摘要: 为探究钢-塑钢混杂纤维再生混凝土的压缩动态力学性能,设计了A、B和C三个系列混杂纤维再生混凝土包含三种再生粗骨料取代率和五种体积分数1.5vol%的钢纤维和塑钢混掺纤维组合,采用了四种加载应变率。试验表明:随应变率增加,混杂纤维再生混凝土峰值应力、弹性模量和压缩韧性增大,峰值应变减小。相较于基准组,在相同应变率下三个系列中的含纤维组峰值应力最大增幅分别为23%、16%和16%;峰值应变最大增幅分别为19%、12%和13%;弹性模量最大增幅分别为15%、14%和35%;压缩韧性最大增幅分别为46%、32%和37%。在试验应变率范围内,再生粗骨料显著提高峰值应力、弹性模量和压缩韧性的应变率敏感性,对峰值应变的应变率敏感性并无明显影响;掺入纤维降低混凝土峰值应变和弹性模量的应变率敏感性,提高普通混凝土峰值应力和压缩韧性的应变率敏感性,降低再生混凝土峰值应力和压缩韧性的应变率敏感性。提出的动态损伤本构模型考虑了纤维增强系数、再生粗骨料取代率和应变率,计算结果与试验结果吻合较好。

     

  • 图  1  压缩试验加载装置(单位:mm)

    Figure  1.  Loading setup for compressive test (Unit: mm)

    图  2  不同应变率下HyF/RAC(C0和C3组)试件破坏形态

    Figure  2.  Failure modes of C0 and C3 specimens for HyF/RAC at different strain rates

    图  3  不同应变率下HyF/RAC(C0和C3组)试件应力-应变曲线

    Figure  3.  Stress-strain curve of C0 and C3 specimens for HyF/RAC at different strain rates

    图  4  不同应变率下HyF/RAC峰值应力

    Figure  4.  Peak stress of HyF/RAC at different strain rates

    图  5  不同应变率下HyF/RAC峰值应力动态增长因子

    Figure  5.  Dynamic increase factor of peak stress of HyF/RAC at different strain rates

    图  6  不同应变率下HyF/RAC峰值应变

    Figure  6.  Peak strain of HyF/RAC at different strain rates

    图  7  不同应变率下HyF/RAC峰值应变动态增长因子

    Figure  7.  Dynamic increase factor of peak strain of HyF/RAC at different strain rates

    图  8  不同应变率下HyF/RAC弹性模量

    Figure  8.  Elastic modulus of HyF/RAC at different strain rates

    图  9  不同应变率下HyF/RAC弹性模量动态增长因子

    Figure  9.  Dynamic increase factor of elastic modulus of HyF/RAC at different strain rates

    图  10  不同应变率下HyF/RAC压缩韧性

    Figure  10.  Compressive toughness of HyF/RAC at different strain rates

    图  11  不同应变率下HyF/RAC压缩韧性动态增长因子

    Figure  11.  Dynamic increase factor of compressive toughness of HyF/RAC at different strain rates

    图  12  HyF/RAC应力-应变曲线特征参数预测模型性能

    Figure  12.  Performance of prediction models for characteristic indices of HyF/RAC stress-strain curves

    图  13  不同应变率下HyF/RAC(C0组)试验曲线与各模型曲线对比

    Figure  13.  Comparison of experimental and theoretical stress-strain curve of C0 for HyF/RAC at different strain rates

    图  14  不同应变率下HyF/RAC(C3组)试验曲线与各模型曲线对比

    Figure  14.  Comparison of experimental and theoretical stress-strain curve of C3 for HyF/RAC at different strain rates

    图  15  不同应变率下HyF/RAC(C0和C3组)损伤演化

    Figure  15.  Damage evolution curve of C0 and C3 for HyF/RAC at different strain rates

    表  1  端钩钢纤维(HES)和塑钢纤维(MPP)属性

    Table  1.   Properties of hooked-end steel fiber (HES) and macro-polypropylene fiber (MPP) fiber

    Fiber typeEquivalent
    diameter/mm
    Length/mmAspect
    ratio
    Density/(kg·m−3)Tensile strength/MPaYoung’s modulus/GPa
    HES0.75354778001120200.0
    MPP0.9428309105805.5
    下载: 导出CSV

