基于聚苯胺的抗菌抗溶胀导电水凝胶的制备及其应用

王志琴, 李蔚, 陈挺, 文博, 肖宁育

王志琴, 李蔚, 陈挺, 等. 基于聚苯胺的抗菌抗溶胀导电水凝胶的制备及其应用[J]. 复合材料学报, 2025, 42(6): 3202-3210.
引用本文: 王志琴, 李蔚, 陈挺, 等. 基于聚苯胺的抗菌抗溶胀导电水凝胶的制备及其应用[J]. 复合材料学报, 2025, 42(6): 3202-3210.
WANG Zhiqin, Li Wei, Chen Ting, et al. Preparation of antimicrobial anti-swelling conductive hydrogels based on polyaniline and their applications[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3202-3210.
Citation: WANG Zhiqin, Li Wei, Chen Ting, et al. Preparation of antimicrobial anti-swelling conductive hydrogels based on polyaniline and their applications[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3202-3210.

基于聚苯胺的抗菌抗溶胀导电水凝胶的制备及其应用

详细信息
    通讯作者:

    李蔚,博士,讲师,硕士生导师,研究方向为导电水凝胶 E-mail: liwei@hut.edu.cn

  • 中图分类号: TB34;TB332

Preparation of antimicrobial anti-swelling conductive hydrogels based on polyaniline and their applications

  • 摘要:

    导电水凝胶是柔性传感器件理想的候选材料。但在实际应用过程中,导电水凝胶的成本高,力学性能差、传感探测范围有限、功能单一、环保性等问题,严重阻碍了它的实际应用。为了开发一种力学性能优秀、成本低、环保和多功能的,可适用于各种复杂应用环境的导电水凝胶,选用聚乙烯醇(PVA)和导电聚合物聚苯胺(PANI)构成水凝胶主体的双网络结构,植酸(PA)和硼酸(BA)作为交联剂构建一种低成本、环境友好性、高强度和多功能PVA/PANI/PA/BA导电水凝胶。研究了不同配比的PVA/PANI的复合水凝胶的力学性能、微观结构、电化学性能、抗溶胀性和抗菌性等性能,探讨了基于此导电水凝胶制作的传感器的传感性能。研究表明在PVA质量分数15%的复合体系中,此水凝胶兼顾了具有优秀的拉伸强度(断裂应力达357 kPa,断裂形变达504%)、良好的电化学性能(导电率为146 mS/m)、优异的抗溶胀性(浸泡15天溶胀率仅4.56%,对应的断裂强度变化和断裂伸长率变化分别不超过20%和0.1%)和优秀的抗菌性能等多功能,做到了各功能的相互平衡。基于此水凝胶制作的传感器来监测人体实时的运动情况时,能将眉头、手指和手腕运动信号转换成稳定的电信号,可将其应用于电子皮肤和可穿戴传感器等领域。

     

    Abstract:

    Conductive hydrogels are ideal candidates for flexible sensor devices. However, in the practical application process, the high cost of conductive hydrogel, poor mechanical properties, limited sensing detection range, single function, environmental protection, and other issues, seriously hindered its practical application. To develop an electrically conductive hydrogel with excellent mechanical properties, low-cost, environmentally friendly, and multifunctional for a variety of complex application environments, polyvinyl alcohol (PVA) and the conductive polymer polyaniline (PANI) were selected to form a double network structure of the hydrogel body, and phytic acid (PA) and boronic acid (BA) were used as cross-linking agents to construct a low-cost, environmentally friendly, high-strength, and multifunctional PVA/PANI/PA/BA conductive hydrogel. The mechanical properties, microstructure, electrochemical properties, swelling resistance, and antimicrobial properties of composite hydrogels with different ratios of PVA/PANI were investigated, and the sensing performance of sensors based on this conductive hydrogel was discussed. It is shown that in the composite system with 15% PVA mass fraction, this hydrogel has excellent tensile strength (breaking stress up to 357 kPa, deformation at break up to 504%), good electrochemical properties (electrical conductivity of 146 mS/m), excellent resistance to swelling (the swelling rate is only 4.56% for 15 days of immersion, and the changes in breaking strength and elongation at break do not exceed 20% and 0.1%, respectively), and excellent antimicrobial properties, achieving a balance of functions. When sensors made based on this hydrogel are used to monitor the real-time movement of the human body, they can convert brows, finger, and wrist movement signals into stable electrical signals, which can be used in fields such as electronic skin and wearable sensors.

