留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3+掺杂BiOCl光催化剂降解盐酸四环素的性能研究

余关龙 李培媛 杨凯 孙琪芳 阳艺

余关龙, 李培媛, 杨凯, 等. Fe3+掺杂BiOCl光催化剂降解盐酸四环素的性能研究[J]. 复合材料学报, 2023, 41(0): 1-12
引用本文: 余关龙, 李培媛, 杨凯, 等. Fe3+掺杂BiOCl光催化剂降解盐酸四环素的性能研究[J]. 复合材料学报, 2023, 41(0): 1-12
Guanlong YU, Peiyuan LI, Kai YANG, Qifang SUN, Yi YANG. Performance study of Fe(III)-doped BiOCl photocatalyst for degradation of tetracycline hydrochloride[J]. Acta Materiae Compositae Sinica.
Citation: Guanlong YU, Peiyuan LI, Kai YANG, Qifang SUN, Yi YANG. Performance study of Fe(III)-doped BiOCl photocatalyst for degradation of tetracycline hydrochloride[J]. Acta Materiae Compositae Sinica.

Fe3+掺杂BiOCl光催化剂降解盐酸四环素的性能研究

基金项目: 湖南省研究生科研创新项目(CX20210784);湖南省自然科学基金项目(No. 2021JJ30728);湖南省生态环境厅科研项目(HBKT-2021012);湖南省水利科技项目(No. XSKJ2022068-03)
详细信息
    通讯作者:

    余关龙,博士,副教授,硕士生导师,研究方向为光催化材料及污水处理 E-mail:ygl079@csust.edu.cn

  • 中图分类号: O643.36;O644.1

Performance study of Fe(III)-doped BiOCl photocatalyst for degradation of tetracycline hydrochloride

Funds: Hunan graduate Research Innovation Project (CX20210784); Project supported by Hunan Provincial Natural Science Foundation of China (No. 2021JJ30728); the Scientific Research Projects of Ecology and Environment Department of Hunan (No. HBKT-2021012); the Water Conservancy Science and Technology Project of Hunan Province (No. XSKJ2022068-03)
  • 摘要: 光催化技术可以利用太阳能实现难降解污染物的有效降解,具有节能、无毒、成本低等特点,已成为科学家关注和研究的新前沿。BiOCl具有良好的能带结构和独特的层状结构,可实现对有机污染物的有效降解。但是,太阳光利用率低、光生电子-空穴复合率高的问题严重限制其发展及应用。因此,为了提高可见光响应能力并降低光生电子-空穴复合率,有必要对BiOCl进行改性。为克服光催化剂上述缺点,本研究在较短时间内制备了Fe掺杂改性的0.15-Fe/BiOCl材料。Fe的引入显著缩短了禁带宽度,拓宽了其可见光响应范围,降低了光生载流子复合率,有效提高了太阳光利用率以及光生电子-空穴对的分离效率。制备的样品在对盐酸四环素具有优异的去除效果,经暗吸附和光催化过程后去除率可达92%。催化剂失活后,其Fe-O断裂、吸附氧/晶格氧比值升高和晶格氧的大量损失可能会降低其循环性能。文章为制备具有高效光催化活性的过渡金属掺杂BiOCl材料提供了一种有前景的方法,为提高材料的循环活性提供了可行的见解。0.15-Fe/BiOCl光催化机制示意图(a);BiOCl和Z-Fe/BiOCl的可见光降解盐酸四环素曲线(b)Schematic diagram of the photocatalytic mechanism of 0.15-Fe/BiOCl(a); Visible light degradation curves of tetracycline hydrochloride by BiOCl and Z-Fe/BiOCl(b)

     

  • 图  1  BiOCl和0.15-Fe/BiOCl的XRD图谱:5°-80°(a)和32°-34°(b);FT-IR图谱:4000 cm−1-400 cm−1(c)和600 cm−1-450 cm−1(d)

    Figure  1.  XRD patterns of BiOCl and 0.15-Fe/BiOCl:5°-80°(a) and 32°-34°(b);FT-IR patterns of BiOCl and 0.15-Fe/BiOCl:4000 cm−1-400 cm−1 (c) and 600 cm−1-450 cm−1(d)

