留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于聚苯胺的抗菌抗溶胀导电水凝胶的制备及其应用

王志琴 李蔚 陈挺 文博 肖宁育

王志琴, 李蔚, 陈挺, 等. 基于聚苯胺的抗菌抗溶胀导电水凝胶的制备及其应用[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 王志琴, 李蔚, 陈挺, 等. 基于聚苯胺的抗菌抗溶胀导电水凝胶的制备及其应用[J]. 复合材料学报, 2024, 42(0): 1-9.
WANG Zhiqin, Li Wei, Chen Ting, et al. Preparation of antimicrobial anti-swelling conductive hydrogels based on polyaniline and their applications[J]. Acta Materiae Compositae Sinica.
Citation: WANG Zhiqin, Li Wei, Chen Ting, et al. Preparation of antimicrobial anti-swelling conductive hydrogels based on polyaniline and their applications[J]. Acta Materiae Compositae Sinica.

基于聚苯胺的抗菌抗溶胀导电水凝胶的制备及其应用

详细信息
    通讯作者:

    李蔚,博士,讲师,硕士生导师,研究方向为导电水凝胶 E-mail: liwei@hut.edu.cn

  • 中图分类号: TB34;TB332

Preparation of antimicrobial anti-swelling conductive hydrogels based on polyaniline and their applications

  • 摘要: 导电水凝胶是柔性传感器件理想的候选材料。但在实际应用过程中,导电水凝胶的成本高,力学性能差、传感探测范围有限、功能单一、环保性等问题,严重阻碍了它的实际应用。为了开发一种力学性能优秀、成本低、环保和多功能的,可适用于各种复杂应用环境的导电水凝胶,选用聚乙烯醇(PVA)和导电聚合物聚苯胺(PANI)构成水凝胶主体的双网络结构,植酸(PA)和硼酸(BA)作为交联剂构建一种低成本、环境友好性、高强度和多功能PVA/PANI/PA/BA导电水凝胶。研究了不同配比的PVA/PANI的复合水凝胶的力学性能、微观结构、电化学性能、抗溶胀性和抗菌性等性能,探讨了基于此导电水凝胶制作的传感器的传感性能。研究表明在PVA质量分数15%的复合体系中,此水凝胶兼顾了具有优秀的拉伸强度(断裂应力达357 kPa,断裂形变达504%)、良好的电化学性能(导电率为146 mS/m)、优异的抗溶胀性(浸泡15天溶胀率仅4.56%,对应的断裂强度变化和断裂伸长率变化分别不超过20%和0.1%)和优秀的抗菌性能等多功能,做到了各功能的相互平衡。基于此水凝胶制作的传感器来监测人体实时的运动情况时,能将眉头、手指和手腕运动信号转换成稳定的电信号,可将其应用于电子皮肤和可穿戴传感器等领域。

     

  • 图  1  PNAB水凝胶的(a)制备路线和(b)合成示意图

    Figure  1.  (a) Preparation route and (b) Synthesis diagram of PNAB hydrogel

    图  2  (a) P15NA水凝胶、(b) P15NAB水凝胶、(c) P20NAB水凝胶的SEM图像

    Figure  2.  SEM images of (a) P15NA hydrogel, (b) P15NAB hydrogel, (c) P20NAB hydrogel

    图  3  PNAB水凝胶、PNA水凝胶、PVA/BA水凝胶和PANI/PA的FTIR

    Figure  3.  FTIR of PNAB hydrogel, PNA hydrogel, PVA/BA hydrogel and PANI/PA

    图  4  (a)PxNAB的机械和加工性能;(b)PxNAB的应力-应变曲线

    Figure  4.  (a) Mechanical and processing properties of PxNAB;(b) Stress-strain curves of PxNAB

    图  5  (a) P15NA、P15NAB和P20NAB水凝胶对E.coli(左)和S. aureus(右)的抗菌试验照片;(b)抑制区的环形直径

    Figure  5.  (a) Antibacterial test photos of P15NA, P15NAB and P20NAB hydrogels against E. coli(left) and S. aureus(right); (b) The circular diameter of the suppression zone

    图  6  (a)&(b)浸泡2 h和120 h后水凝胶的溶胀率;(c)&(d)原水凝胶与浸泡15天后的水凝胶的应力和应变的对比

    Figure  6.  (a)&(b) swelling rate of hydrogel after soaking for 2 h and 120 h; (c)&(d) Comparison of stress and strain of hydrogel and soaked hydrogel for 15 days

