留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苯基膦酸铈协效阻燃IFR/PP复合材料的制备

赵锦博 王炳涛 郭云馨 侯利红 李娟

赵锦博, 王炳涛, 郭云馨, 等. 苯基膦酸铈协效阻燃IFR/PP复合材料的制备[J]. 复合材料学报, 2024, 42(0): 1-8.
引用本文: 赵锦博, 王炳涛, 郭云馨, 等. 苯基膦酸铈协效阻燃IFR/PP复合材料的制备[J]. 复合材料学报, 2024, 42(0): 1-8.
ZHAO Jinbo, WANG Bingtao, GUO Yunxin, et al. Synergistic flame-retardant IFR/PP composites based on cerium phenylphosphonate[J]. Acta Materiae Compositae Sinica.
Citation: ZHAO Jinbo, WANG Bingtao, GUO Yunxin, et al. Synergistic flame-retardant IFR/PP composites based on cerium phenylphosphonate[J]. Acta Materiae Compositae Sinica.

苯基膦酸铈协效阻燃IFR/PP复合材料的制备

基金项目: 宁波市科技创新2025重大专项(2022Z113)
详细信息
    通讯作者:

    王炳涛,博士,副教授,硕士生导师,研究方向为阻燃高分子材料, E-mail: bing.wang@nbt.edu.cn

  • 中图分类号: TQ325.14; TB332

Synergistic flame-retardant IFR/PP composites based on cerium phenylphosphonate

Funds: Ningbo Science and Technology Innovation 2025 Major Project (2022Z113)
  • 摘要: 由焦磷酸哌嗪(PAPP)和三聚氰胺氰尿酸盐(MCA)组成的膨胀型阻燃剂(IFR)可以提高聚丙烯(PP)的防火安全性。然而,添加量高达28 wt%的PAPP-MCA (质量比为3∶1)极大地降低了PP的强度和韧性(分别降低了31%和62%)。本文采用具有二维层状结构的稀土化合物苯基膦酸铈(CeHPP)作为阻燃协效剂,用于提升PAPP-MCA含量相对较低的PP的防火安全。结果表明,在2wt%CeHPP存在的情况下,仅添加20 wt%的PAPP-MCA便可使PP的LOI达到30%且通过UL-94 V-0等级,同时PP复合材料的PHRR、THR和TSR分别大幅下降82%、85%和52%。此外,与同样达到V-0等级添加28wt%的IFR的PP复合材料相比,CeHPP-IFR协效阻燃PP复合材料的拉伸强度和断裂伸长率分别提高了22%和110%,表现出更为理想的力学应用潜力。

     

  • 图  1  苯基膦酸铈(CeHPP)的SEM图像

    Figure  1.  SEM images of Cerium phenylphosphonate (CeHPP)

    图  2  CeHPP、PP和PP复合材料在氮气(N2)中的TG曲线

    Figure  2.  TG curves of CeHPP, PP and PP composites in nitrogen

    图  3  (a) 锥形量热法中PP、PP-1和PP-3的HRR、(b) THR、(c) SPR和(d) TSR曲线

    Figure  3.  (a) HRR, (b)THR, (c) SPR and (d) TSR curves of PP, PP-1 and PP-3 from cone calorimetry

    PP—Polypropene; HRR—Heat release rate; THR—Total heat release; SPR—Smoke produce rate; TSR—Total smoke release.

    图  4  PP、PP-1、PP-3锥形量热试验后碳残留数码照片

    Figure  4.  Digital photos of carbon residues of PP, PP-1, and PP-3 after cone test

    图  5  (a) PP、(b) PP-1、(c) PP-3 锥体试验后碳残留物的SEM图像

    Figure  5.  SEM images of carbon residues of (a) PP, (b) PP-1, and (c) PP-3 after cone test

    图  6  CeHPP-IFR/PP阻燃机制示意图

    Figure  6.  Schematic flame retardant mechanism of CeHPP-IFR/PP

    表  1  PP复合材料配方

    Table  1.   Formulations of PP composites

    Sample PP MCA PAPP CeHPP
    PP 100 0 0 0
    PP-1 80 5 15 0
    PP-2 80 5 15 1
    PP-3 80 5 15 2
    PP-4 72 7 21 0
    Notes: PP—Polypropene; MCA—Melamine cyanurate; PAPP—Piperazine pyrophosphate; CeHPP—Cerium phenylphosphonate.
    下载: 导出CSV

