留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共形天线点阵夹层结构侧压承载破坏特性分析

郭瑞 侯瑞 韩思聪 盛映龙 王梓旭 冯上升 金峰

郭瑞, 侯瑞, 韩思聪, 等. 共形天线点阵夹层结构侧压承载破坏特性分析[J]. 复合材料学报, 2024, 43(0): 1-12.
引用本文: 郭瑞, 侯瑞, 韩思聪, 等. 共形天线点阵夹层结构侧压承载破坏特性分析[J]. 复合材料学报, 2024, 43(0): 1-12.
GUO Rui, HOU Rui, HAN Sicong, et al. Bearing and failure characteristics of conformal antenna sandwich structure under edge compression[J]. Acta Materiae Compositae Sinica.
Citation: GUO Rui, HOU Rui, HAN Sicong, et al. Bearing and failure characteristics of conformal antenna sandwich structure under edge compression[J]. Acta Materiae Compositae Sinica.

共形天线点阵夹层结构侧压承载破坏特性分析

基金项目: 国家重点研发计划资助项目(No.2022YFE0139200);多功能轻量化材料与结构工信部重点实验室开放基金
详细信息
    通讯作者:

    冯上升,博士,副教授,博士生导师,研究方向为轻量化材料与结构传热 E-mail: shangshengfeng@xjtu.edu.cn

    金 峰,博士,教授,博士生导师,研究方向为轻量化材料与结构力学 E-mail: jinzhao@xjtu.edu.cn

  • 中图分类号: TB332

Bearing and failure characteristics of conformal antenna sandwich structure under edge compression

Funds: National Key Research and Development Program of China (No.2022YFE0139200); Open Fund of MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures
  • 摘要: 共形天线由于能够实现电磁-承载-轻量化的结构功能一体化设计,因此相较于传统机载天线,共形天线更加适应现代化发展趋势,而复合材料夹层结构作为多材质叠层材料,层间承载能力较弱,天线的埋设又会引入新的界面,会对原有结构的传载特性和结构破坏模式产生重大影响,另外结构的制备技术和成型工艺发生改变也会影响力学性能。本文针对一种共形天线夹层结构,通过试验和有限元方法分析了该结构在侧压载荷下的承载特性和失效机制,并与复合材料泡沫夹层结构进行比较。结果表明,天线界面的引入使结构质量增加了38.87%,结构比强度提高1.35%,比刚度下降21.72%。对于结构的失效模式,天线阵列的引入导致结构失效模式从以分层渐进失效为主的中部折断转为沿夹具夹持端应力集中处扩展的基体压缩渐进失效;同时,共形天线夹层结构加工工艺存在溢胶问题,溢胶程度的不可控性会导致结构承载和破坏机制的变化,因此控制溢胶对提高结构力学性能至关重要。

     

  • 图  1  单个微带贴片天线结构及共形天线夹层结构(CASS)整体结构图

    Figure  1.  Structure of a single microstrip patch antenna and overall structure of conformal antenna sandwich structure (CASS)

    图  2  CASS(CFSS)的加工步骤图

    Figure  2.  Processing steps of CASS (CFSS)

    图  3  试验加载示意图

    Figure  3.  Schematic diagram of test loading

    图  4  侧压试验有限元模型

    Figure  4.  Finite element model setup for edge compression

    图  5  等效刚度的理论模型: (a)求整体等效模量的周期性单元; (b)周期性单元在弹性阶段承载前后的变形情况

    Figure  5.  Theoretical model of equivalent stiffness: (a) the periodic element for calculating the overall equivalent modulus; (b) the deformation of periodic element before and after bearing in the elastic stage

    图  6  典型复合材料泡沫夹层结构(CFSS)试验件的破坏过程: (a) 破坏前照片; (b-d)破坏瞬间先后顺序三张照片

    Figure  6.  Typical failure process of composite foam sandwich structure (CFSS) test piece: (a) photo took before the failure; (b-d) sequence photos during the failure

    图  7  CFSS的试验与有限元预测载荷位移曲线对比

    Figure  7.  Comparison of experimental and finite element predicted load displacement curves of CFSS samples