    表  2  钢-塑钢混杂纤维再生混凝土(HyF/RAC)配合比设计

    Table  2.   Designed mix proportions of hybrid fiber reinforced recycled aggregate concrete (HyF/RAC) kg/m3

    Mix No.NotationWaterCementSandRCANCAHESMPPAW
    A0NAC25146763901044000
    A11.5%HES/NAC2514676390104411700
    A21.25%HES-0.25%MPP/NAC25146763901044982.280
    A31.0%HES-0.5%MPP/NAC25146763901044784.550
    A40.75%HES-0.75%MPP/NAC25146763901044596.830
    A50.5%HES-1.0%MPP/NAC25146763901044399.10
    B0RAC(50%)2514676395225220020
    B11.5%HES/RAC(50%)251467639522522117020
    B21.25%HES-0.25%MPP/RAC(50%)251467639522522982.2820
    B31.0%HES-0.5%MPP/RAC(50%)251467639522522784.5520
    B40.75%HES-0.75%MPP/ RAC(50%)251467639522522596.8320
    B50.5%HES-1.0%MPP/RAC(50%)251467639522522399.120
    C0RAC(100%)251467639104400040
    C11.5%HES/RAC(100%)25146763910440117040
    C21.25%HES-0.25%MPP/RAC(100%)25146763910440982.2840
    C31.0%HES-0.5%MPP/RAC(100%)25146763910440784.5540
    C40.75%HES-0.75%MPP/ RAC(100%)25146763910440596.8340
    C50.5%HES-1.0%MPP/ RAC(100%)25146763910440399.140
    Notes: NAC—Natural aggregate concrete; RAC—Recycled aggregate concrete; RCA—Recycled coarse aggregate; NCA—Natural coarse aggregate; AW—Absorbed water; In iHES-jMPP/RAC(k), i—Volume fraction of HES; j—Volume fraction of MPP; k—Replacement ratio by mass of RCA.
    下载: 导出CSV

    表  3  不同应变率下HyF/RAC峰值应力$ {\sigma ^{\text{p}}} $

    Table  3.   Results of peak stress $ {\sigma ^{\text{p}}} $ of HyF/RAC at different strain rates

    Mix No.10-5 s-1/MPaCV /%10-4 s-1/MPaCV/%10-3 s-1/MPaCV/%5×10-3 s-1/MPaCV/%
    A031.31.5832.42.8433.73.1534.70.00
    A132.42.5334.02.7238.84.0139.31.03
    A232.94.3136.30.9839.11.2740.15.14
    A334.90.1739.02.9041.30.3441.90.84
    A431.53.5932.85.4035.24.2236.94.41
    A532.75.1934.43.2936.62.6137.35.13
    B028.31.0029.13.8732.41.4634.02.29
    B129.62.1530.81.1534.64.7135.74.56
    B231.91.3033.65.2734.23.9336.13.73
    B331.20.2332.41.9735.71.9837.26.84
    B430.41.5132.31.9935.33.1336.10.78
    B531.61.5933.71.7037.30.5738.32.22
    C024.68.5726.92.7430.64.4832.50.22
    C126.24.0427.83.8931.61.1432.43.45
    C226.82.2428.80.7232.22.6432.81.72
    C328.42.6931.10.6833.02.6934.43.63
    C427.80.9530.06.2132.72.6033.15.32
    C526.30.7927.32.2330.65.4632.70.43
    下载: 导出CSV

    表  4  不同应变率下HyF/RAC峰值应变$ {\varepsilon ^{\text{p}}} $

    Table  4.   Results of peak strain $ {\varepsilon ^{\text{p}}} $ of HyF/RAC at different strain rates