    图  7  (a) PNAB在简单电路中做导体;(b)PXNAB水凝胶的电导率

    Figure  7.  (a) PNAB is used as the conductor in simple circuits;(b) Conductivity of PXNAB hydrogel

    图  8  (a) PNA与PxNAB水凝胶在10 mV/s扫描速率下的CV图;(b) P15NAB在不同扫描速率下的CV图

    Figure  8.  (a) CV diagram of PNA and PxNAB hydrogels at a scanning rate of 10 mV/s; (b) CV images of P15NAB at different scanning rates

    图  9  (a)不同形变下的相对电阻变化;检测人体(b)眉头(c)食指&(d)手腕运动时的相对电阻变化

    Figure  9.  (a) Changes in relative resistance under different pressures; Detecting changes in relative resistance of the human body (b) eyebrows (c) index finger &(d) during wrist movement

  • [1] 江文静, 廖静文, 张雪慧, 等. 导电复合水凝胶的分类及其在柔性可穿戴设备中的应用 [J] 复合材料学报. 2023, 40(04): 1879-1895.

    Classification of conductive composite hydrogels and their application in flexible wearable devices[J]. Acta Materiae Compositae Sinica, 2023, 40(04): 1879-1895(in Chinese).
    [2] TIAN Y, WANG Z, CAO S, et al. Connective tissue-inspired elastomer-based hydrogel for artificial skin via radiation-indued penetrating polymerization[J]. Nature Communications, 2024, 15(1): 636. doi: 10.1038/s41467-024-44949-1
    [3] XIE T, OU F, NING C, et al. Dual–network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high–performance triboelectric nanogenerators[J]. Carbohydrate Polymers, 2024, 333: 121960. doi: 10.1016/j.carbpol.2024.121960
    [4] CHEN J, LIU F, ABDIRYIM T, et al. An overview of conductive composite hydrogels for flexible electronic devices[J]. Advanced Composites and Hybrid Materials, 2024, 7(2): 35. doi: 10.1007/s42114-024-00841-6
    [5] 徐密, 张良, 何志仙. 纳米罗勒精油/聚乙烯吡咯烷酮-聚乙烯醇水凝胶伤口敷料制备及性能表征 [J] 复合材料学报. 2024, 41(02): 748-760.

    Preparation and characterization of Basil essential oil nanoparticles/polyvinylpyrrolidone-polyvinyl alcohol hydrogel wound dressing[J]. Acta Materiae Compositae Sinica, 2024, 41(02): 748-760 (in Chinese).
    [6] CHEN K, LIANG K, LIU H, et al. Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for Human-Machine Interaction[J]. Nano-Micro Letters, 2023, 15(1): 102. doi: 10.1007/s40820-023-01084-8
    [7] WEN J, WANG S, FENG J, et al. Recent progress in polyaniline-based chemo resistive flexible gas sensors: design, nanostructures, and composite materials[J]. Journal of Materials Chemistry A, 2024, 12(11): 6190-6210. doi: 10.1039/D3TA07687C
    [8] HAN L, LI Y, CHEN C, et al. Multifunctional enhanced energy density of flexible wide-temperature supercapacitors based on MXene/PANI conductive hydrogel[J]. Chemical Engineering Journal, 2024, 485: 149951. doi: 10.1016/j.cej.2024.149951
    [9] ZHANG X, ZHANG X, KONG X, et al. Ionic conductive soluble starch hydrogels for biocompatible and anti-freezing wearable sensors[J]. European Polymer Journal, 2024, 210: 112949. doi: 10.1016/j.eurpolymj.2024.112949
    [10] 王亚芳, 姚安荣, 陈方春, 等. 保湿抗冻型导电水凝胶在柔性电子方面的研究进展 [J] 复合材料学报. 1-10.

    Research progress on moisturizing and anti-freezing conductive hydrogels in flexible electronics[J]. Acta Materiae Compositae Sinica, 1-10 (in Chinese).
    [11] MAJUMDER M, SAMANTA S, NARJINARY M B, et al. Highly Sensitive and Wearable ZnO–Graphene Nanocomposite-Based Strain Sensors for Human Motion Detection[J]. IEEE Sensors Journal, 2023, 23(13): 14226-14233. doi: 10.1109/JSEN.2023.3277994
    [12] 师财鑫. 聚苯胺导电水凝胶的制备及其在柔性电极中的应用 [D], 2022.