    表  2  CeHPP、PP和PP复合材料的热稳定性

    Table  2.   Thermal stability of CeHPP, PP and PP composites

    Sample T5%/℃ Tmax/℃ Carbon residue at 700℃ /%
    PP 412 467 2.2
    PP-1 348 473 7.6
    PP-2 354 473 10.5
    PP-3 359 479 10.3
    CeHPP 504 686 76.5
    Notes: T5%—5 wt% mass loss temperature; Tmax—Maximum mass loss temperature
    下载: 导出CSV

    表  3  PP和PP复合材料的LOI和UL-94数据

    Table  3.   LOI and UL-94 data of PP and PP composites

    SampleLOIUL-94
    Ratingt1/st2/sDripping/Igniting
    PP17.0NR>30\Y/Y
    PP-126.5V11.224.4N/N
    PP-226.1V22.412.5Y/Y
    PP-330.0V01.43.8N/N
    PP-427.2V01.41.8N/N
    Notes: LOI—Limiting oxygen index; UL-94—Vertical burn test; t1—First ignition time; t2—Second ignition time
    下载: 导出CSV

    表  4  锥形量热法中PP和PP复合材料的综合数据

    Table  4.   Comprehensive data of PP and PP composites from cone calorimetry

    Sample TCT/s EHC/(MJ·kg−1) PHRR/(kW·m−2) THR/(MJ·m−2) TSR/(mm−2)
    PP 384 39 800 98 1200
    PP-1 1400 33 207 82 120
    PP-3 628 21 87 12 58
    Notes: TCT—Total combustion time; EHC—Effective heat of combustion; PHRR—Peak heat release rate; THR—Total heat release; TSR—Total smoke release.
    下载: 导出CSV

    表  5  PP和PP复合材料的力学性能

    Table  5.   Mechanical properties of PP and PP composites

    Sample Tensile
    strength/MPa
    Young’s
    modulus/MPa
    Elongation
    at break/%
    PP 28.3±0.9 550.4 120.6±17.0
    PP-1 21.4±1.4 807.0 105.8±20.2
    PP-2 22.6±0.5 659.4 100.7±17.9
    PP-3 23.8±0.4 773.5 95.6±15.2
    PP-4 19.5±0.7 900.0 45.5±18.7
    下载: 导出CSV
  • [1] 马殿普, 郎丽君, 潘飞, 等. 焦磷酸哌嗪协同次磷酸铝阻燃聚丙烯复合材料性能[J]. 工程塑料应用, 2023, 51(4): 133-138. doi: 10.3969/j.issn.1001-3539.2023.04.020

    MA Dianpu, LANG Llijun, PAN Fei, et al. Performance of piperazine pyrophosphate combined with aluminum hypophosphite flame retardant polypropylene composites[J]. Engineering Plastics Application, 2023, 51(4): 133-138(in Chinese). doi: 10.3969/j.issn.1001-3539.2023.04.020
    [2] ZHAO W J, KUNDU C K, LI ZW, et al. Flame retardant treatments for polypropylene: Strategies and recent advances[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106382. doi: 10.1016/j.compositesa.2021.106382
    [3] DENG M, ZHANG Z H, SUN J, et al. Improving the flame retardancy and water resistance of polypropylene by introducing microcapsule flame retardant system and modified zinc oxide[J]. Polymer Degradation and Stability, 2024, 221: 110668. doi: 10.1016/j.polymdegradstab.2024.110668
    [4] PALLMANN J, REN Y, MAHLTIG B, et al. Phosphorylated sodium alginate/APP/DPER intumescent flame retardant used for polypropylene[J]. Journal of Applied Polymer Science, 2019, 136(29): 47794 doi: 10.1002/app.47794
    [5] 汤维, 钱立军, 邱勇, 等. 聚丙烯材料无卤阻燃改性研究进展[J]. 中国塑料, 2021, 35(1): 136-149.

    TANG Wei, QIAN Lijun, QIU Yong, et al. Research Progress on Halogen-free Flame Retardant Modification of Polypropylene Materials[J]. China Plastics, 2021, 35(1): 136-149(in Chinese).
    [6] 冯坤豪, 吴樊, 陈美玲, 等. 无卤阻燃聚丙烯的研究进展[J]. 中国塑料, 2015, 29(6): 7-12.

    FENG Kunhao, WU Fan, CHEN Meiling, et al. Research progress of halogen-free flame retardant polypropylene[J]. China Plastics, 2015, 29(6): 7-12(in Chinese).
    [7] 王之怡, 高建, 张容. 稻壳粉/聚丙烯复合材料在建筑模板中的应用[J]. 合成材料老化与应用, 2023, 52(5): 130-132.

