留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶的制备及其对Pb(II)的吸附

田甜 付义乐 关丽 王溢源 周军

田甜, 付义乐, 关丽, 等. 海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 41(0): 1-11
引用本文: 田甜, 付义乐, 关丽, 等. 海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 41(0): 1-11
Tian TIAN, Yile FU, Li GUAN, Yiyuan WANG, Jun ZHOU. Preparation of sodium alginate-carboxymethyl cellulose-graphene oxide composite aerogel for adsorption of Pb(II) ion[J]. Acta Materiae Compositae Sinica.
Citation: Tian TIAN, Yile FU, Li GUAN, Yiyuan WANG, Jun ZHOU. Preparation of sodium alginate-carboxymethyl cellulose-graphene oxide composite aerogel for adsorption of Pb(II) ion[J]. Acta Materiae Compositae Sinica.

海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶的制备及其对Pb(II)的吸附

基金项目: 国家自然科学基金项目(21807086);陕西省自然科学基础研究计划项目(2022JM-096)
详细信息
    通讯作者:

    付义乐,博士,副教授,硕士生导师,研究方向为功能材料的制备及性能研究 E-mail: fuyile@xauat.edu.cn

  • 中图分类号: X703;TQ424

Preparation of sodium alginate-carboxymethyl cellulose-graphene oxide composite aerogel for adsorption of Pb(II) ion

Funds: National Natural Science Foundation of China(21807086);Natural Science Basic Research Program of Shaanxi (2022JM-096)
  • 摘要: 目前,开发具有优异吸附性能、可持续使用和绿色环保的吸附剂仍然是水污染治理领域的焦点问题。生物质气凝胶由于绿色环保、成本低、可生物降解等优点,在吸附领域引起了广泛关注,但由于吸附速率较慢、吸附容量不高等问题限制了其作为吸收剂去除水体中重金属离子的应用。因此,开发功能性生物质复合气凝胶用于吸附处理水体中重金属离子污染物具有重要意义。本研究以海藻酸钠(SA)、羧甲基纤维素(CMC)和氧化石墨烯(GO)为原料,采取简单的溶胶-凝胶法结合冷冻干燥,通过非共价键合的方式,构建了具有三维多孔网络结构的海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶(SA-CMC-GO)。该复合气凝胶内部孔洞相互连通,且有明显的褶皱,增加了其比表面积,有利于对水体中重金属离子的吸附,并且复合气凝胶表面存在的大量的-OH和-COOH官能团作为吸附位点通过静电作用和螯合作用与Pb2+有效结合,提升吸附速率和吸附容量。此外,GO的π共轭体系也可以通过阳离子-π相互作用吸引Pb2+,提升吸附效果。因此,实验结果表明,所制备的复合气凝胶对Pb2+的吸附可在60 min内迅速达到平衡其最大吸附量为272.5 mg·g-1,且经过5次吸附-脱附试验,复合气凝胶仍对Pb2+保持较高的吸附性能。(a)吸附时间对SA-CMC-GO复合气凝胶吸附Pb2+的影响和(b) SA-CMC-GO复合气凝胶对Pb2+的吸附原理图(a) Effect of adsorption time on the adsorption performance of SA-CMC-GO aerogel to Pb2+ and (b) the mechanism of the adsorption of Pb2+ by SA-CMC-GO aerogel

     

  • 图  1  SA-CMC-GO(海藻酸钠-羧甲基纤维素-氧化石墨烯)复合气凝胶制备流程

    Figure  1.  SA-CMC-GO (sodium alginate-carboxymethyl cellulose-graphene oxide) composite aerogel preparation process

    图  2  CMC-GO复合气凝胶的SEM图((a)、(b)),SA-CMC-GO复合气凝胶的SEM图((c)、(d))和SA-CMC-GO复合气凝胶的EDS能谱(e)

    Figure  2.  The SEM images of CMC-GO composite aerogel ((a) and (b)), the SEM images of SA-CMC-GO composite aerogel ((c) and (d)), EDS of SA-CMC-GO composite aerogel (e)