     

  • 乙烯-四氟乙烯(ETFE)薄膜凭借其良好的物理特性及力学性能,在新型建筑、能源等领域中已被广泛应用。在实际工程应用中,ETFE膜结构的撕裂破坏可归结为内部因素与外部环境因素的协同作用。膜面处膜材在制造与安装过程中,不可避免地会存在微小孔洞、细微折痕和微裂纹等初始缺陷,以及偶发的外来飞致物刺穿引起的切缝;这使膜材在预应力、极端风荷载及雨雪荷载的复合作用下,极易产生应力集中而诱发缺陷不断扩展,最终膜材撕裂损伤,严重情况下甚至会引发膜结构的整体失效,对结构安全构成重大威胁。并且当膜材在中心区域处受到集中载荷或存在制造缺陷时,极有可能会出现显著的中心撕裂行为[1, 2]。因此,除了需对ETFE薄膜的常规力学性能进行研究,也有必要对其撕裂力学行为开展深入研究。

    吴明儿[3-5]、崔家春[6, 7]、胡建辉[8]、Zhang[9]、Surholt[10]和Zhao[11-13]等分别对ETFE薄膜进行了系列试验与分析,揭示了薄膜的单轴和双轴力学行为,研究了弹性模量、屈服强度、断裂强度和徐变等力学参数和规律。整体上,现有研究多集中在ETFE母材的粘-弹塑性行为及本构关系等,在撕裂性能的研究尚十分欠缺。而随着ETFE膜结构的社会需求增长,对其撕裂性能研究的欠缺势必会阻碍ETFE膜结构的进一步应用和发展。另外,国内外学者已对织物类膜材的撕裂强度及破坏规律开展了深入研究[14-20],可为ETFE薄膜撕裂力学性能的研究提供一定参考。Chen等[14, 15]对层压织物进行了系统的单轴撕裂试验,分析了切缝长度、切缝角度、偏轴角对其撕裂行为和撕裂强度的影响;Sun等[18, 19]深入研究了单轴拉伸下切缝长度和切缝角度对PTFE涂层织物撕裂性能的影响;Zhang等[20]论证了切口样式、切缝尺寸和试样尺寸对PVC涂层织物单轴中心撕裂特性的影响。

    鉴于此,本文针对典型ETFE薄膜,进行单轴中心撕裂试验,研究切缝长度、切缝角度和切口样式对ETFE薄膜的破坏形态特征及撕裂力学行为的影响。另外,数字图像相关(DIC)技术具有全场测量、非接触、高分辨率等优势[21-23],可为撕裂力学行为分析提供准确可靠的数据支撑,将用于薄膜撕裂全过程薄膜位移场和应变场的测量与重构。所得结论可为ETFE薄膜材料的撕裂力学性能研究和ETFE膜结构的安全性评估提供有益参考。

    试验采用ETFE #250/NJ/1600/NT薄膜,其厚度为250μm,密度为1.75 g·cm−3。材料由乙烯和四氟乙烯聚合生成,无色透明,具有优秀的耐化学腐蚀性能和自洁性能[24]。考虑到当前暂无专门的ETFE膜材撕裂性能检测标准,因此参照GB/T 1040.3-2006[25],以ETFE薄膜单轴拉伸试验的长条形试件的尺寸,直接作为单轴中心撕裂试验的试样尺寸,以实现测试需求。试件尺寸为150 mm×25 mm,夹持端长为25 mm,有效测试区域为100 mm×25 mm。散斑区域设置为50 mm×25 mm,散斑直径为0.5 mm。其中,切缝长度为5 mm,切缝方向角以膜材机器展开方向(MD)的垂直线为基准线,逆时针旋转θ。试件示意图如图1所示。另外,为保证试件在拉伸过程中的滑移量可控,采用在试件夹持端处使用粘结剂粘附砂纸的方法,通过增大夹具与试件接触面之间的摩擦系数,提升夹持的稳定性与可靠性。

    图  1  含中心切缝的乙烯-四氟乙烯(ETFE)薄膜典型试件示意图
    Figure  1.  Schematic diagram of a typical specimen of ethylene tetrafluoroethylene (ETFE) foils with a central slit

    试验选用深圳三思UTM4000型电子万能试验机和尼康D3200高像素照相机。其中,试验机位移速率范围为0.001~500.000 mm·min−1;变形测量范围为10~800 mm,±1‰变形精度;拉压力传感器量程为200 N、精度为0.2 N;尼康D3200高像素照相机拥有2400万像素。含中心切缝的ETFE薄膜加载过程中的夹持示意图如图2所示。试验中先对试件施加5 N的预张力,再匀速(50 mm·min−1)加载至试件破坏,并记录试件在试验过程中的变形、荷载和图像数据。

    图  2  含中心切缝的ETFE薄膜加载过程中的夹持示意图
    Figure  2.  Clamping schematic of ETFE foils with a central slit during loading