    Mix No.10-5 s-1/(×10-3)CV /%10-4 s-1/(×10-3)CV/%10-3 s-1/(×10-3)CV/%5×10-3 s-1/(×10-3)CV/%
    A02.3764.732.3308.372.2241.672.1019.02
    A12.4102.872.3407.712.25610.772.19911.43
    A22.4131.552.3900.742.37811.522.3216.02
    A32.5998.682.5553.182.5283.982.5003.42
    A42.4192.702.4256.952.41310.112.31211.72
    A52.4436.272.4328.622.3306.222.2541.68
    B02.5933.672.4690.792.3703.182.3256.08
    B12.6519.272.6316.652.6206.752.5106.20
    B22.6733.612.6459.622.5925.282.4819.76
    B32.7605.682.7087.482.6317.322.6105.55
    B42.5830.392.5442.432.5447.282.5338.45
    B52.6662.412.6586.792.6304.842.5912.11
    C02.8144.462.7263.442.6212.512.5242.73
    C12.9331.812.81511.432.7085.282.6940.33
    C22.9501.472.8131.332.7692.752.7332.20
    C32.9411.622.8530.992.8456.832.6483.47
    C43.0413.672.9964.012.8910.792.8619.33
    C52.9813.502.8591.672.7547.662.7010.46
    下载: 导出CSV

    表  5  不同应变率下HyF/RAC弹性模量E

    Table  5.   Results of elastic modulus E of HyF/RAC at different strain rates

    Mix No.10-5/s-1 /GPaCV /%10-4/s-1 /GPaCV/%10-3/s-1 /GPaCV/%5×10-3 /s-1 /GPaCV/%
    A029.53.8633.29.2037.69.8741.22.37
    A131.88.1335.31.3438.63.9542.09.60
    A232.17.0534.31.0938.34.3541.44.92
    A334.17.3034.12.8834.70.6138.110.65
    A432.57.1933.75.5835.74.1437.411.49
    A533.94.7534.05.0635.03.2338.22.85
    B024.87.6126.28.5528.63.2430.82.69
    B125.69.0826.20.9128.65.5830.89.23
    B227.10.2228.111.7029.48.7333.98.52
    B327.30.7028.79.8531.06.9031.71.92
    B428.21.6529.93.6033.20.6633.66.38
    B527.24.7027.811.3328.99.6732.911.19
    C018.73.0621.911.6324.96.1826.79.24
    C120.78.0522.811.4426.311.5427.87.55
    C223.27.5624.32.3126.11.5429.510.99
    C325.16.0626.34.0828.011.0928.12.47
    C422.90.5623.32.4325.24.6928.39.75
    C522.70.5624.49.2627.93.1729.29.11
    下载: 导出CSV

    表  6  不同应变率下HyF/RAC压缩韧性T

    Table  6.   Results of compressive toughness T of HyF/RAC at different strain rates

    Mix No.10-5 s-1 /MPa10-4 s-1 /MPa10-3 s-1 /MPa5×10-3 s-1 /MPa
    A00.0420.0440.0460.043
    A10.0470.0490.0510.050
    A20.0470.0510.0530.047
    A30.0550.0580.0600.062
    A40.0470.0480.0520.053
    A50.0470.0490.0470.051
    B00.0410.0430.0430.045
    B10.0460.0480.0500.052
    B20.0490.0510.0530.056
    B30.0510.0510.0550.057
    B40.0480.0500.0540.057
    B50.0500.0510.0570.058
    C00.0380.0400.0430.045
    C10.0430.0460.0500.053
    C20.0480.0490.0510.057
    C30.0520.0530.0550.052
    C40.0510.0540.0540.057
    C50.0470.0470.0470.052
    下载: 导出CSV

