留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶的制备及其对Pb(II)的吸附

田甜 付义乐 关丽 王溢源 周军

田甜, 付义乐, 关丽, 等. 海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 40(10): 5792-5802. doi: 10.13801/j.cnki.fhclxb.20230314.001
引用本文: 田甜, 付义乐, 关丽, 等. 海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 40(10): 5792-5802. doi: 10.13801/j.cnki.fhclxb.20230314.001
TIAN Tian, FU Yile, GUAN Li, et al. Preparation of sodium alginate-carboxymethyl cellulose-graphene oxide composite aerogel for adsorption of Pb(II) ion[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5792-5802. doi: 10.13801/j.cnki.fhclxb.20230314.001
Citation: TIAN Tian, FU Yile, GUAN Li, et al. Preparation of sodium alginate-carboxymethyl cellulose-graphene oxide composite aerogel for adsorption of Pb(II) ion[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5792-5802. doi: 10.13801/j.cnki.fhclxb.20230314.001

海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶的制备及其对Pb(II)的吸附

doi: 10.13801/j.cnki.fhclxb.20230314.001
基金项目: 国家自然科学基金(21807086);陕西省自然科学基础研究计划项目(2022JM-096)
详细信息
    通讯作者:

    付义乐,博士,副教授,硕士生导师,研究方向为功能材料的制备及性能研究 E-mail: fuyile@xauat.edu.cn

  • 中图分类号: X703;TQ424

Preparation of sodium alginate-carboxymethyl cellulose-graphene oxide composite aerogel for adsorption of Pb(II) ion

Funds: National Natural Science Foundation of China (21807086); Natural Science Basic Research Program of Shaanxi (2022JM-096)
  • 摘要: 目前,开发具有优异吸附性能、可持续使用和绿色环保的吸附剂仍然是水污染治理领域的焦点问题。因此,本文以海藻酸钠(SA)、羧甲基纤维素(CMC)和氧化石墨烯(GO)为原料,通过简单的溶胶-凝胶法结合冷冻干燥,构建了具有三维多孔网络结构的SA-CMC-GO复合气凝胶。利用SEM、FTIR、XRD等对SA-CMC-GO复合气凝胶的微观形貌、官能团结构等进行表征分析。以水中Pb2+为吸附对象,通过一系列间歇吸附实验,探究了各种因素(pH、介质温度、接触时间等)对吸附剂去除水体中Pb2+的影响。结果表明:在pH值2~5的范围内,复合气凝胶对Pb2+的吸附量随着pH的升高而升高;复合气凝胶对于Pb2+的吸附过程属于自发放热过程并遵循Langmuir吸附等温模型,其最大吸附量为272.5 mg·g−1;动力学研究表明,SA-CMC-GO复合气凝胶对Pb2+具有较快的吸附速率,可在60 min内达平衡并符合准二级动力学模型;此外,经过5次吸附-脱附试验,复合气凝胶仍对Pb2+保持较高的吸附性能。SA-CMC-GO复合气凝胶可以作为一种高效、快速的吸附剂用于从水体中去除Pb2+

     

  • 图  1  海藻酸钠-羧甲基纤维素-氧化石墨烯(SA-CMC-GO)复合气凝胶制备流程

    Figure  1.  Preparation process of sodium alginate-carboxymethyl cellulose-graphene oxide (SA-CMC-GO) composite aerogel

    T—Temperature; t—Time

    图  2  ((a), (b)) CMC-GO复合气凝胶的SEM图像;SA-CMC-GO复合气凝胶的SEM图像((c), (d))和EDS能谱(e)

    Figure  2.  ((a), (b)) SEM images of CMC-GO composite aerogel; SEM images ((c), (d)) and EDS mapping (e) of SA-CMC-GO composite aerogel