    试验工况设置为切缝长度、切缝角度和切口样式。其中,切缝长度以2.5 mm为梯度,选取为2.5、5.0、7.5、10.0、12.5和15.0 mm;切缝角度以MD方向为基准,逆时针每旋转15°为一个梯度,选取0°、15°、30°、45°、60°、75°和90°七个角度;切口样式则将典型试件的“一”形切缝更换为其它切口样式,且切口样式可分为开放性切缝(如“一、V、X和十”形等)和封闭性切口(如圆形、椭圆形和矩形切口等)[26];不同切缝角度和切口样式的示意图如图3所示。每个工况的有效试件为3个,以保证试验的有效性。

    图  3  切缝角度和切口样式的切缝示意图(单位:mm)
    Figure  3.  Slit diagram of slit angles and notch shapes (Unit: mm)

    试验温度控制在(20±2.0)℃,相对湿度控制在(65±4.0)%。

    ETFE薄膜在不同工况下典型撕裂过程如图4所示,其膜面含散斑贴膜以便于观察,三种工况下的ETFE薄膜的撕裂过程均呈现出4个特征状态:

    图  4  不同工况下ETFE薄膜典型撕裂过程:(a)切缝长度、(b)切缝角度和(c)切口样式
    Figure  4.  Typical tearing process of ETFE foils under different conditions: (a) Slit length; (b) Slit angle; (c) Notch shape

    (ⅰ)切缝初始状态:在外加5 N预张力时,因其外加荷载较小,切缝保持未张开状态。

    (ⅱ)切缝张开状态:随着外加荷载不断增加,切缝逐渐张开,切缝张开形状近似呈现椭圆形;薄膜在切缝尖端上下邻域展现出显著的面外屈曲现象。

    (ⅲ)极限撕裂状态:随着外加荷载进一步增大,切缝开口进一步扩大,面外屈曲现象也变得更加明显,薄膜的塑性变形显著增加;其切缝尖端处由于应力集中效应显著,会形成撕裂三角区,出现明显的颈缩现象,并且切缝开始沿着垂直于加载方向扩展。

    (ⅳ)完全破坏状态:在薄膜到达极限撕裂状态以后,随着荷载的增大,切缝扩展速度加剧,薄膜的承载能力不断下降,薄膜最终达到完全破坏状态,丧失所有承载能力,并且不同切口样式导致薄膜呈现的破坏形态各异。

    图5为ETFE薄膜在切缝张开状态下的切缝邻域εxy应变云图,该云图可直观的展现出薄膜面外屈曲的位置分布及其方向。据图可知,薄膜的面外屈曲的位置集中分布于切口上下邻域;εxy应变云图集中区呈现“X”型分布,其中,“X”型的中心点与切口的中心点重合。在构成“X”型的同一边上,面外屈曲的方向相同;而在构成“X”型的不同边上,面外屈曲的方向相反。随着切缝长度变化,薄膜面外屈曲的位置几乎保持不变。随着切缝角度变化,面外屈曲的位置仍处于切口上下邻域,随之发生相同角度的倾斜。随着切口样式变化,切口会沿着拉伸方向发生不同的张开变形,从而使薄膜面外屈曲的位置随之变化。

    不同切缝长度的ETFE薄膜的撕裂抗力-位移曲线如图6(a)所示,撕裂曲线随切缝长度改变存在规律性衍变,但存在典型共同特征,不妨提取典型撕裂曲线对ETFE薄膜撕裂力学行为进行深入阐释(见图6(b))。

    图  5  不同工况下ETFE薄膜切缝邻域的εxy应变云图
    Figure  5.  εxy strain nephogram of ETFE foils in the neighborhood of the slit under different conditions
    图  6  不同切缝长度的ETFE薄膜撕裂抗力-位移曲线及其典型撕裂曲线
    Figure  6.  Tearing strength-displacement curves and typical tearing curve of ETFE foils with different slit lengths

    图6(a)所示,随着切缝长度增大,撕裂抗力-位移曲线的撕裂前段的斜率不发生变化。在撕裂抗力上升阶段,曲线斜率增加的部分随切缝长度增大而逐渐消失;当切缝长度为2.5 mm、5.0 mm时,可明显观察到曲线斜率上升的趋势,而当切缝长度增大至7.5 mm后,曲线的斜率随着位移的增大而越来越小,无法观察到曲线斜率上升。在撕裂后段,当薄膜的切缝长度从2.5 mm增大到15.0 mm,薄膜有效承载截面不断减小,其极限撕裂抗力从130.74 N下降至57.94 N,下降55.68%;断裂位移由45.48 mm下降至11.05 mm,下降75.70%。