    表  7  现有压缩动态本构模型

    Table  7.   Review of dynamic constitutive models under compression

    ReferenceModelParameterApplication rangeNotation
    IBRAHIM et al.[21]$ \begin{gathered} y = \frac{{Ax + \left( {B - 1} \right){x^2}}}{{1 + \left( {A - 2} \right)x + B{x^2}}} \hfill \\ A\left( {A - 2} \right) - B + 1 \geqslant 0 \hfill \\ A + B > 1 \hfill \\ \end{gathered} $$ \begin{gathered} A = 3.6\exp \left( {9.0 \times {{10}^{ - 8}}\left( {\frac{{\dot \varepsilon }}{{{{\dot \varepsilon }_{\text{s}}}}}} \right)\left( {1 + 0.01R_V^{0.82}} \right)} \right) \hfill \\ B = 0.22\exp \left( {3.8 \times {{10}^{ - 7}}\left( {\frac{{\dot \varepsilon }}{{{{\dot \varepsilon }_{\text{s}}}}}} \right)\left( {1 + 0.002R_V^{0.82}} \right)} \right) \hfill \\ \end{gathered} $$ \begin{gathered} 25{\text{ }}{{\text{s}}^{ - 1}} \leqslant \dot \varepsilon \leqslant 125{\text{ }}{{\text{s}}^{ - 1}} \hfill \\ 1.2{\text{% }} \leqslant V \leqslant 1.4\% \hfill \\ \end{gathered} $V is the volume fraction of fiber;
    $ {\sigma _{\text{m}}} $ is the stress without damage;
    $ \dot D $ is the damage evolution frequency factor;
    $ {\sigma _{\text{e}}} $ is the nonlinear elastic stress;
    E1 is the elastic modulus at a low strain rate and frequency;
    E2 is the elastic modulus at a high strain rate and frequency;
    $ {\varepsilon ^{{\text{th}}}} $ is the strain threshold.
    ZHOU et al. [22]$ \begin{gathered} \sigma = {\sigma _{\text{m}}}\left( {1 - D} \right) = E\varepsilon \left( {1 - D} \right) \hfill \\ D = 1 - \exp \left[ { - {{\left( {\frac{\varepsilon }{{{F_0}}}} \right)}^m}} \right] \hfill \\ \end{gathered} $$ \begin{gathered} {F_0} = 3.3578\ln \dot \varepsilon - 10.6562 \hfill \\ m = 1.2804\ln \dot \varepsilon - 1.8711 \hfill \\ \end{gathered} $$ 19.8{\text{ }}{{\text{s}}^{ - 1}} \leqslant \dot \varepsilon \leqslant 281{\text{ }}{{\text{s}}^{ - 1}} $
    HOU et al.[23]$ \begin{gathered} \sigma = {\sigma _{\text{m}}}\left( {1 - {C_{\text{n}}}D} \right) = E\varepsilon \left( {1 - {C_{\text{n}}}D} \right) \hfill \\ D = 1 - \exp \left[ { - {{\left( {\frac{\varepsilon }{{{F_0}}}} \right)}^m}} \right] \hfill \\ \end{gathered} $$ \begin{gathered} {F_0} = 0.0062 + 0.31{V^{1.7}} - 0.00167\left( {0.1 + V} \right)\ln \dot \varepsilon \hfill \\ m = - 0.56 + 3V + \left( {0.35 - 2V} \right)\ln \dot \varepsilon \hfill \\ {C_{\text{n}}} = 0.977 - 1.4V + \left( {0.004 + 0.25V} \right)\ln \dot \varepsilon \hfill \\ \end{gathered} $$ \begin{gathered} \dot \varepsilon \leqslant 294{\text{ }}{{\text{s}}^{ - 1}} \hfill \\ V \leqslant 5\% \hfill \\ \end{gathered} $
    SUN et al.[25]$ \begin{gathered} \sigma = {\sigma _{\text{m}}}\left( {1 - D} \right) = E\varepsilon \left( {1 - D} \right) \hfill \\ \dot D = AD\left( {1 - D} \right) \hfill \\ \end{gathered} $$ \begin{gathered} {D_0} = 0.35 - 8.2 \times {10^{ - 9}}\left( {\frac{{\dot \varepsilon }}{{{{\dot \varepsilon }_{\text{s}}}}}} \right) \hfill \\ - 4.4V + 1.3 \times {10^{ - 7}}\left( {\frac{{\dot \varepsilon }}{{{{\dot \varepsilon }_{\text{s}}}}}} \right)V \hfill \\ A = 234 + 1.3 \times {10^{ - 7}}\left( {\frac{{\dot \varepsilon }}{{{{\dot \varepsilon }_{\text{s}}}}}} \right) \hfill \\ + 1718V - 8.6 \times {10^{ - 5}}\left( {\frac{{\dot \varepsilon }}{{{{\dot \varepsilon }_{\text{s}}}}}} \right)V \hfill \\ \end{gathered} $$ \begin{gathered} 53{\text{ }}{{\text{s}}^{ - 1}} \leqslant \dot \varepsilon \leqslant 152{{\text{s}}^{ - 1}} \hfill \\ V \leqslant 6.0\% \hfill \\ \end{gathered} $
    ZHANG et al.[26]$ \begin{gathered} \sigma = \left( {1 - D} \right){\sigma _{\text{m}}} \hfill \\ {\sigma _{\text{m}}} = {\sigma _{\text{e}}}\left( \varepsilon \right) + {E_1}\int_0^t {\dot \varepsilon \exp \left( { - \frac{{t - \tau }}{{{\varphi _1}}}} \right)d\tau } \hfill \\ + {E_2}\int_0^t {\dot \varepsilon \exp \left( { - \frac{{t - \tau }}{{{\varphi _2}}}} \right)d\tau } \hfill \\ {\sigma _{\text{e}}}\left( \varepsilon \right) = E\varepsilon + \alpha {\varepsilon ^2} + \beta {\varepsilon ^3} \hfill \\ D = \left\{ \begin{gathered} 0{\text{ }}\varepsilon \leqslant {\varepsilon ^{{\text{th}}}} \hfill \\ 1 - \exp \left[ { - {{\left( {\frac{{\varepsilon - {\varepsilon ^{{\text{th}}}}}}{{{F_0}}}} \right)}^m}} \right]{\text{ }}\varepsilon > {\varepsilon ^{{\text{th}}}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $No fitting equation$ \begin{gathered} 27{\text{ }}{{\text{s}}^{ - 1}} \leqslant \dot \varepsilon \leqslant 94{\text{ }}{{\text{s}}^{ - 1}} \hfill \\ V \leqslant 0.2\% \hfill \\ \end{gathered} $
    WANG et al.[27]$ \begin{gathered} \sigma = \left( {1 - D} \right)\sigma \hfill \\ {\sigma _{\text{m}}} = {\sigma _{\text{e}}}\left( \varepsilon \right) + {E_1}\int_0^t {\dot \varepsilon \exp \left( { - \frac{{t - \tau }}{{{\varphi _1}}}} \right)d\tau } \hfill \\ + {E_2}\int_0^t {\dot \varepsilon \exp \left( { - \frac{{t - \tau }}{{{\varphi _2}}}} \right)d\tau } \hfill \\ D = \left\{ \begin{gathered} 0{\text{ }}\varepsilon \leqslant {\varepsilon ^{{\text{th}}}} \hfill \\ {K_D}{{\dot \varepsilon }^{\lambda - 1}}{\left( {\varepsilon - {\varepsilon ^{{\text{th}}}}} \right)^\kappa }{\text{ }}\varepsilon > {\varepsilon ^{{\text{th}}}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $No fitting equation$ {10^{ - 4}}{\text{ }}{{\text{s}}^{ - 1}} \leqslant \dot \varepsilon \leqslant {10^3}{\text{ }}{{\text{s}}^{ - 1}} $
    下载: 导出CSV