    WANG Zhiyi, GAO Jian, ZHANG Rong. Application of rice husk powder/polypropylene composites in building formwork[J]. Aging and Application of Synthetic Materials, 2023, 52(5): 130-132(in Chinese).
    [8] 潘飞, 鲍庆煌, 马殿普, 等. PAPP-MPP-PER复配型阻燃剂对PP力学及阻燃性能的影响[J]. 化工新型材料, 2023, 51(8): 172-177.

    PAN Fei, BAO Qinghuang, MA Dianpu, et al. Effect of PAPP-MPP-PER compound flame retardant on mechanics and flame retardant properties of PP[J]. New Chemical Materials, 2023, 51(8): 172-177(in Chinese).
    [9] 肖雄, 胡爽, 陈涛等. 磷氮阻燃剂聚焦磷酸哌嗪及其复配体系对聚丙烯材料性能的影响和阻燃机制[J]. 高分子材料科学与工程, 2020, 36(10): 71-78.

    XIAO Xiong, HU Shuang, CHEN Tao, et al. Effect of phosphorus and nitrogen flame retardant focusing piperazine phosphate and its compound system on the properties of polypropylene materials and flame retardant mechanism[J]. Polymer Materials Science and Engineering, 2020, 36(10): 71-78(in Chinese).
    [10] WANG S X, LIM Q F, TOH J P W, et al. A versatile, highly effective intumescent flame-retardant synergist for polypropylene and polyamide 6 composites[J]. Composites Communications, 2023, 42: 101699 doi: 10.1016/j.coco.2023.101699
    [11] ZHOU X, QIU S L, CHU F K, et al. An integrated intumescent flame retardant of bismaleimide from novel maleimide-functionalized triazine-rich polyphosphazene microspheres[J]. Chemical Engineering Journal, 2022, 450: 138083 doi: 10.1016/j.cej.2022.138083
    [12] 仇艳艳, 孙明媚, 杜玉莹, 等. 焦磷酸哌嗪/MCA对聚丙烯的阻燃作用[J]. 现代塑料加工应用, 2020, 32(3): 5-7.

    QIU Yanyan, SUN Mingmei, DU Yuying, et al. Flame retardant effect of piperazine pyrophosphate/MCA on polypropylene[J]. Modern Plastics Processing and Application, 2020, 32(3): 5-7(in Chinese).
    [13] 冯薇. 稀土基阻燃剂的合成及其在碳纤维增强聚酰胺6复合材料中的阻燃与去“烛芯效应”[D]. 浙江大学, 2023.

    FENG Wei. Synthesis of rare earth-based flame retardants and their flame retardant and de-"wick effect" in carbon fiber reinforced polyamide 6 composites[D]. Zhejiang University, 2023(in Chinese).
    [14] 郑德, 杜亚琴, 陈俊, 等. 稀土化合物在高分子材料中的应用(上)[J]. 稀土信息, 2013, (2): 34-37.

    ZHENG De, DU Yaqin, CHEN Jun, et al. Application of rare earth compounds in polymer materials(I)[J]. Rare Earth Information, 2013, (2): 34-37(in Chinese).
    [15] 孔繁清, 胡源, 闫慧忠, 等. 氢氧化镧增效阻燃聚丙烯的研究[J]. 稀土, 2011, 32(5): 12-15. doi: 10.3969/j.issn.1004-0277.2011.05.003

    KONG Fanqing, HU Yuan, YAN Huizhong, et al. Lanthanum hydroxide synergistic flame retardant polypropylene[J]. Rare Earth, 2011, 32(5): 12-15(in Chinese). doi: 10.3969/j.issn.1004-0277.2011.05.003
    [16] 赵丽萍, 蔡青, 郭正虹. 苯基膦酸铈与十溴二苯醚阻燃玻璃纤维增强聚对苯二甲酸乙二醇酯复合材料[J]. 复合材料学报, 2019, 36(10): 2259-2265.

    ZHAO Liping, CAI Qing, GUO Zhenghong. Pyridium phenylphosphonate and decabromodiphenyl ether flame retardant glass fiber reinforced polyethylene terephthalate composites[J]. Journal of Composite Materials, 2019, 36(10): 2259-2265(in Chinese).
    [17] YANG W, TANG G, SONG L, et al. Effect of rare earth hypophosphite and melamine cyanurate on fire performance of glass-fiber reinforced poly(1, 4-butylene terephthalate) composites[J]. Thermochimica Acta, 2011, 526: 185-191. doi: 10.1016/j.tca.2011.09.022
    [18] 陈超. 苯基膦酸铈/十溴二苯醚对玻纤增强PET协同阻燃的研究[D]. 浙江大学, 2014.