    图  3  CMC、GO、SA、SA-CMC-GO复合气凝胶的FTIR图谱

    Figure  3.  FTIR spectra of CMC, GO, SA and SA-CMC-GO composite aerogel

    图  4  CMC气凝胶和SA-CMC-GO复合气凝胶的XRD图谱

    Figure  4.  XRD patterns of CMC aerogel and SA-CMC-GO composite aerogel

    图  5  SA-CMC-GO复合气凝胶的XPS图谱:(a) 全谱;(b) C1s;(c) O1s

    Figure  5.  XPS spectra of SA-CMC-GO composite aerogel: (a) Full spectrum; (b) C1s; (c) O1s

    图  6  溶液pH与SA-CMC-GO复合气凝胶吸附Pb2+去除率和吸附量的关系

    Figure  6.  Relationship between solution pH and removal rate and adsorption capacity of Pb2+ by SA-CMC-GO composite aerogel

    qe—Equilibrium adsorption capacity

    图  7  吸附时间与SA-CMC-GO复合气凝胶对Pb2+的吸附量的关系

    Figure  7.  Relationship between adsorption time and the adsorption capacity of Pb2+ adsorbed by SA-CMC-GO composite aerogel

    图  8  温度与SA-CMC-GO复合气凝胶对Pb2+的吸附量的关系

    Figure  8.  Relationship between temperature and the adsorption capacity of Pb2+ adsorbed by SA-CMC-GO composite aerogel

    图  9  SA-CMC-GO复合气凝胶吸附Pb2+:(a) 准一级动力学模型;(b) 准二级动力学模型;(c) 粒子内扩散模型

    Figure  9.  Pb2+ adsorption by SA-CMC-GO composite aerogel: (a) Pseudo-first-order kinetic model; (b) Pseudo-second-order kinetic model; (c) Intra-particle diffusion model

    qt—Adsorption capacity at time t

    图  10  SA-CMC-GO复合气凝胶吸附Pb2+:(a) Langmuir模型;(b) Freundlich模型

    Figure  10.  SA-CMC-GO composite aerogel on Pb2+: (a) Langmuir model; (b) Freundlich model

    ce—Concentration at adsorption equilibrium

    图  11  循环次数与SA-CMC-GO复合气凝胶对Pb2+去除率的关系

    Figure  11.  Relationship between cycle times and the Pb2+ removal rate of SA-CMC-GO composite aerogel

    图  12  SA-CMC-GO复合气凝胶对Pb2+的吸附原理图

    Figure  12.  Mechanism of the adsorption of Pb2+ by SA-CMC-GO composite aerogel

    表  1  元素的原子分数

    Table  1.   Atomic fraction of the element

    Atomic fraction/at%
    CONa
    C—CC—OC=OC—OCOO
    65.5510.634.8819.231.831.87
    下载: 导出CSV

    表  2  不同吸附剂对Pb2+的平衡吸附时间

    Table  2.   Equilibrium adsorption time of Pb2+ by different adsorbents

    AdsorbentTime/minRef.
    DGO/CMC550[3]
    GO/CMC600[21]
    NSC150[25]
    Cell@PEI240[26]
    NPCS-PEI120[27]
    SA-CMC-GO 60This study
    Notes: DGO—Functionalized graphene oxide; NSC—Nano-cellulose/sodium alginate/carboxymethyl chitosan aerogel; Cell@PEI—Amino-modified cellulose aerogel; NPCS-PEI—N-methylene phosphonic acid chitosan.
    下载: 导出CSV

    表  3  SA-CMC-GO复合气凝胶对Pb2+的吸附热力学相关参数

    Table  3.   Thermodynamically relevant parameters for the adsorption of Pb2+ by SA-CMC-GO composite aerogel

    T/KΔG/(kJ·mol−1)ΔS/(kJ·mol−1·K−1)ΔH/(kJ·mol−1)
    303−8.297

    −0.08298


    −33.44
    308−7.882
    313−7.467
    Notes: T—Temperature; ΔH—Enthalpy change; ΔS—Entropy change; ΔG—Gibbs free energy change.
    下载: 导出CSV

    表  4  SA-CMC-GO复合气凝胶对Pb2+的吸附动力学拟合参数

    Table  4.   Fitting parameters for the kinetics of Pb2+ adsorption by SA-CMC-GO composite aerogel