    表  8  HyF/RAC修正模型参数$ \alpha $拟合值

    Table  8.   Fitted results of parameter $ \alpha $ in modified constitutive models for HyF/RAC

    $ \dot \varepsilon $10-5/s10-4/s10-3/s5×10-3/s
    Mix No.Fitted valueR2Fitted valueR2Fitted valueR2Fitted valueR2
    A03.4340.9913.3990.9462.5970.9532.2850.940
    A11.8820.9781.1750.9981.6990.9861.3520.973
    A21.3860.9991.4010.9971.0200.9811.0390.994
    A31.4420.9971.9120.9921.6070.9651.6500.974
    A42.2190.9942.4310.9702.0570.9651.4660.984
    A52.6000.9982.6330.9842.2880.9711.7570.992
    B03.5240.9913.7420.9942.5890.9423.0530.997
    B11.4400.9761.1250.9831.2250.9971.8730.996
    B21.9320.9852.1240.9912.0010.9961.5830.979
    B32.0260.9941.6360.9992.2740.9882.2970.984
    B41.8760.9902.6830.9922.3050.9942.6130.935
    B52.4570.9943.0360.9972.8730.9402.4960.984
    C03.1730.9782.9580.9783.6090.9864.1370.954
    C11.5520.9931.6570.9762.2800.9762.7490.993
    C21.6730.9752.0130.9992.2590.9992.3640.953
    C32.0590.9982.1490.9992.2780.9982.7320.996
    C41.8680.9762.1740.9973.3390.9682.8420.934
    C52.2180.9712.8590.9903.4830.9643.3940.993
    下载: 导出CSV
  • [1] 高光发. 混凝土材料动态压缩强度的应变率强化规律[J]. 高压物理学报, 2017, 31(3):261-270.