    图6(b)所示,典型撕裂曲线以4个特征点为界,可分为3个特征阶段。其中,初始点O为曲线与纵轴的交点,类屈服点A为曲线斜率首次发生变化点,峰值点B为曲线撕裂抗力最大点和破坏点C为曲线与横轴的交点;4特征点分别与典型撕裂过程的4个特征状态相对应。

    (OA)撕裂前段:曲线从不为零的初始点O开始,对应着试验前施加的预张力状态;在该阶段ETFE薄膜呈现出显著的线弹性行为,薄膜的初始弹性模量较大。

    (AB)撕裂抗力上升阶段:曲线到达类屈服点A后,斜率迅速减小,明显小于撕裂前段的斜率,开始出现较大的塑性变形;随着位移增大,薄膜内部结构会充分发生变化,撕裂抗力不断增加,曲线斜率明显上升;随后由于变形继续增大导致刚度下降,撕裂抗力增加的速度变缓,曲线斜率又开始下降至零。

    (BC)撕裂后段:曲线到达峰值点B时,薄膜达到极限撕裂抗力,开始发生显著的撕裂扩展;随着位移增加,撕裂抗力不断下降,并且撕裂扩展的速度不断加快,撕裂抗力下降幅度逐渐变大,最终下降到破坏点C,对应着薄膜完全破坏。

    不同切缝角度的ETFE薄膜撕裂抗力-位移曲线如图7所示。随着切缝角度增大,撕裂抗力-位移曲线的撕裂前段的斜率不发生变化,并且类屈服点对应的位移由1.52 mm上升至1.57 mm,撕裂前段所历经的位移仅增加1.97%,曲线几乎同时进入下一阶段。在撕裂抗力上升阶段,不同切缝角度的薄膜的曲线均会呈现出斜率增大的趋势,并且撕裂抗力上升阶段随切缝角度增加而显著变长。在撕裂后段,当切缝角度由0°增大至90°时,对应的等效切缝长度[27]由5 mm减少至0 mm,其极限撕裂抗力由107.69 N上升至134.25 N,断裂位移由24.39 mm上升至79.90 mm。

    可见,随着切缝角度的增大,对应的等效切缝长度随之减小,薄膜的承载途径逐渐恢复,用来承受拉伸荷载的有效截面增大,薄膜的极限撕裂强度增强,使薄膜不易到达极限撕裂状态,使得其断裂位移也随之增大。并且当切缝长度保持为5 mm时,切缝角度由0°增大到90°,其极限撕裂抗力和断裂位移分别上升了24.66%和227.59%,断裂位移的变化率远大于极限撕裂抗力的变化率。因此,切缝角度的改变对薄膜的极限撕裂抗力影响较小,而会显著影响薄膜完全破坏时对应的断裂位移。

    图  7  不同切缝角度的ETFE薄膜撕裂抗力-位移曲线
    Figure  7.  Tearing strength-displacement curves for ETFE foils with different slit angles

    图8为不同切缝角度的ETFE薄膜的切缝尖端邻域的竖向应变场云图。据图可知,当预制切缝长度为5 mm的“一”形切缝时,薄膜在切缝邻域出现明显的应变集中区(红色区域),并且其应变集中区分布于切缝尖端邻域上,随切缝角度的增加而发生相应的偏转。这是由于薄膜在预制初始切缝后,在切缝尖端邻域,随着拉伸应力的增大,切缝张开导致薄膜沿着切缝方向发生横向收缩,并且在切缝上下邻域处发生面外屈曲,薄膜会向面外凸出,导致切缝尖端邻域处承受的应力远高于其它区域,从而使薄膜在该区域处的竖向应变较大而出现应变集中区。因此,随着切缝角度的增大,薄膜切缝张开所致的横向收缩效应及面外屈曲现象发生相应的变化,使薄膜的应变集中区始终分布于切缝尖端邻域,从而使得薄膜的应变集中区发生相应的偏转。

    图  8  不同切缝角度的ETFE薄膜切缝尖端邻域的竖向应变场云图
    Figure  8.  Vertical strain field nephograms in the neighborhood of the slit tip of ETFE foils with different slit angles

    图9为不同切口样式的ETFE薄膜的撕裂抗力-位移曲线。不同切口样式对薄膜撕裂曲线的撕裂后段影响显著,导致含不同切口样式的薄膜在完全破坏时,整体上表现出两种破坏模式:类脆性破坏和类延性破坏。如图9(a)和图9(f)所示,对于无切缝和含圆形切口的ETFE薄膜,撕裂曲线到达峰值点后立即发生破坏,在撕裂后段历经的位移占整个撕裂过程发生的位移比例极小;并且在试验过程中可听到轻脆的崩断声,薄膜突然发生破坏,展现出类脆性破坏特性。而对于图9其它切口样式的ETFE薄膜,则呈现类延性破坏特性。撕裂曲线到达峰值点后,薄膜虽然达到了极限撕裂强度,但并不会立即发生断裂破坏;薄膜的切缝不断扩展,有效承载截面逐渐减小,薄膜在历经较大的位移后才完全破坏,可观察到明显预兆。

