Performance study of Fe(III)-doped BiOCl photocatalyst for degradation of tetracycline hydrochloride
-
摘要:
光催化技术可以利用太阳能实现难降解污染物的有效降解,具有节能、无毒、成本低等特点,已成为科学家关注和研究的新前沿。BiOCl具有良好的能带结构和独特的层状结构,可实现对有机污染物的有效降解。但是,太阳光利用率低、光生电子-空穴复合率高的问题严重限制其发展及应用。因此,为了提高可见光响应能力并降低光生电子-空穴复合率,有必要对BiOCl进行改性。为克服光催化剂上述缺点,本研究在较短时间内制备了Fe掺杂改性的0.15-Fe/BiOCl材料。Fe的引入显著缩短了禁带宽度,拓宽了其可见光响应范围,降低了光生载流子复合率,有效提高了太阳光利用率以及光生电子-空穴对的分离效率。制备的样品在对盐酸四环素具有优异的去除效果,经暗吸附和光催化过程后去除率可达92%。催化剂失活后,其Fe-O断裂、吸附氧/晶格氧比值升高和晶格氧的大量损失可能会降低其循环性能。文章为制备具有高效光催化活性的过渡金属掺杂BiOCl材料提供了一种有前景的方法,为提高材料的循环活性提供了可行的见解。 0.15-Fe/BiOCl光催化机制示意图(a);BiOCl和Z-Fe/BiOCl的可见光降解盐酸四环素曲线(b)Schematic diagram of the photocatalytic mechanism of 0.15-Fe/BiOCl(a); Visible light degradation curves of tetracycline hydrochloride by BiOCl and Z-Fe/BiOCl(b) Abstract: Tetracycline hydrochloride (TC-HCl), which can be released into the aquatic environment through excreta, poses a potential threat to aquatic systems and human health due to its stable structure and difficult biodegradability. As one of the photocatalytic materials of great interest, BiOCl development applications are limited by the low solar light utilization and the hight rate of photogenerated electron-hole recombination. In this study, Fe-doped BiOCl porous microspheres self-assembled from two-dimensional nanosbeets were synthesized by a one-pot solvothermal method without the addition of surfactants, and the degradation properties for TC-HCl was investigated. The results showed that Fe doping narrowed the forbidden band width of BiOCl, thereby improving the light absorption intensity and broadening the photoresponse range to the visible region. Fe doping accelerates the separation of photogenerated carriers and improves the photocatalytic performance of BiOCl. The 0.15-Fe/BiOCl has the best removal effect on TC-HCl (30 mg/L), and the removal rate can reach 92% after dark adsorption and photocatalysis. Combined with the experimental results, the mechanism of photocatalytic degradation of TC-HCl by Fe-doped BiOCl under visible light was revealed in this study, and the reasons for the reduction of cycling activity were analyzed, which provided a promising method for the preparation of transition metal-doped BiOCl materials with high photocatalytic activity and feasible insights for improving the cycling activity of materials.-
Key words:
- BiOCl /
- Fe-doped /
- Fe/BiOCl /
- photocatalysis /
- tetracycline hydrochloride
-
表 1 BiOCl和0.15-Fe/BiOCl的SBET、Vp和孔径数据
Table 1. SBET, Vp and pore size data for BiOCl and 0.15-Fe/BiOCl
Sample SBET
/(m²·g−1)Vp
/(cm3·g−1)Pore Size/
nmBiOCl 26.96 0.087 16.65 0.15-Fe/BiOCl 70.75 0.164 11.22 Notes: SBET: Specific surface are; Vp: Total pore volume -