    Gao G. Effect of strain-rate hardening on dynamic compressive strength of plain concrete[J]. Chinese Journal of High Pressure Physics,2017,31(3):261-270(in Chinese).
    [2] 王国盛, 路德春, 杜修力, 等. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6):58-67.

    WANG G, LU D, DU X, et al. Research on the actual dynamic strength and the rate effect mechanisms for concrete materials[J]. Engineering Mechanics,2018,35(6):58-67(in Chinese).
    [3] 艾思平, 唐鹏. 考虑地震量级作用下橡胶纤维混凝土受压动力性能试验研究[J]. 建筑材料学报: 1-15[2021-10-07]. http://kns.cnki.net/kcms/detail/31.1764.TU.20200818.1051.024.html.

    Ai S, Tang P. Experimental study on the dynamic behavior of rubber fiber reinforced concrete under the action of earthquake magnitude[J]. Journal of Building Materials: 1-15[2021-10-07].http://kns.cnki.net/kcms/detail/31.1764.TU.20200818.1051.024.html. (in Chinese)
    [4] 白卫峰, 李思蕾, 管俊峰, 等. 再生混凝土单轴压缩动态力学性能试验研究 [J]. 建筑材料学报: 1-14[2021-10-07]. http://kns.cnki.net/kcms/detail/31.1764.TU.20210514.0920.004.html.

    BAI W, LI S, GUAN J, et al. Study on dynamic mechanical properties of recycled concrete under uniaxial compression[J]. Journal of Building Materials: 1-14[2021-10-07]. http://kns.cnki.net/kcms/detail/31.1764.TU.20210514.0920.004.html. (in Chinese)
    [5] XIAO J, ZHANG K, ZhANG Q. Strain rate effect on compressive stress–strain curves of recycled aggregate concrete with seawater and sea sand[J]. Construction and Building Materials,2021,300:124014. doi: 10.1016/j.conbuildmat.2021.124014
    [6] 董海龙, 彭有开, 骆开静, 等. 粗骨料取代下的高性能再生混凝土率敏性研究[J]. 实验力学, 2019, 34(2):249-257.

    DONG H, PENG Y, LUO K, et al. Study on rate sensitivity of high performance recycled concrete with different coarse aggregate replacement ratios[J]. Journal of Experimental Mechanics,2019,34(2):249-257(in Chinese).
    [7] TANG Z, LI W, TAM V W Y, et al. Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete[J]. Composites Part B:Engineering,2020,185:107776. doi: 10.1016/j.compositesb.2020.107776
    [8] FENG J, YIN G, TUO H, et al. Parameter optimization and regression analysis for multi-index of hybrid fiber-reinforced recycled coarse aggregate concrete using orthogonal experimental design[J]. Construction and Building Materials,2021,267:121013. doi: 10.1016/j.conbuildmat.2020.121013
    [9] 陈宇良, 吉云鹏, 陈宗平, 等. 钢纤维再生混凝土三轴受压力学性能试验[J]. 复合材料学报: 1-11[2021-10-07]. https://doi.org/10.13801/j.cnki.fhclxb.20210903.006.

    CHEN Y, JI Y, CHEN Z, et al. Experiment on mechanical properties of steel fiber recycled aggregate concrete under triaxial compression[J]. Acta Materiae Compositae Sinica 1-11[2021-10-07].https://doi.org/10.13801/j.cnki.fhclxb.20210903.006. (in Chinese)
    [10] 丁亚红, 郭书奇, 张向冈, 等. 玄武岩纤维对再生混凝土抗碳化性能的影响[J]. 复合材料学报: 1-12[2021-10-07]. https://doi.org/10.13801/j. cnki. fhclxb.20210520.002.