    图  9  不同切口样式的ETFE薄膜撕裂抗力-位移曲线
    Figure  9.  Tearing strength-displacement curves of ETFE foils with different notch shapes

    图10为撕裂试样典型损伤模式示意图。可知,含切口的ETFE薄膜,在拉伸撕裂过程中,切口破坏了薄膜的完整性,使薄膜较易出现面外屈曲和颈缩,从而使薄膜在切口邻域处出现显著的大变形区。这会导致薄膜的应力分布不均匀,在大变形区出现应力集中,从而引发撕裂,使薄膜在切口尖端处出现撕裂三角区,薄膜的承载性能下降。并随着撕裂三角区的逐渐扩展,薄膜的有效承载区域不断减小,薄膜的承载性能逐渐下降为零。并且,不同切口样式会使薄膜的大变形区不同,从而使其应力集中各不相同,导致不同切口样式使薄膜承载性能的衰减程度各异。

    图  10  典型撕裂试样损伤模式示意图:(a)“一”形切缝和(b)圆形切口
    Figure  10.  Schematic representation of typical damage modes of the tearing specimens: (a) “—” shaped slit ,and (b) circle notch

    图11为不同切口样式的ETFE薄膜对应的极限撕裂抗力。对于含开放性切缝的薄膜,相较于无切缝薄膜,含“V、X和十”形切缝的薄膜的极限撕裂抗力均约为138.13 N,下降40.58%,而含“一”形切缝的薄膜仅为107.25 N,下降53.86%。因此,当切缝的横向尺寸相同时,“一”形切缝贯穿了薄膜的主要受力方向,应力集中显著,对薄膜的极限撕裂强度的不利影响最大。对于含封闭性切口的薄膜,相较于无切缝薄膜,含圆形和椭圆形切口的薄膜的极限撕裂强度约为151.88 N,下降34.66%,含矩形-I切口的薄膜仅为115.19 N,下降50.44%。因此,当切口的横向尺寸相同时,矩形-I切口由于具有直角边缘等特性,使薄膜的应力集中程度远大于含圆形和椭圆形切口的薄膜,使薄膜承载性能的衰减程度更大。另外,含矩形-II切口的薄膜的极限撕裂强度为129.63 N,相较于无切缝薄膜的下降44.23%。可见,当切口几何外形相同时,对于横向尺寸较大的切口,其周围的应力集中区域较大,薄膜较易产生撕裂扩展,故对薄膜极限撕裂强度的不利影响更大。

    图  11  不同切口样式的ETFE薄膜极限撕裂抗力
    Figure  11.  Ultimate tearing strength of ETFE foils with different notch shapes

    结合系列试验与数字图像相关(DIC)技术,深入分析了乙烯-四氟乙烯(ETFE)薄膜的单轴中心撕裂行为,主要结论如下:

    (1) ETFE薄膜的典型撕裂扩展过程呈现出4个特征状态;不同切缝参数显著影响薄膜面外屈曲的位置和破坏形态,但不影响薄膜切缝扩展的方向始终为垂直于加载方向;

    (2) ETFE薄膜的撕裂抗力-位移曲线随不同工况的变化而发生非线性衍变,但存在典型共同特征,可划分为3个特征阶段:撕裂前段、撕裂抗力上升阶段和撕裂后段;

    (3)当切缝长度从2.5 mm增大到15.0 mm时,薄膜的有效承载截面变小,其极限撕裂强度和断裂位移分别减小了55.75%和75.70%;当切缝角度从0°增大到90°时,薄膜承载途径逐渐恢复,其极限撕裂强度增大了24.67%,而断裂位移却增大了227.59%;

    (4)切口样式使薄膜在完全破坏时呈现出类脆性破坏特征或类延性破坏特征。当横向尺寸相同时,在开放性切缝中,“一”形切缝贯穿薄膜主要受力方向,应力集中显著,对薄膜极限撕裂强度的不利影响最大;在封闭性切口中,与光滑边缘切口相比,直角边缘切口使薄膜的应力集中效应更显著,使薄膜易在切口尖角处发生撕裂,造成薄膜承载性能的显著衰减。所得结论可为相关均质性膜材的撕裂力学性能研究和膜结构的安全性评估提供有益参考。

  • 图  1   PNAB水凝胶的(a)制备路线和(b)合成示意图

    Figure  1.   (a) Preparation route and (b) Synthesis diagram of PNAB hydrogel

    图  2   (a) P15NA水凝胶、(b) P15NAB水凝胶、(c) P20NAB水凝胶的SEM图像

    Figure  2.   SEM images of (a) P15NA hydrogel, (b) P15NAB hydrogel, (c) P20NAB hydrogel