    图  3  CMC、GO、SA、SA-CMC-GO复合气凝胶的FTIR图

    Figure  3.  The FTIR spectra of CMC, GO, SA and SA-CMC-GO composite aerogel

    图  4  CMC气凝胶和SA-CMC-GO复合气凝胶的XRD图

    Figure  4.  The XRD of CMC aerogel and SA-CMC-GO composite aerogel

    图  5  (a) SA-CMC-GO复合气凝胶的XPS光谱;(b) SA-CMC-GO复合气凝胶的C1 s谱;(c) SA-CMC-GO复合气凝胶的O1 s谱

    Figure  5.  (a) XPS spectra of SA-CMC-GO composite aerogel; (b) C1 s XPS spectra of SA-CMC-GO composite aerogel; (c) O1 s XPS spectra of SA-CMC-GO composite aerogel

    图  6  溶液pH与SA-CMC-GO复合气凝胶吸附Pb2+去除率和吸附量的关系

    Figure  6.  Relationship between solution pH and the removal and adsorption capacity of Pb2+ by SA-CMC-GO composite aerogel

    $ 141{q}_{e} $—Equilibrium adsorption capacity

    图  7  吸附时间与SA-CMC-GO复合气凝胶对Pb2+的吸附量的关系

    Figure  7.  Relationship between adsorption time and the adsorption capacity of Pb2+ adsorbed by SA-CMC-GO composite aerogel

    t—Adsorption time

    图  8  温度与SA-CMC-GO复合气凝胶对Pb2+的吸附量的关系

    Figure  8.  Relationship between temperature and the adsorption capacity of Pb2+ adsorbed by SA-CMC-GO composite aerogel

    图  9  (a) SA-CMC-GO复合气凝胶吸附Pb2+的伪一阶动力学模型;(b) SA-CMC-GO复合气凝胶吸附Pb2+的伪二阶动力学模型;(c) SA-CMC-GO复合气凝胶吸附Pb2+的粒子内扩散模型

    Figure  9.  (a) pseudo-first-order kinetic model for Pb2+ adsorption by SA-CMC-GO composite aerogel; (b) pseudo-second-order kinetic model for Pb2+ adsorption by SA-CMC-GO composite aerogel; (c) intra-particle diffusion model for Pb2+ adsorption by SA-CMC-GO composite aerogel

    $ {q}_{t} $—Adsorption capacity at time t

    图  10  (a) SA-CMC-GO复合气凝胶吸附Pb2+的Langmuir模型;(b) SA-CMC-GO复合气凝胶吸附Pb2+的 Freundlich模型

    Figure  10.  (a) Langmuir model of SA-CMC-GO composite aerogel on Pb2+; (b) Freundlich model of SA-CMC-GO composite aerogel on Pb2+

    $ {c}_{e} $—Concentration at adsorption equilibrium

    图  11  循环次数与SA-CMC-GO复合气凝胶对Pb2+去除率的关系

    Figure  11.  Relationship between cycle time and the Pb2+ removal rate of SA-CMC-GO composite aerogel

    图  12  SA-CMC-GO复合气凝胶对Pb2+的吸附原理图

    Figure  12.  The mechanism of the adsorption of Pb2+ by SA-CMC-GO composite aerogel

    表  1  元素的原子分数

    Table  1.   The atomic fraction of the element

    Atomic fraction/%
    CONa
    C—CC—OC=OC—OCOO/
    65.5510.634.8819.231.831.87
    下载: 导出CSV

    表  2  不同吸附剂对Pb2+的平衡吸附时间

    Table  2.   Equilibrium adsorption time of Pb2+ by different adsorbents

    AdsorbentTime/minReference
    DGO/CMC550[3]
    GO/CMC600[21]
    NSC150[25]
    Cell@PEI240[26]
    NPCS-PEI120[27]
    SA-CMC-GO 60This study
    Notes:DGO—functionalized graphene oxide; NSC—nanocellulose/sodium alginate/carboxymethyl chitosan aerogel; Cell@PEI—amino-modified cellulose aerogel; NPCS-PEI—N-methylene phosphonic acid chitosan.
    下载: 导出CSV

    表  3  SA-CMC-GO复合气凝胶对Pb2+的吸附热力学相关参数

    Table  3.   Thermodynamically relevant parameters for the adsorption of Pb2+ by SA-CMC-GO composite aerogel