    Pseudo-first-order kinetic modelPseudo-second-order kinetic model
    qe/(mg·g−1)k1/min−1R2qe/(mg·g−1)k2/(g·mg−1·min−1)R2
    71.710.023740.7546230.93.576×10−40.9942
    Notes: R2—Linear correlation coefficient; k1—Pseudo-first-order kinetic constant; k2—Pseudo-second-order kinetic constant.
    下载: 导出CSV

    表  5  SA-CMC-GO复合气凝胶吸附Pb2+的粒子内扩散模型拟合参数

    Table  5.   Fitting parameters for the intra-particle diffusion model for Pb2+ adsorption by SA-CMC-GO composite aerogel

    k1/
    (mg·g−1·min0.5)
    R12k2/
    (mg·g−1·min0.5)
    R22k3/
    (mg·g−1·min0.5)
    R32
    37.700.992011.130.99170.50090.9923
    Note: ki—Intra-particle diffusion rate constant, i=1, 2, 3.
    下载: 导出CSV

    表  6  SA-CMC-GO复合气凝胶吸附Pb2+的等温线吸附Langmuir模型和Freundlich模型参数

    Table  6.   Isothermal adsorption parameters of SA-CMC-GO composite aerogel for Pb2+ adsorption by Langmuir model and Freundlich model

    Langmuir modelFreundlich model
    qe/
    (mg·g−1)
    KLR2KFnR2
    272.50.48090.9974155.17.1250.6719
    Notes: KL—Langmuir adsorption coefficient; KF—Freundlich adsorption coefficient; n—Adsorption strength constant.
    下载: 导出CSV
  • [1] YANG W X, HAN Y, LI C H, et al. Shapeable three-dimensional CMC aerogels decorated with Ni/Co-MOF for rapid and highly efficient tetracycline hydrochloride removal[J]. Chemical Engineering Journal,2019,375:122076. doi: 10.1016/j.cej.2019.122076
    [2] ZHANG S Y, HAN X S, CAI H Z, et al. Aramid nanofibers/WS2 nanosheets co-assembled aerogels for efficient and stable Pb (II) adsorption in harsh environments[J]. Chemical Engineering Journal,2022,450:138268. doi: 10.1016/j.cej.2022.138268
    [3] LUO J Q, FAN C J, ZHOU X D. Functionalized graphene oxide/carboxymethyl chitosan composite aerogels with strong compressive strength for water purification[J]. Journal of Applied Polymer Science,2020,138(12):50065-50079.
    [4] 李继丰, 闫文静, 方婷, 等. C6位羧基纤维素制备及其对Cu2+吸附性能[J]. 复合材料学报, 2022, 39(3):1280-1290.

    LI Jifeng, YAN Wenjing, FANG Ting, et al. Preparation of C6 carboxylic cellulose and adsorption for Cu2+[J]. Acta Materiae Compositae Sinica,2022,39(3):1280-1290(in Chinese).
    [5] LIU Q, LI S S, YU H H, et al. Covalently crosslinked zirconium-based metal-organic framework aerogel monolith with ultralow-density and highly efficient Pb(II) removal[J]. Journal of Colloid and Interface Science,2020,561:211-219. doi: 10.1016/j.jcis.2019.11.074
    [6] 徐晓燕, 张鹏, 朱静, 等. 水环境中天然有机物对纳米颗粒吸附铅和镉的不同作用[J]. 环境化学, 2021, 40(2):571-582. doi: 10.7524/j.issn.0254-6108.2020052501

    XU Xiaoyan, ZHANG Peng, ZHU Jing, et al. The varying roles of natural organic matters on nanoparticles adsorbing Cd2+ and Pb2+ in water environment[J]. Environmental Chemistry,2021,40(2):571-582(in Chinese). doi: 10.7524/j.issn.0254-6108.2020052501
    [7] 牛乙涛, 包国庆, 吴纯鑫, 等. 功能化纳米复合材料Fe3O4@SiO2-3-氨丙基三甲氧基硅烷的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 40(6): 3350-3365.