    图  3   PNAB水凝胶、PNA水凝胶、PVA/BA水凝胶和PANI/PA的FTIR

    Figure  3.   FTIR of PNAB hydrogel, PNA hydrogel, PVA/BA hydrogel and PANI/PA

    图  4   (a)PxNAB的机械和加工性能;(b)PxNAB的应力-应变曲线

    Figure  4.   (a) Mechanical and processing properties of PxNAB;(b) Stress-strain curves of PxNAB

    图  5   (a) P15NA、P15NAB和P20NAB水凝胶对E.coli(左)和S. aureus(右)的抗菌试验照片;(b)抑制区的环形直径

    Figure  5.   (a) Antibacterial test photos of P15NA, P15NAB and P20NAB hydrogels against E. coli(left) and S. aureus(right); (b) The circular diameter of the suppression zone

    图  6   (a)&(b)浸泡2 h和120 h后水凝胶的溶胀率;(c)&(d)原水凝胶与浸泡15天后的水凝胶的应力和应变的对比

    Figure  6.   (a)&(b) swelling rate of hydrogel after soaking for 2 h and 120 h; (c)&(d) Comparison of stress and strain of hydrogel and soaked hydrogel for 15 days

    图  7   (a) PNAB在简单电路中做导体;(b)PXNAB水凝胶的电导率

    Figure  7.   (a) PNAB is used as the conductor in simple circuits;(b) Conductivity of PXNAB hydrogel

    图  8   (a) PNA与PxNAB水凝胶在10 mV/s扫描速率下的CV图;(b) P15NAB在不同扫描速率下的CV图

    Figure  8.   (a) CV diagram of PNA and PxNAB hydrogels at a scanning rate of 10 mV/s; (b) CV images of P15NAB at different scanning rates

    图  9   (a)不同形变下的相对电阻变化;检测人体(b)眉头(c)食指&(d)手腕运动时的相对电阻变化

    Figure  9.   (a) Changes in relative resistance under different pressures; Detecting changes in relative resistance of the human body (b) eyebrows (c) index finger &(d) during wrist movement

  • [1] 江文静, 廖静文, 张雪慧, 等. 导电复合水凝胶的分类及其在柔性可穿戴设备中的应用 [J] 复合材料学报. 2023, 40(04): 1879-1895.

    Classification of conductive composite hydrogels and their application in flexible wearable devices[J]. Acta Materiae Compositae Sinica, 2023, 40(04): 1879-1895(in Chinese).

    [2]

    TIAN Y, WANG Z, CAO S, et al. Connective tissue-inspired elastomer-based hydrogel for artificial skin via radiation-indued penetrating polymerization[J]. Nature Communications, 2024, 15(1): 636. DOI: 10.1038/s41467-024-44949-1

    [3]

    XIE T, OU F, NING C, et al. Dual–network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high–performance triboelectric nanogenerators[J]. Carbohydrate Polymers, 2024, 333: 121960. DOI: 10.1016/j.carbpol.2024.121960

    [4]

    CHEN J, LIU F, ABDIRYIM T, et al. An overview of conductive composite hydrogels for flexible electronic devices[J]. Advanced Composites and Hybrid Materials, 2024, 7(2): 35. DOI: 10.1007/s42114-024-00841-6

    [5] 徐密, 张良, 何志仙. 纳米罗勒精油/聚乙烯吡咯烷酮-聚乙烯醇水凝胶伤口敷料制备及性能表征 [J] 复合材料学报. 2024, 41(02): 748-760.

    Preparation and characterization of Basil essential oil nanoparticles/polyvinylpyrrolidone-polyvinyl alcohol hydrogel wound dressing[J]. Acta Materiae Compositae Sinica, 2024, 41(02): 748-760 (in Chinese).

    [6]

    CHEN K, LIANG K, LIU H, et al. Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for Human-Machine Interaction[J]. Nano-Micro Letters, 2023, 15(1): 102. DOI: 10.1007/s40820-023-01084-8

    [7]

    WEN J, WANG S, FENG J, et al. Recent progress in polyaniline-based chemo resistive flexible gas sensors: design, nanostructures, and composite materials[J]. Journal of Materials Chemistry A, 2024, 12(11): 6190-6210. DOI: 10.1039/D3TA07687C

    [8]

    HAN L, LI Y, CHEN C, et al. Multifunctional enhanced energy density of flexible wide-temperature supercapacitors based on MXene/PANI conductive hydrogel[J]. Chemical Engineering Journal, 2024, 485: 149951. DOI: 10.1016/j.cej.2024.149951

    [9]

    ZHANG X, ZHANG X, KONG X, et al. Ionic conductive soluble starch hydrogels for biocompatible and anti-freezing wearable sensors[J]. European Polymer Journal, 2024, 210: 112949. DOI: 10.1016/j.eurpolymj.2024.112949

    [10] 王亚芳, 姚安荣, 陈方春, 等. 保湿抗冻型导电水凝胶在柔性电子方面的研究进展 [J] 复合材料学报. 1-10.