    CHEN Chao. Study on cerium phenylphosphonate/decabromodiphenyl ether on glass fiber reinforced PET synergistic flame retardant[D]. Zhejiang University, 2014(in Chinese).
    [19] 郭正虹, 方征平, 陈超. 苯基膦酸铈与十溴二苯醚在玻璃纤维增强聚对苯二甲酸乙二酯中的协同阻燃抑烟机制[J]. 高等学校化学学报, 2017, 38(2): 284-293. doi: 10.7503/cjcu20160630

    GUO Zhenghong, FANG Zhengping, CHEN Chao. Synergistic flame retardant and smoke inhibition mechanism of cerium phenylphosphonate and decabromodiphenyl ether in glass fiber reinforced polyethylene terephthalate[J]. Chemical Journal of Chinese Universities, 2017, 38(2): 284-293(in Chinese). doi: 10.7503/cjcu20160630
    [20] 中国国家标准化管理委员会. 塑料 用氧指数法测定燃烧行为 第2部分: 室温试验: GB/T 2406.2-2009[S]. 北京: 中国标准出版社, 2009

    Standardization Administration of China. Deter-mination of burning behavior of plastics by oxygen index method Part 2: Room temperature test: GB/T 2406.2-2009 [S]. Beijing: China Standard Press, 2009(in Chinese).
    [21] 中国国家标准化管理委员会. 塑料 燃烧性能的测定 水平法和垂直法: GB/T 2408-2021[S]. 北京: 中国标准出版社, 2021

    Standardization Administration of China. Deter-mination of combustion properties of plastics Horizontal and vertical methods: GB/T 2408-2021[S]. Beijing: China Standard Press, 2021(in Chinese)
    [22] 中国国家标准化管理委员会. 塑料 拉伸性能的测定第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2-2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of China. Deter-mination of tensile properties Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2-2006[S]. Beijing: China Standards Press, 2006(in Chinese)
    [23] RAN S Y, GUO Z H, CHEN C, et al. Carbon nanotube bridged cerium phenylphosphonate hybrids, fabrication and their effects on the thermal stability and flame retardancy of the HDPE/BFR composite[J]. Journal of Materials Chemistry A, 2014, 2(9): 2999-3007. doi: 10.1039/c3ta14179a
    [24] WANG C H, GONG K L, YU B, et al. Rare earth-based flame retardants for polymer composites: Status and challenges[J]. Composites Part B-Engineering, 2023, 265: 110935 doi: 10.1016/j.compositesb.2023.110935
    [25] CHEN C, GUO Z H, RAN S Y, et al. Synthesis of cerium phenylphosphonate and its synergistic flame retardant effect with decabromodiphenyl oxide in glass-fiber reinforced poly(ethylene terephthalate)[J]. Polymer Composites, 2014, 35(3): 539-547. doi: 10.1002/pc.22693
    [26] WANG B T, YE R F, GUO Z H, et al. Thermal stability and fire safety of polycarbonate flame retarded by the brominated flame retardant and a non-antimony synergistic agent[J]. Journal of Polymer Research, 2023, 30(6): 240 doi: 10.1007/s10965-023-03586-w
    [27] CHAI J, FENG W, YAN H Q, et al. Synergistic flame-retardancy of lamellar cerium phenylphosphonate and aluminum diethylphosphinate towards suppressing “candlewick effect” of polyamide 6/carbon fiber composites[J]. Journal of Applied Polymer Science, 2023, 140(42): e54546 doi: 10.1002/app.54546
    [28] CHEN H D, WANG J H, NI A Q, et al. Effect of novel intumescent flame retardant on mechanical and flame retardant properties of continuous glass fibre reinforced polypropylene composites[J]. Composite Structures, 2018, 203: 894-902. doi: 10.1016/j.compstruct.2018.07.071
    [29] 苏淑倩, 周福龙, 杜玉莹, 等. 焦磷酸哌嗪/MPP对PP阻燃作用和力学性能影响[J]. 现代塑料加工应用, 2021, 33(3): 1-4.

    SU Shuqian, ZHOU Fulong, DU Yuying, et al. Effect of piperazine pyrophosphate/MPP on flame retardant effect and mechanical properties of PP[J]. Modern Plastics Processing and Application, 2021, 33(3): 1-4(in Chinese).
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-07-02
  • 录用日期:  2024-07-13
  • 网络出版日期:  2024-07-30

目录

    /

    返回文章
    返回