    图  8  CFSS-04载荷-应变曲线: (a) 1,4,7号应变片数据; (b) 2,5,8号应变片数据; (c) 3,6,9号应变片数据

    Figure  8.  Load strain curve of CFSS-04 sample: (a) data from strain gauge 1,4,7; (b) data from strain gauge 2,5,8; (c) data from strain gauge 3,6,9

    图  9  泡沫的塑性变形过程

    Figure  9.  Plastic deformation process of foam

    图  10  复合材料的渐进损伤失效过程

    Figure  10.  Progressive damage failure process of composite materials

    图  11  胶层的损伤及失效扩展

    Figure  11.  Damage and failure propagation of the adhesive layer

    图  12  CASS侧压试验破坏过程: (a)破坏前照片; (b-d)破坏瞬间先后顺序三张照片

    Figure  12.  Failure process of CASS under edge compression test: (a) photo took before the failure; (b-d) sequence photos during the failure

    图  13  CASS载荷位移曲线

    Figure  13.  Load displacement curve of CASS

    图  14  CASS-02载荷-应变曲线: (a) 1,4,7号应变片数据; (b) 2,5,8号应变片数据; (c) 3,6,9号应变片数据

    Figure  14.  Load strain curve of CASS-02 sample: (a) data from strain gauge 1,4,7; (b) data from strain gauge 2,5,8; (c) data from strain gauge 3,6,9

    图  15  CASS有限元预测载荷位移曲线与试验值对比

    Figure  15.  Comparison between Finite Element predicted load displacement curve and experimental values of CASS samples

    图  16  胶层的损伤及失效扩展

    Figure  16.  Damage and failure expansion of adhesive layer

    图  17  基体压缩损伤失效扩展

    Figure  17.  Failure propagation of matrix compression damage

    表  1  预浸料的力学性能参数

    Table  1.   Mechanical properties of prepreg

    Property Value Units Description
    $\rho $ 1.8 ${\text{g/c}}{{\text{m}}^{\text{3}}}$ density
    ${E_1}$ 23500 MPa longitudinal modulus
    ${E_2}$ 22000 MPa transverse modulus
    ${E_3}$ 15000 MPa out-of-plane equivalent modulus
    ${\mu _{12}}$ 0.18 - poisson ratio
    ${\mu _{13}},{\mu _{23}}$ 0.2/0.18 - poisson ratio
    ${G_{12}}$ 3500 MPa shear modulus
    $ {G}_{13},{G}_{23} $ 4000 MPa shear modulus
    ${X_t}$ 600 MPa longitudinal tensile strength
    ${X_c}$ 450 MPa longitudinal compressive strength
    ${Y_t}$ 500 MPa transverse tensile strength
    ${Y_c}$ 420 MPa Transverse compressive strength
    ${Z_t}$ 59.7 MPa Out-of-plane tensile strength
    ${Z_c}$ 215 MPa Out-of-plane compressive strength
    ${S_{12}}$ 120 MPa longitudinal-transverse shear strength
    ${S_{13}} = {S_{23}}$ 70 MPa interlaminar shear strength
    下载: 导出CSV

    表  2  PMI泡沫的力学性能参数

    Table  2.   Mechanical properties of PMI foam

    PropertyValueUnitsDescription
    $\rho $71${\text{kg/}}{{\text{m}}^{\text{3}}}$density
    $E$114.5MPayoung's modulus
    $\mu $0.375-poisson ratio
    下载: 导出CSV

    表  3  胶膜的力学性能参数

    Table  3.   Mechanical properties of adhersive film

    PropertyValueUnitsDescription
    $\rho $1.16$ {\text{g/c}}{{\text{m}}^{\text{3}}} $density
    $S$18.7MPashearing strength
    ${E_{nn}} = {E_{ss}} = {E_{tt}}$2500MPaelastic modulus
    ${K_{nn}} = {K_{ss}} = {K_{tt}}$1000GPainitial stiffness
    $t_n^0$6.1MPaoutside shear strength
    $t_s^0 = t_t^0$30MPain-plane shear strength
    ${G_{{\rm I}C}}$0.243N/mmI-type critical fracture energy
    ${G_{{\rm I}{\rm I}C}},{G_{{\rm I}{\rm I}{\rm I}C}}$0.514N/mmType II and Type III critical
    fracture energy release rates
    下载: 导出CSV