    图  2  BiOCl(a)和0.15-Fe/BiOCl(b)的SEM图像;0.15-Fe/BiOCl的EDS图(c)

    Figure  2.  SEM image of BiOCl (a) and 0.15-Fe/BiOCl(b);EDS diagram of 0.15-Fe/BiOCl (c)

    图  3  BiOCl和0.15-Fe/BiOCl的N2吸附-解吸等温线曲线(a)和BJH法的孔径分布图(b)

    Figure  3.  N2 adsorption-desorption isotherm curves of BiOCl and 0.15-Fe/BiOCl (a) and pore size distribution by BJH method (b)

    图  4  BiOCl和0.15-Fe/BiOCl的XPS图谱:(a) Bi4f;(b) Cl2p;(c) O1s;(d) Fe2p;(e) 全谱

    Figure  4.  The XPS spectra of BiOCl and 0.15-Fe/BiOCl samples: (a) Bi4f, (b) Cl2p, (c) O1s, (d) Fe2p, (e) survey spectra respectively

    图  5  BiOCl和0.15-Fe/BiOCl的UV-vis DRS图(a)、带隙图(b)、VB-XPS图(c)

    Figure  5.  UV-Vis diffuse reflectance spectrum(a), band gap diagram(b), and VB-XPS (c) of BiOCl and 0.15-Fe/BiOCl

    图  6  BiOCl和0.15-Fe/BiOCl的(a)PC和(b)EIS(Ω)图谱

    Figure  6.  (a)PC and (b)EIS (Ω) plots of BiOCl and 0.15-Fe/BiOCl

    图  7  BiOCl和Z-Fe/BiOCl的可见光降解TC-HCl曲线(a)和对应样品的准一级动力学拟合(b)

    Figure  7.  Visible light degradation curves of TC-HCl by BiOCl and Z-Fe/BiOCl (a), quasi-first-order kinetic fitting of corresponding samples(b)

    图  8  不同TC-HCl浓度下0.15-Fe/BiOCl的可见光降解TC-HCl曲线

    Figure  8.  TC-HCl concentrations effect of operating conditions on visible light degradation of TC-HCl by 0.15-Fe/BiOCl

    图  9  不同pH对0.15-Fe/BiOCl可见光降解TC-HCl (TC-HCl:30 mg/L;光催化剂:0.50 g/L)的影响(a);不同pH下0.15-Fe/BiOCl的Zeta电位值(b)

    Figure  9.  pH effect of operating conditions on visible light degradation of TC-HCl by 0.15-Fe/BiOCl (a);Zeta potential values of 0.15-Fe/BiOCl at different pH(b)

    图  10  添加不同捕获剂对0.15-Fe/BiOCl光催化效果的影响(a);0.15-Fe/BiOCl样品DMPO-•O2和TEMPO-h+ 的ESR光谱(b)

    Figure  10.  The effect of adding different capture agents on the photocatalytic effect of 0.15-Fe/BiOCl (a), ESR spectra of DMPO-•O2 and TEMPO-h+ in 0.15-Fe/BiOCl samples (b)

    图  11  0.15-Fe/BiOCl光催化机制示意图

    Figure  11.  Schematic diagram of the photocatalytic mechanism of 0.15-Fe/BiOCl

    图  12  0.15-Fe/BiOCl循环性能(a);首次反应前后0.15-Fe/BiOCl样品的XRD图谱(b)、SEM图(c)和XPS图谱:Bi4f(d),O1s (e)

    Figure  12.  Cycle performance of 0.15-Fe/BiOCl(a); XRD patterns (b), SEM patterns(c) and XPS patterns of 0.15-Fe/BiOCl samples before and after the first reaction: Bi4f (d), O1s (e)