    NIU Yitao, BAO Guoqing, WU Chunxin, et al. Preparation of functionalized nanocomposites Fe3O4@SiO2-3-aminopropyltrimethoxysilane and its adsorption to Pb(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3350-3365(in Chinese).
    [8] JIAO G J, MA J L, ZHANG J Q, et al. High-efficiency capture and removal of phosphate from wastewater by 3D hierarchical functional biomass-derived carbon aerogel[J]. Science of the Total Environment,2022,827:154343. doi: 10.1016/j.scitotenv.2022.154343
    [9] MO L T, TAN Y, SHEN Y L, et al. Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu(II)[J]. Chemosphere,2022,291:132887. doi: 10.1016/j.chemosphere.2021.132887
    [10] LEI C Y, WEN F B, CHEN J M, et al. Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution[J]. Polymer,2021,213:123316. doi: 10.1016/j.polymer.2020.123316
    [11] GE X S, SHAN Y N, WU L, et al. High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide[J]. Carbohydrate Polymers,2018,197:277-283. doi: 10.1016/j.carbpol.2018.06.014
    [12] QIANG X H, GUO X, SU H X, et al. In situ nanoarchitectonics of magnesium hydroxide particles for property regulation of carboxymethyl cellulose/poly(vinyl alcohol) aerogels[J]. RSC Advances,2021,11(56):35197-35204. doi: 10.1039/D1RA06556D
    [13] 翟红侠, 赵越, 李超凡, 等. 氨基改性SiO2气凝胶去除Cu(II)的性能与机制[J]. 复合材料学报, 2023, 40(8): 3981-3992.

    ZHAI Hongxia, ZHAO Yue, LI Chaofan, et al. Performance and mechanism of the amine-modified silica aerogel for the removal of Cu(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 3981-3992(in Chinese).
    [14] 张春梅, 杨婷婷, 陆桂花, 等. 纳米纤维素/壳聚糖气凝胶对六价铬的吸附性能[J]. 功能材料, 2022, 53(10):10180-10184.

    ZHANG Chunmei, YANG Tingting, LU Guihua, et al. Adsorption properties of cellulose nanocrystalline/chitosan aerogels for hexavalent chromium[J]. Journal of Functional Materials,2022,53(10):10180-10184(in Chinese).
    [15] HAN X H, LIANG J C, FUKUDA S, et al. Sodium alginate-silica composite aerogels from rice husk ash for efficient absorption of organic pollutants[J]. Biomass and Bioenergy,2022,159:106424. doi: 10.1016/j.biombioe.2022.106424
    [16] DONG K Q, XU K J, WEI N S, et al. Three-dimensional porous sodium alginate/gellan gum environmentally friendly aerogel: Preparation, characterization, adsorption, and kinetics studies[J]. Chemical Engineering Research and Design,2022,179:227-236. doi: 10.1016/j.cherd.2022.01.027
    [17] GAO C, WANG X L, AN Q D, et al. Synergistic preparation of modified alginate aerogel with melamine/chitosan for efficiently selective adsorption of lead ions[J]. Carbohydrate Polymers,2021,256:117564. doi: 10.1016/j.carbpol.2020.117564
    [18] KONG Y, ZHUANG Y, HAN K, et al. Enhanced tetracycline adsorption using alginate-graphene-ZIF67 aerogel[J]. Colloids and Surfaces A,2020,588:124360. doi: 10.1016/j.colsurfa.2019.124360
    [19] CHEN P, XIE F W, TANG F Z, et al. Glycerol plasticisation of chitosan/carboxymethyl cellulose composites: Role of interactions in determining structure and properties[J]. International Journal of Biological Macromolecules,2020,163:683-693. doi: 10.1016/j.ijbiomac.2020.07.004
    [20] ELTAWEIL A S, ELGARHY G S, EL-SUBRUITI G M, et al. Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye[J]. International Journal of Biological Macromolecules,2020,154:307-318. doi: 10.1016/j.ijbiomac.2020.03.122
    [21] LUO J Q, FAN C J, XIAO Z, et al. Novel graphene oxide/carboxymethyl chitosan aerogels via vacuum-assisted self-assembly for heavy metal adsorption capacity[J]. Colloids and Surfaces A,2019,578:123584. doi: 10.1016/j.colsurfa.2019.123584
    [22] LI J J, TAN S C, XU Z Y. Anisotropic nanocellulose aerogel loaded with modified UiO-66 as efficient adsorbent for heavy metal ions removal[J]. Nanomaterials,2020,10(6):1114. doi: 10.3390/nano10061114
    [23] XU W L, CHEN S, ZHU Y N, et al. Preparation of hyperelastic graphene/carboxymethyl cellulose composite aerogels by ambient pressure drying and its adsorption applications[J]. Journal of Materials Science,2020,55(24):10543-10557. doi: 10.1007/s10853-020-04720-5
    [24] LIU P, CHEN M G, XIONG C G, et al. Flexible and highly sensitive graphene/carboxymethyl cellulose films for bending sensing[J]. Journal of Materials Science: Materials in Electronics,2020,31(17):14118-14127. doi: 10.1007/s10854-020-03966-8
    [25] LI W Q, ZHANG L P, HU D, et al. A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+[J]. International Journal of Biological Macromolecules,2021,187:922-930. doi: 10.1016/j.ijbiomac.2021.07.181
    [26] 李琦琪, 杨桂芳, 刘以凡, 等. 氨基改性纤维素气凝胶吸附Pb2+的研究[J]. 纤维素科学与技术, 2022, 30(1):34-46.