[1] PENG R, KANG Y, DENG X, et al. Topotactic transformed face-to-face heterojunction of BiOCl/Bi2WO6 for improved tetracycline photodegradation[J]. Journal of Environmental Chemical Engineering,2021,9(6):106750. doi: 10.1016/j.jece.2021.106750 [2] TALREJA N, AFREEN S, ASHFAQ M, et al. Bimetal (Fe/Zn) doped BiOI photocatalyst: An effective photodegradation of tetracycline and bacteria[J]. Chemosphere,2021,280:130803. doi: 10.1016/j.chemosphere.2021.130803 [3] TALREJA N, ASHFAQ M, CHAUHAN D, et al. Strategic Doping Approach of the Fe–BiOI Microstructure: An Improved Photodegradation Efficiency of Tetracycline[J]. Acs Omega,2021,6(2):1575-1583. doi: 10.1021/acsomega.0c05398 [4] XU L, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Science of the Total Environment,2021,753:141975. doi: 10.1016/j.scitotenv.2020.141975 [5] WU Y, YUAN B, LI M, et al. Well-defined BiOCl colloidal ultrathin nanosheets: synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines[J]. Chemical Science,2015,6(3):1873-1878. doi: 10.1039/C4SC03229B [6] YANG X, SUN S, YE L, et al. One-pot integration of S-doped BiOCl and ZnO into type-II photocatalysts: Simultaneously boosting bulk and surface charge separation for enhanced antibiotic removal[J]. Separation and Purification Technology,2022,299:121725. doi: 10.1016/j.seppur.2022.121725 [7] TAO S, SUN S, ZHAO T, et al. One-pot construction of Ta-doped BiOCl/Bi heterostructures toward simultaneously promoting visible light harvesting and charge separation for highly enhanced photocatalytic activity[J]. Applied Surface Science,2021,543:148798. doi: 10.1016/j.apsusc.2020.148798 [8] HUANG C, HU J, CONG S, et al. Hierarchical BiOCl microflowers with improved visible-light-driven photocatalytic activity by Fe(III) modification[J]. Applied Catalysis B-Environmental,2015,174:105-112. [9] CAO P, ZHANG Z C, BAI X, et al. Complecting the BiOCl nano-roundels based hollow microbasket induced by chitosan for dramatically enhancing photocatalytic activity[J]. Journal of Molecular Structure,2022,1254:132339. doi: 10.1016/j.molstruc.2022.132339 [10] ZHANG X, WEI J, LI R, et al. DFT + U predictions: structural stability, electronic and optical properties, oxidation activity of BiOCl photocatalysts with 3 d transition metals doping[J]. Journal of Materials Science,2018,53(6):4494-4506. doi: 10.1007/s10853-017-1865-0 [11] LV X, YAN D Y S, LAM F L-Y, et al. Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin[J]. Chemical Engineering Journal,2020,401:126012. doi: 10.1016/j.cej.2020.126012 [12] YU Y, SHANG Z, YANG Z, et al. One-step synthesis via solution combustion of Fe(III)-doped BiOCl nanoparticles with high photocatalytic activity[J]. Journal of Sol-Gel Science and Technology,2022,103(1):309-318. doi: 10.1007/s10971-022-05795-z [13] RAMESHBABU R, PECCHI G, DELGADO E J, et al. BiOCl ultrathin nanosheets modified with Fe3+ for enhanced visible light driven photocatalytic activity[J]. Journal of Photochemistry and Photobiology a-Chemistry,2021,411:113211. doi: 10.1016/j.jphotochem.2021.113211 [14] SHEN Z, LI F, LU J, et al. Enhanced N2 photofixation activity of flower-like BiOCl by in situ Fe(III) doped as an activation center[J]. Journal of Colloid and Interface Science,2021,584:174-181. doi: 10.1016/j.jcis.2020.09.111 [15] WANG X, WU L, WANG J, et al. Oxygen vacancies and interfacial iron sites in hierarchical BiOCl nanosheet microflowers cooperatively promoting photo-Fenton[J]. Chemosphere,2022,307:135967. doi: 10.1016/j.chemosphere.2022.135967 [16] ZOU P, LI Z, JIA P, et al. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2021,623:126705. [17] WU L, JIANG G, WANG X, et al. Amorphous iron oxides anchored on BiOCl nanoplates as robust catalysts for high-performance photo-Fenton oxidation[J]. Journal of Colloid and Interface Science,2022,622:62-74. doi: 10.1016/j.jcis.2022.04.092 [18] GAO X, PENG W, TANG G, et al. Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine[J]. Journal of Alloys and Compounds,2018,757:455-465. doi: 10.1016/j.jallcom.2018.05.081 [19] 余关龙, 王世涛, 杨凯, 等. BiOI/BiOBr0.9I0.1光催化剂的制备及其对2, 4-二氯苯氧乙酸降解性能[J]. 复合材料学报, 2022:1-14.YU G, WANG S, YANG K, et al. Preparation of BiOI/BiOBr0.9I0.1 photocatalyst and its degration performance on 2, 4-dichlorophenoxyacetic acid[J]. Acta Materiae Compositae Sinica,2022:1-14(in Chinese). [20] YIN Y, YAO Y, QIAN X, et al. Fabrication of Fe/BiOCl/RGO with enhanced photocatalytic degradation of ciprofloxacin under visible light irradiation[J]. Materials Science in Semiconductor Processing,2022:140. [21] GUO Y, QI C, LU B, et al. Enhanced hydrogen production from water splitting by Sn-doped ZnO/BiOCl photocatalysts and Eosin Y sensitization[J]. International Journal of Hydrogen Energy,2022,47(1):228-241. doi: 10.1016/j.ijhydene.2021.10.014 [22] LI X, ZHANG L, YANG Z, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology,2020,235:116213. doi: 10.1016/j.seppur.2019.116213 [23] MA W, DONG X a, WANG Y, et al. Highly enhanced photocatalytic toluene degradation and in situ FT-IR investigation on designed Sn-doped BiOCl nanosheets[J]. Applied Surface Science,2022,578:152002. doi: 10.1016/j.apsusc.2021.152002 [24] LIU C, REN Y, WANG Z, et al. Flowerlike BiOCl nanospheres fabricated by an in situ self-assembly strategy for efficiently enhancing photocatalysis[J]. Journal of Colloid and Interface Science,2022,607:423-430. doi: 10.1016/j.jcis.2021.09.002 [25] GROSVENOR A P, KOBE B A, BIESINGER M C, et al. Investigation of multiplet splitting of Fe 2 p XPS spectra and bonding in iron compounds[J]. Surface and Interface Analysis,2004,36(12):1564-1574. doi: 10.1002/sia.1984 [26] WANG X, ZHU J, FU X, et al. Boosted visible-light photocatalytic performance of Au/BiOCl/BiOI by high-speed spatial electron transfer channel[J]. Journal of Alloys and Compounds,2022:890. [27] ZHANG N, LI L, SHAO Q, et al. Fe-Doped BiOCl Nanosheets with Light-Switchable Oxygen Vacancies for Photocatalytic Nitrogen Fixation[J]. Acs Applied Energy Materials,2019,2(12):8394-8398. doi: 10.1021/acsaem.9b01961 [28] LIU G, CHEN Y, LIU X, et al. BiOCl microspheres with controllable oxygen vacancies: Synthesis and their enhanced photocatalytic performance[J]. Journal of Solid State Chemistry,2022,306:122751. doi: 10.1016/j.jssc.2021.122751 [29] AN W, HU S, YANG T, et al. Oxygen vacancies enhance Fe-doped BiOCl photocatalysis-Fenton synergy degradation of phenol[J]. Materials Letters,2022,322:132466. doi: 10.1016/j.matlet.2022.132466 [30] TIAN F, LI G, ZHAO H, et al. Residual Fe enhances the activity of BiOCl hierarchical nanostructure for hydrogen peroxide activation[J]. Journal