    DING Y, GUO S, ZHANG X, et al. Influence of basalt fiber on the anti-carbonation performance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica: 1-12[2021-10-07].https://doi.org/10.13801/j.cnki.fhclxb.20210520.002. (in Chinese)
    [11] XIE J, KOU S, MA H, et al. Advances on properties of fiber reinforced recycled aggregate concrete: Experiments and models[J]. Construction and Building Materials,2021,277:122345. doi: 10.1016/j.conbuildmat.2021.122345
    [12] 王兴国, 姜茂林, 陈旭, 等. 不同预浸骨料-PVA纤维对再生混凝土力学性能影响[J]. 复合材料学报: 1-10[2021-10-07]. https: //doi. org/10.13801/j. cnki. fhclxb. 20210520.005.

    WANG X, JIANG M, CHEN X, et al. Effect of different pre-soaked aggregate-PVA fiber on the mechanical properties of recycled aggregate concrete[J]. ActaMateriae Compositae Sinica: 1-10[2021-10-07]. https://doi.org/10.13801/j.cnki.fhclxb.20210520.005. (in Chinese)
    [13] 孔祥清, 何文昌, 周聪, 等. 混杂掺入钢/聚丙烯纤维再生混凝土力学性能及抗冲击性能试验研究[J]. 建筑科学, 2020, 36(3):94-99.

    Kong X, He W, Zhou C, et al. Experimental investigation on the mechanical properties and impact resistance of steel and polypropylene hybrid fiber reinforced recycled aggregates concrete[J]. Building Science,2020,36(3):94-99(in Chinese).
    [14] FENG J, YIN G, TUO H, et al. Uniaxial compressive behavior of hook-end steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete[J]. Construction and Building Materials,2021,304:124559. doi: 10.1016/j.conbuildmat.2021.124559
    [15] 周宏宇, 麻全周, 赵晓花, 等. 考虑应变率效应的混凝土材料单轴压缩特性尺寸效应研究[J]. 混凝土, 2021(1):61-65+69. doi: 10.3969/j.issn.1002-3550.2021.01.015

    ZHOU H, MA Q, ZHAO X, et al. Experimental study on dynamic rate relevance of concrete size effect[J]. Concrete,2021(1):61-65+69(in Chinese). doi: 10.3969/j.issn.1002-3550.2021.01.015
    [16] 肖诗云, 张剑. 不同应变率下混凝土受压损伤试验研究[J]. 土木工程学报, 2010, 43(3):40-45.

    Xiao S, Zhang J. Compressive damage experiment of concrete at different strain rates[J]. China Civil Engineering Journal,2010,43(3):40-45(in Chinese).
    [17] 焦楚杰, 孙伟, 张亚梅, 等. 钢纤维高强混凝土在不同应变率时的单轴受压性能[J]. 建筑结构, 2004, 34(8):65-67.

    Jiao C, Sun W, Zhang Y, et al. Mechanical properties of SFRHSC under uniaxial compression with different strain rates[J]. Building Structure,2004,34(8):65-67(in Chinese).
    [18] 梁宁慧, 杨鹏, 刘新荣, 等. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 材料导报, 2018, 32(2):288-294.

    LIANG N, YANG P, LIU X, et al. A study on dynamic compressive mechanical properties of multi-size polypropylene fiber concrete under high strain rate[J]. Materials Reports,2018,32(2):288-294(in Chinese).
    [19] 沈才华, 钱晋, 陈晓峰, 等. 纤维掺量对PVA纤维混凝土力学参数的影响及压缩韧性指标的计算方法[J]. 硅酸盐通报, 2020, 39(10):3152-3160.