    T/KΔG/(kJ·mol−1)ΔS/(kJ·mol·−1·K−1)ΔH/(kJ·mol−1)
    303−8.297

    −0.08298


    −33.44
    308−7.882
    313−7.467
    Notes:$ T $—temperature;$ \Delta H $—enthalpy change;$ \Delta S $—entropy change;$ \Delta G $—Gibbs free energy change.
    下载: 导出CSV

    表  4  SA-CMC-GO复合气凝胶对Pb2+的吸附动力学拟合参数

    Table  4.   Fitting parameters for the kinetics of Pb2+ adsorption by SA-CMC-GO composite aerogel

    Pseudo-first-order kinetic modelPseudo-second-order kinetic model
    qe/(mg·g−1)k1/min−1R2qe/(mg·g−1)k2/(g·mg−1·min−1)R2
    71.710.023740.7546230.93.576×10−40.9942
    Notes:R2—linear correlation coefficient; $ {k}_{1} $—pseudo-first-order kinetic constant; $ {k}_{2} $—pseudo-second-order kinetic constant.
    下载: 导出CSV

    表  5  SA-CMC-GO复合气凝胶吸附Pb2+的粒子内扩散模型拟合参数

    Table  5.   Fitting parameters for the intra-particle diffusion model for Pb2+ adsorption by SA-CMC-GO composite aerogel

    k1/(mg·g−1·min0.5)R12k2/(mg·g−1·min0.5)R22k3/(mg·g−1·min0.5)R32
    37.700.992011.130.99170.50090.9923
    Notes:$ {k}_{i} $— intra-particle diffusion rate constant.
    下载: 导出CSV

    表  6  SA-CMC-GO复合气凝胶吸附Pb2+的Langmuir模型和Freundlich模型等温吸附参数

    Table  6.   Isothermal adsorption parameters of SA-CMC-GO composite aerogel for Pb2+ adsorption by Langmuir model and Freundlich model

    Langmuir modelFreundlich model
    qe/
    (mg·g−1)
    KLR2KFnR2
    272.50.48090.9974155.17.1250.6719
    Notes:$ {K}_{L} $—Langmuir adsorption coefficient; $ {K}_{F} $—Freundlich adsorption coefficient; n—the adsorption strength constant.
    下载: 导出CSV
  • [1] YANG W X, HAN Y, LI C H, et al. Shapeable three-dimensional CMC aerogels decorated with Ni/Co-MOF for rapid and highly efficient tetracycline hydrochloride removal[J]. Chemical Engineering Journal,2019,375:122076. doi: 10.1016/j.cej.2019.122076
    [2] ZHANG S Y, HAN X S, CAI H Z, et al. Aramid nanofibers/WS2 nanosheets co-assembled aerogels for efficient and stable Pb (II) adsorption in harsh environments[J]. Chemical Engineering Journal,2022,450:138268. doi: 10.1016/j.cej.2022.138268
    [3] LUO J Q, FAN C J, ZHOU X D. Functionalized graphene oxide/carboxymethyl chitosan composite aerogels with strong compressive strength for water purification[J]. Journal of Applied Polymer Science,2020,138(12):50065-50079.
    [4] 李继丰, 闫文静, 方婷, 等. C6位羧基纤维素制备及其对Cu2+吸附性能[J]. 复合材料学报, 2022, 39(3):1280-1290.

    LI Jifeng, YAN Wenjing, FANG Ting, et al. Preparation of C6 carboxylic cellulose and adsorption for Cu2+[J]. Acta Materiae Compositae Sinica,2022,39(3):1280-1290(in Chinese).
    [5] LIU Q, LI S S, YU H H, et al. Covalently crosslinked zirconium-based metal-organic framework aerogel monolith with ultralow-density and highly efficient Pb(II) removal[J]. Journal of Colloid and Interface Science,2020,561:211-219. doi: 10.1016/j.jcis.2019.11.074
    [6] 徐晓燕, 张鹏, 朱静, 等. 水环境中天然有机物对纳米颗粒吸附铅和镉的不同作用[J]. 环境化学, 2021, 40(2):571-582. doi: 10.7524/j.issn.0254-6108.2020052501