    表  4  CFSS与CASS的抗压强度与抗压刚度

    Table  4.   Compressive strength and stiffness of CFSS and CASS

    Feature CFSS CASS
    Mass/g 265 368
    Density/(g·m−3) 1.178 1.63
    compressive strength/MPa 87.38 122.98
    Test value of equivalent compressive
    stiffness/kN
    9371 10183
    Theoretical prediction value of equivalent compressive stiffness/kN 11313 12134
    下载: 导出CSV
  • [1] 史则颖, 叶冬, 彭子寒等. 飞行器共形天线新型制造工艺及应用研究进展[J]. 航空学报, 2021, 42(10): 157-173.

    SHI Z, YE D, PENG Z, et al. Research progress on novel manufacturing approaches of conformal antenna for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 157-173(in Chinese).
    [2] 杨波, 赵培林, 蔡三军等. 新一代战斗机座舱盖关键技术与设计方案[J]. 航空学报, 2020, 41(6): 307-317.

    YANG B, ZHAO P, CAI S, et al. Key technologies and design of new generation fighter canopy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 307-317(in Chinese).
    [3] AFRL成功验证SIXA结构件[J]. 军民两用技术与产品, 2007, 3: 35-35.

    AFRL successfully verified the SIXA structural component[J]. Dual Use Technologies & Products, 2007, 3: 35-35. (in Chinese)
    [4] 睿达. 共形天线与传感器飞机[J]. 运输机工程, 2008, 1: 2-7.

    RUI D. Conformal antenna and sensor aircraft[J]. Transport Engineering, 2008, 1: 2-7(in Chinese).
    [5] 吴波, 谈腾. 机载智能蒙皮天线技术的研究进展[J]军民两用技术与产品, 2018(7): 55-58+61.

    WU B, TAN T. Research progress in airborne intelligent skin antenna technology[J]. Dual-use Technology and Products for Military and Civil Use, 2018(7): 55-58+61. (in Chinese)
    [6] ZHAO W, XIE Z, ZHANG P, et al. Damage tolerance-based design of conformal antenna composite structure[J]. Mechanics of Advanced Materials and Structures, 2022, 29(26): 5530-5541. doi: 10.1080/15376494.2021.1958033
    [7] NAZARI A R, KABIR M Z, HOSSEINI-TOUDESHKY H, et al. Investigation of progressive failure in the composite sandwich panels with elastomeric foam core under concentrated loading[J]. Journal of Sandwich Structures and Materials, 2019, 21(8): 2585-2615. doi: 10.1177/1099636217719424
    [8] LEI H, ZHAO Z, GUO X, et al. Research progress on the design and manufacture technology of lightweight multifunctional spacecraft structures[J]. Aerospace Materials & Technology, 2021, 51(4): 10-22.
    [9] XIE Z, WU S, WANG W, et al. Mechanical tests on broadband conformal antenna structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(6): 811-17.
    [10] YIN B, XU X, GU X. Damage simulation and strength prediction of foam-core sandwich structure with and without antennas[J]. Journal of Materials Science and Engineering, 2013, 31(5): 708-714,727.
    [11] LI P, XU W Y. The diagnosis of manufacturing defects in composite material radome based on antenna's far field data[J]. Materials Research Innovations, 2015, 19: 277-282.
    [12] 夹层结构侧压性能试验方法. 国家标准, GB/T 1454-2021.

    Test method for lateral compression performance of sandwich structures. China National Standards, GB/T 1454-2021. (in Chinese)
    [13] 王凯, 贺强. 聚甲基丙烯酰亚胺泡沫夹层结构全生命周期的关键技术研究进展[J]. 复合材料学报, 2020, 37(8): 1805-1822.

    WANG K, HE Q. Progress on study of key technologies for polymethacrylimide foam core sandwich lifecycle[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1805-1822(in Chinese).
    [14] 戴福洪, 王广宁. 埋微带天线蜂窝夹层结构的力电性能分析[J]. 复合材料学报, 2011, 28(02): 231-234.