    Shen C, Qian J, Chen X, et al. Influence of Fiber Content on Mechanical Parameters of PVA Fiber Concrete and Method for Calculating Compression Toughness Index[J]. Bulletin of the Chinese Ceramic Society,2020,39(10):3152-3160(in Chinese).
    [20] HE W, KONG X, FU Y, et al. Experimental investigation on the mechanical properties and microstructure of hybrid fiber reinforced recycled aggregate concrete[J]. Construction and Building Materials,2020,261:120488. doi: 10.1016/j.conbuildmat.2020.120488
    [21] IBRAHIM S M, ALMUSALLAM T H, AL-SALLOUM Y A, et al. Strain Rate Dependent Behavior and Modeling for Compression Response of Hybrid Fiber Reinforced Concrete[J]. Latin American Journal of Solids and Structures,2016,13:1695-1715. doi: 10.1590/1679-78252717
    [22] ZHOU J, CHEN X. Stress-Strain Behavior and Statistical Continuous Damage Model of Cement Mortar under High Strain Rates[J]. Journal of Materials in Civil Engineering,2013,25(1):120-130. doi: 10.1061/(ASCE)MT.1943-5533.0000570
    [23] HOU X, CAO S, RONG Q, et al. Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete[J]. Construction and Building Materials,2018,170:570-581. doi: 10.1016/j.conbuildmat.2018.03.101
    [24] CUI T, HE H, YAN W, et al. Compression damage constitutive model of hybrid fiber reinforced concrete and its experimental verification[J]. Construction and Building Materials,2020,264:120026. doi: 10.1016/j.conbuildmat.2020.120026
    [25] SUN X, ZhAO K, LI Y, et al. A study of strain-rate effect and fiber reinforcement effect on dynamic behavior of steel fiber-reinforced concrete[J]. Construction and Building Materials,2018,158:657-669. doi: 10.1016/j.conbuildmat.2017.09.093
    [26] ZHANG H, WANG B, XIE A, et al. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials,2017,152:154-167. doi: 10.1016/j.conbuildmat.2017.06.177
    [27] 王礼立, 胡时胜, 杨黎明, 等. 聊聊动态强度和损伤演化[J]. 爆炸与冲击, 2017, 37(2):169-179.

    WANG L, HU S, YANG L, et al. Talk about dynamic strength and damage evolution[J]. Explosion and Shock Waves,2017,37(2):169-179(in Chinese).
    [28] CAO S, HOU X, RONG Q. Dynamic compressive properties of reactive powder concrete at high temperature: A review[J]. Cement and Concrete Composites,2020,110:103568. doi: 10.1016/j.cemconcomp.2020.103568
    [29] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB50010-2010[S]. 北京: 中国建筑工业出版社: 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, Code for design of concrete structures: GB50010-2010[J]. Bei Jing: China Architecture and Building Press: 2015. (in Chinese)
    [30] 张聪, 余志辉, 韩世诚, 等. 混杂纤维增强应变硬化水泥基复合材料的压缩本构关系[J]. 复合材料学报, 2020, 37(5):1221-1226.

    ZHANG C, YU Z, HAN S, et al. Compression constitutive relation of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica,2020,37(5):1221-1226(in Chinese).
    [31] SHI X, PARK P, REW Y, et al. Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension[J]. Construction and Building Materials,2020,233:117316. doi: 10.1016/j.conbuildmat.2019.117316
    [32] ABADEL A, ABBAS H, ALMUSALLAM T, et al. Mechanical properties of hybrid fibre-reinforced concrete – analytical modelling and experimental behaviour[J]. Magazine of Concrete Research,2016,68:823-843. doi: 10.1680/jmacr.15.00276
    [33] 施林林, 宋玉普, 沈璐. 不同应变率下大骨料及湿筛混凝土单轴受压试验研究[J]. 世界地震工程, 2016, 32(2):270-276.

    SHI L, SONG Y, SHEN L. Experimental study on uniaxial compression properties of large aggregate and wet-screened concrete at different strain rates[J]. World Earthquake Engineering,2016,32(2):270-276(in Chinese).
    [34] 李庆斌, 邓宗才, 张立翔. 考虑初始弹模变化的混凝土动力损伤本构模型[J]. 清华大学学报(自然科学版), 2003(8):1088-1091. doi: 10.3321/j.issn:1000-0054.2003.08.025

    LI Q, DENG Z, ZHANG L. Dynamic damage constitutive model for concrete accounting for the difference of the initial elastic modulus[J]. Journal of Tsinghua University(Science and Technology),2003(8):1088-1091(in Chinese). doi: 10.3321/j.issn:1000-0054.2003.08.025
    [35] DONG S, HAN B, YU X, et al. Dynamic impact behaviors and constitutive model of super-fine stainless wire reinforced reactive powder concrete[J]. Construction and Building Materials,2018,184:602-616. doi: 10.1016/j.conbuildmat.2018.07.027
  • 加载中
计量
  • 文章访问数:  188
  • HTML全文浏览量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 录用日期:  2021-12-13
  • 修回日期:  2021-12-10
  • 网络出版日期:  2022-01-04

目录

    /

    返回文章
    返回