    表  1  BiOCl和0.15-Fe/BiOCl的SBET、Vp和孔径数据

    Table  1.   SBET, Vp and pore size data for BiOCl and 0.15-Fe/BiOCl

    SampleSBET
    /(m²·g−1)
    Vp
    /(cm3·g−1)
    Pore Size/
    nm
    BiOCl26.960.08716.65
    0.15-Fe/BiOCl70.750.16411.22
    Notes: SBET: Specific surface are; Vp: Total pore volume
    下载: 导出CSV
  • [1] PENG R, KANG Y, DENG X, et al. Topotactic transformed face-to-face heterojunction of BiOCl/Bi2WO6 for improved tetracycline photodegradation[J]. Journal of Environmental Chemical Engineering,2021,9(6):106750. doi: 10.1016/j.jece.2021.106750
    [2] TALREJA N, AFREEN S, ASHFAQ M, et al. Bimetal (Fe/Zn) doped BiOI photocatalyst: An effective photodegradation of tetracycline and bacteria[J]. Chemosphere,2021,280:130803. doi: 10.1016/j.chemosphere.2021.130803
    [3] TALREJA N, ASHFAQ M, CHAUHAN D, et al. Strategic Doping Approach of the Fe–BiOI Microstructure: An Improved Photodegradation Efficiency of Tetracycline[J]. Acs Omega,2021,6(2):1575-1583. doi: 10.1021/acsomega.0c05398
    [4] XU L, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Science of the Total Environment,2021,753:141975. doi: 10.1016/j.scitotenv.2020.141975
    [5] WU Y, YUAN B, LI M, et al. Well-defined BiOCl colloidal ultrathin nanosheets: synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines[J]. Chemical Science,2015,6(3):1873-1878. doi: 10.1039/C4SC03229B
    [6] YANG X, SUN S, YE L, et al. One-pot integration of S-doped BiOCl and ZnO into type-II photocatalysts: Simultaneously boosting bulk and surface charge separation for enhanced antibiotic removal[J]. Separation and Purification Technology,2022,299:121725. doi: 10.1016/j.seppur.2022.121725
    [7] TAO S, SUN S, ZHAO T, et al. One-pot construction of Ta-doped BiOCl/Bi heterostructures toward simultaneously promoting visible light harvesting and charge separation for highly enhanced photocatalytic activity[J]. Applied Surface Science,2021,543:148798. doi: 10.1016/j.apsusc.2020.148798
    [8] HUANG C, HU J, CONG S, et al. Hierarchical BiOCl microflowers with improved visible-light-driven photocatalytic activity by Fe(III) modification[J]. Applied Catalysis B-Environmental,2015,174:105-112.
    [9] CAO P, ZHANG Z C, BAI X, et al. Complecting the BiOCl nano-roundels based hollow microbasket induced by chitosan for dramatically enhancing photocatalytic activity[J]. Journal of Molecular Structure,2022,1254:132339. doi: 10.1016/j.molstruc.2022.132339
    [10] ZHANG X, WEI J, LI R, et al. DFT + U predictions: structural stability, electronic and optical properties, oxidation activity of BiOCl photocatalysts with 3 d transition metals doping[J]. Journal of Materials Science,2018,53(6):4494-4506. doi: 10.1007/s10853-017-1865-0
    [11] LV X, YAN D Y S, LAM F L-Y, et al. Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin[J]. Chemical Engineering Journal,2020,401:126012. doi: 10.1016/j.cej.2020.126012
    [12] YU Y, SHANG Z, YANG Z, et al. One-step synthesis via solution combustion of Fe(III)-doped BiOCl nanoparticles with high photocatalytic activity[J]. Journal of Sol-Gel Science and Technology,2022,103(1):309-318. doi: 10.1007/s10971-022-05795-z
    [13] RAMESHBABU R, PECCHI G, DELGADO E J, et al. BiOCl ultrathin nanosheets modified with Fe3+ for enhanced visible light driven photocatalytic activity[J]. Journal of Photochemistry and Photobiology a-Chemistry,2021,411:113211. doi: 10.1016/j.jphotochem.2021.113211
    [14] SHEN Z, LI F, LU J, et al. Enhanced N2 photofixation activity of flower-like BiOCl by in situ Fe(III) doped as an activation center[J]. Journal of Colloid and Interface Science,2021,584:174-181. doi: 10.1016/j.jcis.2020.09.111
    [15] WANG X, WU L, WANG J, et al. Oxygen vacancies and interfacial iron sites in hierarchical BiOCl nanosheet microflowers cooperatively promoting photo-Fenton[J]. Chemosphere,2022,307:135967. doi: 10.1016/j.chemosphere.2022.135967
    [16] ZOU P, LI Z, JIA P, et al. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2021,623:126705.
    [17] WU L, JIANG G, WANG X, et al. Amorphous iron oxides anchored on BiOCl nanoplates as robust catalysts for high-performance photo-Fenton oxidation[J]. Journal of Colloid and Interface Science,2022,622:62-74. doi: 10.1016/j.jcis.2022.04.092
    [18] GAO X, PENG W, TANG G, et al. Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine[J]. Journal of Alloys and Compounds,2018,757:455-465. doi: 10.1016/j.jallcom.2018.05.081
    [19] 余关龙, 王世涛, 杨凯, 等. BiOI/BiOBr0.9I0.1光催化剂的制备及其对2, 4-二氯苯氧乙酸降解性能[J]. 复合材料学报, 2022:1-14.