    Research progress on moisturizing and anti-freezing conductive hydrogels in flexible electronics[J]. Acta Materiae Compositae Sinica, 1-10 (in Chinese).

    [11]

    MAJUMDER M, SAMANTA S, NARJINARY M B, et al. Highly Sensitive and Wearable ZnO–Graphene Nanocomposite-Based Strain Sensors for Human Motion Detection[J]. IEEE Sensors Journal, 2023, 23(13): 14226-14233. DOI: 10.1109/JSEN.2023.3277994

    [12] 师财鑫. 聚苯胺导电水凝胶的制备及其在柔性电极中的应用 [D], 2022.

    Preparation of polyaniline conductive hydrogel and its application in flexible electrodes [D], 2022(in Chinese).

    [13]

    BENJAMAA R, ELBOUNY H, ERRATI H, et al. Comparative evaluation of antioxidant activity, total phenolic content, anti-inflammatory, and antibacterial potential of Euphorbia-derived functional products[J]. Frontiers in Pharmacology, 2024, (15): 1-18

    [14]

    BAI Z, JIANG J, ZHU H, et al. Multi-network PVA/SA aerogel fiber: Unveiling superior mechanical, thermal insulation, and extreme condition stability[J]. Polymer Degradation and Stability, 2024, 223: 110734. DOI: 10.1016/j.polymdegradstab.2024.110734

    [15]

    LIU X, CAO Y, WANG H, et al. Phytic acid cross-linked and Hofmeister effect strengthened polyvinyl alcohol hydrogels for zinc ion storage[J]. Chemical Communications, 2024, 60(5): 554-557. DOI: 10.1039/D3CC05008D

    [16]

    LI Y, LI Y, CAO R, et al. Amplifying the Mechanical Resilience of Chemically Cross-Linked Poly(vinyl alcohol) Films with the Addition of Boric Acid[J]. Macromolecules, 2024, 57(13): 6321-6332. DOI: 10.1021/acs.macromol.4c01098

    [17]

    LIU Z, LIU Z, SHU B, et al. One-pot preparation of tough, anti-swelling, antibacterial and conductive multiple-crosslinked hydrogels assisted by phytic acid and ferric trichloride[J]. Journal of Applied Polymer Science, 2023, 140(32): e54243. DOI: 10.1002/app.54243

    [18]

    WANG G, LIU Y, ZU B, et al. Reversible adhesive hydrogel with enhanced sampling efficiency boosted by hydrogen bond and van der Waals force for visualized detection[J]. Chemical Engineering Journal, 2023, 455: 140493. DOI: 10.1016/j.cej.2022.140493

    [19]

    LUO J, HU Y, LUO S, et al. Strong and Multifunctional Lignin/Liquid Metal Hydrogel Composite as Flexible Strain Sensors[J]. ACS Sustainable Chemistry & amp; Engineering, 2024, 12(18): 7105-7114.

    [20]

    XIAO S, LAO Y, LIU H, et al. A nanocomposite hydrogel loaded with Ag nanoparticles reduced by aloe vera polysaccharides as an antimicrobial multifunctional sensor[J]. International Journal of Biological Macromolecules, 2024, 267: 131541. DOI: 10.1016/j.ijbiomac.2024.131541

    [21]

    LEI Z, LIANG H, SUN W, et al. A biodegradable PVA coating constructed on the surface of the implant for preventing bacterial colonization and biofilm formation[J]. Journal of Orthopaedic Surgery and Research, 2024, 19(1): 175. DOI: 10.1186/s13018-024-04662-7

    [22]

    ZHOU Q, ZHAO Y, DANG H, et al. Antibacterial Effects of Phytic Acid against Foodborne Pathogens and Investigation of Its Mode of Action[J]. Journal of Food Protection, 2019, 82(5): 826-833. DOI: 10.4315/0362-028X.JFP-18-418

    [23]

    AUNG Y Y, KRISTANTI A N, KHAIRUNISA S Q, et al. Inactivation of HIV-1 Infection through Integrative Blocking with Amino Phenylboronic Acid Attributed Carbon Dots[J]. ACS Biomaterials Science & amp; Engineering, 2020, 6(8): 4490-4501.