of Catalysis,2019,370:265-273. doi: 10.1016/j.jcat.2018.12.023 [31] YU H, GE D, WANG Y, et al. Facile synthesis of Bi-modified Nb-doped oxygen defective BiOCl microflowers with enhanced visible-light-driven photocatalytic performance[J]. Journal of Alloys and Compounds,2019,786:155-162. doi: 10.1016/j.jallcom.2019.01.323 [32] YI F, MA J, LIN C, et al. Electronic and thermal transfer actuating memory catalysis for organic removal by a plasmonic photocatalyst[J]. Chemical Engineering Journal,2022:427. [33] SHAHID M Z, MEHMOOD R, ATHAR M, et al. BiOCl Nanoplates Doped with Fe3+ Ions for the Visible-Light Degradation of Aqueous Pollutants[J]. Acs Applied Nano Materials,2021,4(1):746-758. doi: 10.1021/acsanm.0c03042 [34] ZHONG X, ZHANG K-X, WU D, et al. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation[J]. Chemical Engineering Journal,2020,383:123148. doi: 10.1016/j.cej.2019.123148 [35] MI Y, WEN L, WANG Z, et al. Fe(III) modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst[J]. Nano Energy,2016,30:109-117. doi: 10.1016/j.nanoen.2016.10.001 [36] GUAN M, REN G, ZHANG X, et al. Regulating electronic properties of BiOBr to enhance visible light response via 3 d transition metals doping: DFT + U calculations[J]. International Journal of Quantum Chemistry,2021,121(7):e26568. [37] Mohseni N, Haghighi M, Shabani M. Sunlight-activated 3 D-mesoporous-flowerlike Cl–Br bismuth oxides nanosheet solid solution: In situ EG-thermal-sonication synthesis with excellent photodecomposition of ciprofloxacin[J]. Environmental Research,2020,188:109810. doi: 10.1016/j.envres.2020.109810 [38] CHEN X, ZHOU J, CHEN Y, et al. Degradation of tetracycline hydrochloride by coupling of photocatalysis and peroxymonosulfate oxidation processes using CuO-BiVO4 heterogeneous catalyst[J]. Process Safety and Environmental Protection,2021,145:364-377. doi: 10.1016/j.psep.2020.08.016 [39] GENG A, LIN H, ZHAO Y, et al. Self-Assembly of Hollow, Pompon-Like and Nanosheet-Structured Carbon Nitride for Photodegradation of Tetracycline Hydrochloride[J]. Particle & Particle Systems Characterization,2022,39(1):2100235. [40] LU T, GAO Y, YANG Y, et al. Efficient degradation of tetracycline hydrochloride by photocatalytic ozonation over Bi2WO6[J]. Chemosphere,2021,283:131256. doi: 10.1016/j.chemosphere.2021.131256 [41] 袁艺鸣. FeS2/g-C3N4降解盐酸四环素的性能与机理研究[D]. 重庆大学, 2020.YUAN Y. Study on the Performance and Mechanism of Degradation of Tetracycline Hydrochloride by FeS2/g-C3N4. Chongqing University, 2020 (in Chinese). [42] ZHANG T, CHEN L, JIANG T, et al. Chemical precipitation synthesis of Bi0.7Fe0.3OCl nanosheets via Fe (III)-doped BiOCl for highly visible light photocatalytic performance[J]. Materials Today Communications,2021,26:102145. doi: 10.1016/j.mtcomm.2021.102145 [43] GAO E, SUN G, ZHANG W, et al. Surface lattice oxygen activation via Zr4+ cations substituting on A2+ sites of MnCr2O4 forming ZrxMn1−xCr2O4 catalysts for enhanced NH3-SCR performance[J]. Chemical Engineering Journal,2020,380:122397. doi: 10.1016/j.cej.2019.122397 -

计量
- 文章访问数: 168
- HTML全文浏览量: 162
- 被引次数: 0