    LI Qiqi, YANG Guifang, LIU Yifan, et al. Adsorption behavior of Pb2+ on amino-modified cellulose aerogel[J]. Journal of Cellulose Science and Technology,2022,30(1):34-46(in Chinese).
    [27] LIU T, GOU S H, HE Y, et al. N-methylene phosphonic chitosan aerogels for efficient capture of Cu2+ and Pb2+ from aqueous environment[J]. Carbohydrate Polymers,2021,269:118355. doi: 10.1016/j.carbpol.2021.118355
    [28] 张宏伟, 谢鸿, 肖欣荣, 等. 不同氧化程度氧化石墨烯/聚乙烯醇气凝胶对亚甲基蓝的吸附[J]. 复合材料学报, 2021, 38(9):2788-2795. doi: 10.13801/j.cnki.fhclxb.20201203.002

    ZHANG Hongwei, XIE Hong, XIAO Xinrong, et al. Adsorption of methylene blue by graphene oxide/polyvinyl alcohol aerogels with different oxidation degrees[J]. Acta Materiae Compositae Sinica,2021,38(9):2788-2795(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201203.002
    [29] YANG P, YANG L, WANG Y, et al. An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation-π interactions[J]. Journal of Materials Chemistry A,2019,7(2):531-539. doi: 10.1039/C8TA07326K
    [30] WANG Z G, SONG L, WANG Y Q, et al. Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications[J]. Chemical Engineering Journal,2019,371:138-144. doi: 10.1016/j.cej.2019.04.022
    [31] HOSSEINI H, ZIRAKJOU A, MCCLEMENTS D J, et al. Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: Carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide[J]. Journal of Hazardous Materials,2022,421:126752. doi: 10.1016/j.jhazmat.2021.126752
    [32] ZHOU Y Q, GAO Y, WANG H L, et al. Versatile 3D reduced graphene oxide/poly(amino-phosphonic acid) aerogel derived from waste acrylic fibers as an efficient adsorbent for water purification[J]. Science of the Total Environment,2021,776:145973. doi: 10.1016/j.scitotenv.2021.145973
    [33] XIANG C, WANG C, GUO R H, et al. Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes[J]. Journal of Materials Science,2019,54(2):1872-1883. doi: 10.1007/s10853-018-2900-5
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  484
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-02-20
  • 录用日期:  2023-03-03
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回