    DAI H, WANG G, Analysis of mechanical and electric performance of honeycomb sandwich structures embedded with the microstrip antenna[J]. Acta Materiae Compositae Sinica, 2011, 28(02): 231-234. (in Chinese)
    [15] SONG S, XIONG C, ZHENG J, et al. Compression, bending, energy absorption properties, and failure modes of composite kagome honeycomb sandwich structure reinforced by PMI foams[J]. Composite Structures, 2021, 277.
    [16] 陈祥宝. 聚合物基复合材料手册[M]. 聚合物基复合材料手册, 2004, 328-332.

    CHEN X. Handbook of Polymer Matrix Composite Materials[M]. Handbook of Polymer Matrix Composite Materials, 2004. (in Chinese)
    [17] 段苗苗, 贾坤荣, 宋千光. 蜂窝夹层共形承载天线结构剪切性能的试验与模拟[J]. 工程塑料应用, 2017, 45(7): 61-64+72. doi: 10.3969/j.issn.1001-3539.2017.07.012

    DUAN M, JIA K, SONG Q. Test and simulation of shear performance of honeycomb sandwich conformal load-bearing antenna structure[J]. Engineering Plastics Application, 2017, 45(7): 61-64+72(in Chinese). doi: 10.3969/j.issn.1001-3539.2017.07.012
    [18] ESNAOLA A, ELGUEZABAL B, AURREKOETXEA J, et al. Optimization of the semi-hexagonal geometry of a composite crush structure by finite element analysis[J]. Composites Part B: Engineering, 2016, 93: 56-66. doi: 10.1016/j.compositesb.2016.03.002
    [19] CHEN Y, YE L, FU K, et al. Transition from buckling to progressive failure during quasi-static in-plane crushing of CF/EP composite sandwich panels[J]. Composites Science and Technology, 2018, 168: 133-144. doi: 10.1016/j.compscitech.2018.09.017
    [20] HASHIN, Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics-Transactions of the ASME, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
    [21] TAY T E, LIU G, TAN V B C, et al. Progressive failure analysis of composites[J]. Journal of Composite Materials, 2008, 42(18): 1921-1966. doi: 10.1177/0021998308093912
    [22] MAIMI P, CAMANHO P R, MAYUGO J A, et al. A continuum damage model for composite laminates: Part II - Computational implementation and validation[J]. Mechanics of Materials, 2007, 39(10): 909-919. doi: 10.1016/j.mechmat.2007.03.006
    [23] MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Journal of Composite Materials, 1998, 32(14): 1246-1272. doi: 10.1177/002199839803201401
    [24] TSAO C C. Experimental study of drilling composite materials with step-core drill[J]. Materials & Design, 2008, 29(9): 1740-1744.
    [25] 郑权, 韩涵, 唐杰等. 含胶接缺陷的椭球泡沫夹层结构破坏机理与承载能力研究[J]. 实验力学, 2015, 30(2): 207-214. doi: 10.7520/1001-4888-14-081

    ZHENG Q, HAN H, TANG J, et al. On the failure mechanism and bearing capacity of ellipsoidal foam core sandwich structure with adhesive bonding defects[J]. Journal of Experimental Mechanics, 2015, 30(2): 207-214(in Chinese). doi: 10.7520/1001-4888-14-081
    [26] NAGLER M, THOR M, PEYRER P, et al. Analysis of the macroscopic behaviour of PMI foam[J]. Key Engineering Materials, 2019, 809: 285-290. doi: 10.4028/www.scientific.net/KEM.809.285
    [27] 王杰. 复合材料泡沫夹层结构低速冲击与冲击后压缩性能研究[D]. 上海交通大学, 2013.

    WANG J. Study on the low-velocity imapct and compression-after-impact behavior of foam-core sandwich panels[D]. Shanghai Jiao Tong University, 2013. (in Chinese)
  • 加载中
计量
  • 文章访问数:  36
  • HTML全文浏览量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25
  • 修回日期:  2024-09-28
  • 录用日期:  2024-10-13
  • 网络出版日期:  2024-11-04

目录

    /

    返回文章
    返回