    YU G, WANG S, YANG K, et al. Preparation of BiOI/BiOBr0.9I0.1 photocatalyst and its degration performance on 2, 4-dichlorophenoxyacetic acid[J]. Acta Materiae Compositae Sinica,2022:1-14(in Chinese).
    [20] YIN Y, YAO Y, QIAN X, et al. Fabrication of Fe/BiOCl/RGO with enhanced photocatalytic degradation of ciprofloxacin under visible light irradiation[J]. Materials Science in Semiconductor Processing,2022:140.
    [21] GUO Y, QI C, LU B, et al. Enhanced hydrogen production from water splitting by Sn-doped ZnO/BiOCl photocatalysts and Eosin Y sensitization[J]. International Journal of Hydrogen Energy,2022,47(1):228-241. doi: 10.1016/j.ijhydene.2021.10.014
    [22] LI X, ZHANG L, YANG Z, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology,2020,235:116213. doi: 10.1016/j.seppur.2019.116213
    [23] MA W, DONG X a, WANG Y, et al. Highly enhanced photocatalytic toluene degradation and in situ FT-IR investigation on designed Sn-doped BiOCl nanosheets[J]. Applied Surface Science,2022,578:152002. doi: 10.1016/j.apsusc.2021.152002
    [24] LIU C, REN Y, WANG Z, et al. Flowerlike BiOCl nanospheres fabricated by an in situ self-assembly strategy for efficiently enhancing photocatalysis[J]. Journal of Colloid and Interface Science,2022,607:423-430. doi: 10.1016/j.jcis.2021.09.002
    [25] GROSVENOR A P, KOBE B A, BIESINGER M C, et al. Investigation of multiplet splitting of Fe 2 p XPS spectra and bonding in iron compounds[J]. Surface and Interface Analysis,2004,36(12):1564-1574. doi: 10.1002/sia.1984
    [26] WANG X, ZHU J, FU X, et al. Boosted visible-light photocatalytic performance of Au/BiOCl/BiOI by high-speed spatial electron transfer channel[J]. Journal of Alloys and Compounds,2022:890.
    [27] ZHANG N, LI L, SHAO Q, et al. Fe-Doped BiOCl Nanosheets with Light-Switchable Oxygen Vacancies for Photocatalytic Nitrogen Fixation[J]. Acs Applied Energy Materials,2019,2(12):8394-8398. doi: 10.1021/acsaem.9b01961
    [28] LIU G, CHEN Y, LIU X, et al. BiOCl microspheres with controllable oxygen vacancies: Synthesis and their enhanced photocatalytic performance[J]. Journal of Solid State Chemistry,2022,306:122751. doi: 10.1016/j.jssc.2021.122751
    [29] AN W, HU S, YANG T, et al. Oxygen vacancies enhance Fe-doped BiOCl photocatalysis-Fenton synergy degradation of phenol[J]. Materials Letters,2022,322:132466. doi: 10.1016/j.matlet.2022.132466
    [30] TIAN F, LI G, ZHAO H, et al. Residual Fe enhances the activity of BiOCl hierarchical nanostructure for hydrogen peroxide activation[J]. Journal of Catalysis,2019,370:265-273. doi: 10.1016/j.jcat.2018.12.023
    [31] YU H, GE D, WANG Y, et al. Facile synthesis of Bi-modified Nb-doped oxygen defective BiOCl microflowers with enhanced visible-light-driven photocatalytic performance[J]. Journal of Alloys and Compounds,2019,786:155-162. doi: 10.1016/j.jallcom.2019.01.323