    XU X Y, ZHANG P, ZHU J, et al. The varying roles of natural organic matters on nanoparticles adsorbing Cd2+ and Pb2+ in water environment[J]. Environmental Chemistry,2021,40(2):571-582(in Chinese). doi: 10.7524/j.issn.0254-6108.2020052501
    [7] 牛乙涛, 包国庆, 吴纯鑫, 等. 功能化纳米复合材料 Fe3O4@SiO2-APTMS的制备及其对Pb(Ⅱ)的吸附[J]. 复合材料学报, 2023, 40:

    NIU Y T, BAO G Q, WU C X, et al. Preparation of Functionalized Nanocomposites Fe3O4@SiO2-APTMS and its adsorption to Pb (Ⅱ)[J]. Acta Materiae Compositae Sinica, 2023, 40: (in Chinese).
    [8] JIAO G J, MA J L, ZHANG J Q, et al. High-efficiency capture and removal of phosphate from wastewater by 3 D hierarchical functional biomass-derived carbon aerogel[J]. Science of the Total Environment,2022,827:154343. doi: 10.1016/j.scitotenv.2022.154343
    [9] MO L T, TAN Y, SHEN Y L, et al. Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu(II)[J]. Chemosphere,2022,291:132887. doi: 10.1016/j.chemosphere.2021.132887
    [10] LEI C Y, WEN F B, CHEN J M, et al. Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution[J]. Polymer,2021,213:123316. doi: 10.1016/j.polymer.2020.123316
    [11] GE X S, SHAN Y N, WU L, et al. High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide[J]. Carbohydrate Polymers,2018,197:277-283. doi: 10.1016/j.carbpol.2018.06.014
    [12] QIANG X H, GUO X, SU H X, et al. In situ nanoarchitectonics of magnesium hydroxide particles for property regulation of carboxymethyl cellulose/poly(vinyl alcohol) aerogels[J]. RSC Advances,2021,11:35197-35204. doi: 10.1039/D1RA06556D
    [13] 翟红侠, 赵越, 李超凡, 等. 氨基改性SiO2气凝胶去除Cu(II)的性能与机制[J]. 复合材料学报, 2023, 40.

    ZHAI H X, ZHAO Y, LI C F, et al. Performance and mechanism of the amine-modified silica aerogel for the removal of Cu(II)[J]. Acta Materiae Compositae Sinica, 2023, 40 (in Chinese).
    [14] 张春梅, 杨婷婷, 陆桂花, 等. 纳米纤维素/壳聚糖气凝胶对六价铬的吸附性能[J]. 功能材料, 2022, 10(53):10180-10184.