    Preparation of polyaniline conductive hydrogel and its application in flexible electrodes [D], 2022(in Chinese).
    [13] BENJAMAA R, ELBOUNY H, ERRATI H, et al. Comparative evaluation of antioxidant activity, total phenolic content, anti-inflammatory, and antibacterial potential of Euphorbia-derived functional products[J]. Frontiers in Pharmacology, 2024, (15): 1-18
    [14] BAI Z, JIANG J, ZHU H, et al. Multi-network PVA/SA aerogel fiber: Unveiling superior mechanical, thermal insulation, and extreme condition stability[J]. Polymer Degradation and Stability, 2024, 223: 110734. doi: 10.1016/j.polymdegradstab.2024.110734
    [15] LIU X, CAO Y, WANG H, et al. Phytic acid cross-linked and Hofmeister effect strengthened polyvinyl alcohol hydrogels for zinc ion storage[J]. Chemical Communications, 2024, 60(5): 554-557. doi: 10.1039/D3CC05008D
    [16] LI Y, LI Y, CAO R, et al. Amplifying the Mechanical Resilience of Chemically Cross-Linked Poly(vinyl alcohol) Films with the Addition of Boric Acid[J]. Macromolecules, 2024, 57(13): 6321-6332. doi: 10.1021/acs.macromol.4c01098
    [17] LIU Z, LIU Z, SHU B, et al. One-pot preparation of tough, anti-swelling, antibacterial and conductive multiple-crosslinked hydrogels assisted by phytic acid and ferric trichloride[J]. Journal of Applied Polymer Science, 2023, 140(32): e54243. doi: 10.1002/app.54243
    [18] WANG G, LIU Y, ZU B, et al. Reversible adhesive hydrogel with enhanced sampling efficiency boosted by hydrogen bond and van der Waals force for visualized detection[J]. Chemical Engineering Journal, 2023, 455: 140493. doi: 10.1016/j.cej.2022.140493
    [19] LUO J, HU Y, LUO S, et al. Strong and Multifunctional Lignin/Liquid Metal Hydrogel Composite as Flexible Strain Sensors[J]. ACS Sustainable Chemistry & amp; Engineering, 2024, 12(18): 7105-7114.
    [20] XIAO S, LAO Y, LIU H, et al. A nanocomposite hydrogel loaded with Ag nanoparticles reduced by aloe vera polysaccharides as an antimicrobial multifunctional sensor[J]. International Journal of Biological Macromolecules, 2024, 267: 131541. doi: 10.1016/j.ijbiomac.2024.131541
    [21] LEI Z, LIANG H, SUN W, et al. A biodegradable PVA coating constructed on the surface of the implant for preventing bacterial colonization and biofilm formation[J]. Journal of Orthopaedic Surgery and Research, 2024, 19(1): 175. doi: 10.1186/s13018-024-04662-7
    [22] ZHOU Q, ZHAO Y, DANG H, et al. Antibacterial Effects of Phytic Acid against Foodborne Pathogens and Investigation of Its Mode of Action[J]. Journal of Food Protection, 2019, 82(5): 826-833. doi: 10.4315/0362-028X.JFP-18-418
    [23] AUNG Y Y, KRISTANTI A N, KHAIRUNISA S Q, et al. Inactivation of HIV-1 Infection through Integrative Blocking with Amino Phenylboronic Acid Attributed Carbon Dots[J]. ACS Biomaterials Science & amp; Engineering, 2020, 6(8): 4490-4501.
    [24] MOURER M, FONTANAY S, DUVAL R E, et al. Synthesis, Characterization, and Biological Evaluation as Antibacterial Agents of Water-Soluble Calix[4]arenes and Phenol Derivatives Incorporating Carboxylate Groups[J]. Helvetica Chimica Acta, 2012, 95(8): 1373-1386. doi: 10.1002/hlca.201200044
    [25] Hydrophobic Association Hydrogel Enabled by Multiple Noncovalent Interactions for Wearable Bioelectronics in Amphibious Environments [Z]. American Chemical Society (ACS). 10.1021/acs. chemmater. 3c02454. s001
    [26] ZHANG M, CHEN S, SHENG N, et al. Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior[J]. Nanoscale, 2021, 13(17): 8126-8136. doi: 10.1039/D1NR00867F
  • 加载中
计量
  • 文章访问数:  66
  • HTML全文浏览量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 修回日期:  2024-08-04
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-09-03

目录

    /

    返回文章
    返回