    [32] YI F, MA J, LIN C, et al. Electronic and thermal transfer actuating memory catalysis for organic removal by a plasmonic photocatalyst[J]. Chemical Engineering Journal,2022:427.
    [33] SHAHID M Z, MEHMOOD R, ATHAR M, et al. BiOCl Nanoplates Doped with Fe3+ Ions for the Visible-Light Degradation of Aqueous Pollutants[J]. Acs Applied Nano Materials,2021,4(1):746-758. doi: 10.1021/acsanm.0c03042
    [34] ZHONG X, ZHANG K-X, WU D, et al. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation[J]. Chemical Engineering Journal,2020,383:123148. doi: 10.1016/j.cej.2019.123148
    [35] MI Y, WEN L, WANG Z, et al. Fe(III) modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst[J]. Nano Energy,2016,30:109-117. doi: 10.1016/j.nanoen.2016.10.001
    [36] GUAN M, REN G, ZHANG X, et al. Regulating electronic properties of BiOBr to enhance visible light response via 3 d transition metals doping: DFT + U calculations[J]. International Journal of Quantum Chemistry,2021,121(7):e26568.
    [37] Mohseni N, Haghighi M, Shabani M. Sunlight-activated 3 D-mesoporous-flowerlike Cl–Br bismuth oxides nanosheet solid solution: In situ EG-thermal-sonication synthesis with excellent photodecomposition of ciprofloxacin[J]. Environmental Research,2020,188:109810. doi: 10.1016/j.envres.2020.109810
    [38] CHEN X, ZHOU J, CHEN Y, et al. Degradation of tetracycline hydrochloride by coupling of photocatalysis and peroxymonosulfate oxidation processes using CuO-BiVO4 heterogeneous catalyst[J]. Process Safety and Environmental Protection,2021,145:364-377. doi: 10.1016/j.psep.2020.08.016
    [39] GENG A, LIN H, ZHAO Y, et al. Self-Assembly of Hollow, Pompon-Like and Nanosheet-Structured Carbon Nitride for Photodegradation of Tetracycline Hydrochloride[J]. Particle & Particle Systems Characterization,2022,39(1):2100235.
    [40] LU T, GAO Y, YANG Y, et al. Efficient degradation of tetracycline hydrochloride by photocatalytic ozonation over Bi2WO6[J]. Chemosphere,2021,283:131256. doi: 10.1016/j.chemosphere.2021.131256
    [41] 袁艺鸣. FeS2/g-C3N4降解盐酸四环素的性能与机理研究[D]. 重庆大学, 2020.

    YUAN Y. Study on the Performance and Mechanism of Degradation of Tetracycline Hydrochloride by FeS2/g-C3N4. Chongqing University, 2020 (in Chinese).
    [42] ZHANG T, CHEN L, JIANG T, et al. Chemical precipitation synthesis of Bi0.7Fe0.3OCl nanosheets via Fe (III)-doped BiOCl for highly visible light photocatalytic performance[J]. Materials Today Communications,2021,26:102145. doi: 10.1016/j.mtcomm.2021.102145
    [43] GAO E, SUN G, ZHANG W, et al. Surface lattice oxygen activation via Zr4+ cations substituting on A2+ sites of MnCr2O4 forming ZrxMn1−xCr2O4 catalysts for enhanced NH3-SCR performance[J]. Chemical Engineering Journal,2020,380:122397. doi: 10.1016/j.cej.2019.122397
  • 加载中
计量
  • 文章访问数:  168
  • HTML全文浏览量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 修回日期:  2022-12-17
  • 录用日期:  2022-12-31
  • 网络出版日期:  2023-02-04

目录

    /

    返回文章
    返回