    ZHANG C M, YANG T T, LU G H, et all. Adsorption properties of cellulose nanocrystalline/chitosan aerogels for hexavalent chromium[J]. Journal of Functional Materials,2022,10(53):10180-10184(in Chinese).
    [15] HAN X H, LIANG J H, ZHU L J, et al. Sodium alginate–silica composite aerogels from rice husk ash for efficient absorption of organic pollutants[J]. Biomass and Bioenergy,2022,159:106424. doi: 10.1016/j.biombioe.2022.106424
    [16] DONG K Q, XU K J, WEI N S, et al. Three-dimensional porous sodium alginate/gellan gum environmentally friendly aerogel: Preparation, characterization, adsorption, and kinetics studies[J]. Chemical Engineering Research and Design,2022,179:227-236. doi: 10.1016/j.cherd.2022.01.027
    [17] GAO C, WANG X L, AN Q D, et all. Synergistic preparation of modified alginate aerogel with melamine/chitosan for efficiently selective adsorption of lead ions[J]. Carbohydrate Polymers,2021,256:117564. doi: 10.1016/j.carbpol.2020.117564
    [18] KONG Y, ZHUANG Y, HAN K, et al. Enhanced tetracycline adsorption using alginate-graphene-ZIF67 aerogel[J]. Colloids and Surfaces A,2020,588:124360. doi: 10.1016/j.colsurfa.2019.124360
    [19] CHEN P, XIE F W, TANG F Z, et al. Glycerol plasticisation of chitosan/carboxymeth-yl cellulose composites: Role of interactions in determining structure and properties[J]. International Journal of Biological Macromolecules,2020,163:683-693. doi: 10.1016/j.ijbiomac.2020.07.004
    [20] EITAWEIL S A, ELGARHY G S, EI-SUBRUITI G M, et al. Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye[J]. International Journal of Biological Macromolecules,2020,154:307-318. doi: 10.1016/j.ijbiomac.2020.03.122
    [21] LUO J Q, FAN C J, XIAO Z, et al. Novel graphene oxide/carboxymethyl chitosan aerogels via vacuum-assisted self-assembly for heavy metal adsorption capacity[J]. Colloids and Surfaces A,2019,578:123584. doi: 10.1016/j.colsurfa.2019.123584
    [22] LI J J, TAN S C, XU Z Y. Anisotropic nanocellulose aerogel loaded with modified UiO-66 as efficient adsorbent for heavy metal ions removal[J]. Nanomaterials,2020,10(6):1114. doi: 10.3390/nano10061114
    [23] XU W L, CHEN S, ZHU Y N, et al. Preparation of hyperelastic graphene/carboxyme-thyl cellulose composite aerogels by ambient pressure drying and its adsorption applications[J]. Journal of Materials Science,2020,55:10543-10557. doi: 10.1007/s10853-020-04720-5
    [24] LIU P, CHEN M G, XIONG C G, et al. Flexible and highly sensitive graphene/ carboxymethyl cellulose films for bending sensing[J]. Journal of Materials Science:Materials in Electronics,2020,31:14118-14127. doi: 10.1007/s10854-020-03966-8
    [25] LI W Q, ZHANG L P, HU D, et al. A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+[J]. International Journal of Biological Macromolecules,2021,187:922-930. doi: 10.1016/j.ijbiomac.2021.07.181
    [26] 李琦琪, 杨桂芳, 刘以凡, 等. 氨基改性纤维素气凝胶吸附Pb2+的研究[J]. 纤维素科学与技术, 2022, 30(1):34-46.

    LI Q Q, YANG G F, LIU Y F, et al. Adsorption behavior of Pb2+ on amino-modified cellulose aerogel[J]. Journal of Cellulose Science and Technology,2022,30(1):34-46(in Chinese).
    [27] LIU T, GOU S H, HE Y, et al. N-methylene phosphonic chitosan aerogels for efficient capture of Cu2+ and Pb2+ from aqueous environment[J]. Carbohydrate Polymers,2021,269:118355. doi: 10.1016/j.carbpol.2021.118355
    [28] 张宏伟, 谢鸿, 肖欣荣, 等. 不同氧化程度氧化石墨烯/聚乙烯醇气凝胶对亚甲基蓝的吸附[J]. 复合材料学报, 2021, 38(9):2788-2795. doi: 10.13801/j.cnki.fhclxb.20201203.002

    ZHANG H W, XIE H, XIAO X R, et al. Adsorption of methylene blue by graphene oxide/polyvinyl alcoholaerogels with different oxidation degrees[J]. Acta Materiae Compositae Sinica,2021,38(9):2788-2795(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201203.002
    [29] YANG P, YANG L, WANG Y, et all. An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation–π interactions[J]. Journal of Materials Chemistry A,2019,7:531-539. doi: 10.1039/C8TA07326K
    [30] WANG Z G, SONG L, WANG Y Q, et al. Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications[J]. Chemical Engineering Journal,2019,371:138-144. doi: 10.1016/j.cej.2019.04.022
    [31] HOSSEINI H, ZIRAKJOU A, MCCLEMENTS, et al. Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: Carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide[J]. Journal of Hazardous Materials,2022,421:126752. doi: 10.1016/j.jhazmat.2021.126752
    [32] ZHOU Y Q, GAO Y, WANG H L, et al. Versatile 3 D reduced graphene oxide/poly (amino-phosphonic acid) aerogel derived from waste acrylic fibers as an efficient adsorbent for water purification[J]. Science of the Total Environment,2021,776:145973. doi: 10.1016/j.scitotenv.2021.145973
    [33] XIANG C, WANG C, GUO R H, et al. Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes[J]. Journal of Materials Science,2019,54:1872-1883. doi: 10.1007/s10853-018-2900-5
  • 加载中
计量
  • 文章访问数:  140
  • HTML全文浏览量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-02-20
  • 录用日期:  2023-03-03
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回