    [24]

    MOURER M, FONTANAY S, DUVAL R E, et al. Synthesis, Characterization, and Biological Evaluation as Antibacterial Agents of Water-Soluble Calix[4]arenes and Phenol Derivatives Incorporating Carboxylate Groups[J]. Helvetica Chimica Acta, 2012, 95(8): 1373-1386. DOI: 10.1002/hlca.201200044

    [25]

    Hydrophobic Association Hydrogel Enabled by Multiple Noncovalent Interactions for Wearable Bioelectronics in Amphibious Environments [Z]. American Chemical Society (ACS). 10.1021/acs. chemmater. 3c02454. s001

    [26]

    ZHANG M, CHEN S, SHENG N, et al. Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior[J]. Nanoscale, 2021, 13(17): 8126-8136. DOI: 10.1039/D1NR00867F

  • 其他相关附件

  • 目的 

    导电水凝胶是柔性传感器件理想的候选材料。但在实际应用过程中,导电水凝胶的成本高,力学性能差、传感探测范围有限、功能单一、环保性等问题,严重阻碍了它的实际应用。需要开发一种力学性能优秀、成本低、环保和多功能的,可适用于各种复杂应用环境的导电水凝胶。

    方法 

    选用聚乙烯醇(PVA)和导电聚合物聚苯胺(PANI)构成水凝胶主体的网络结构,以植酸(PA)和硼酸(BA)作为交联剂构建一种低成本、环境友好性、高强度和多功能PVA/PANI/PA/BA导电水凝胶。首先,PVA是合成水凝胶的常用材料,PANI作为一种导电聚合物,可用于传感器件材料。PA是一种无毒和环保的生物质材料,具有杀菌功能。BA作为交联剂,也具有抗菌效果。其次,研究了不同配比的PVA/PANI的复合水凝胶的力学性能、微观结构、电化学性能、抗溶胀性和抗菌性等性能,对比不同配比PVA/PANI复合水凝胶的特性,择优选出各性能平衡的导电水凝胶(PNAB)。最后,探讨了基于PNAB的传感器的传感性能。

    结果 

    根据实验内容,按下述方面分析。1合成分析:PA和APS使ANI单体形成了导电聚合物PANI。BA使PVA快速形成不可逆凝胶,从而制备出导电水凝胶。PA富含羟基、羧基和醛基,易与PVA主链形成非共价连接。在氢键和硼酸酯键的相互作用下,PVA链和PANI链之间形成连结,PVA可以增加PANI网络的柔韧性。经过循环冷冻形成的多孔网状结构是导电的骨架,增强了离子传输。2微观结构:从PVA/PANI/PA水凝胶(简写为PNA)、PNAB和PNAB的SEM图观察分析(PVA/PANI/PA水凝胶(简写为PNA)),PNA、PNAB和PNAB截面都是疏松的多孔结构,说明PVA和PANI形成了网络框架结构。从PNAB、PNA、PVA/BA水凝胶(PVA和BA合成的水凝胶,其中PVA质量分数为15%)和PANI/PA(用PA掺揉ANI形成的PANI聚合物)的FTIR对比分析,说明在PNAB中,PA掺杂其中,PANI与PA之间形成了交联,BA和PVA产生了交联,BA以掺杂酸的形式进入PANI骨架。3力学性能:PNAB表现出良好的机械性能和加工性能。随着PVA占比的提高,其拉伸强度和断裂伸长率均增加。4抗菌性能:PNA、PNAB和PNAB水凝胶周围都出现了明显的抑菌圈,表明了水凝胶对E.coli和S.aureus具有有效的抗菌性能。PNAB的抗菌性优于PNAB和PNA。5抗溶胀性能:随着浸泡时间的延长,PNAB溶胀率增加。浸泡15天后,仍保持着较高的断裂强度和较高的断裂伸长率,表明了PNAB水凝胶具有良好的抗溶胀性。6电化学性能:PNAB随着PVA含量增加,导电性下降,CV曲线面积逐渐增大,比电容增大。CV曲线具有很好的对称性,说明水凝胶电极在充放电过程中具有高度可逆的电化学活性。PNAB水凝胶在不同的扫描速率下,CV曲线的形状相近,表明PNAB具有良好的电容特性。7传感性能:在不同压力产生的不同应变下,PNAB相对电阻变化稳定,说明其具有良好的压敏性。作为传感器来监测人体实时运动情况时,PNAB可将眉头、手指和手肘的运动信号转换成稳定的电信号,说明其具有良好的传感性能。

    结论 

    采用简单的一锅法,制备出了一种低成本、环境友好性、高强度、抗菌、抗溶胀和多功能的导电水凝胶。1PNAB具有优秀的拉伸强度(应力357kPa,断裂形变达504%),良好的导电性(导电率为146 mS/m)。2PNAB具有显著的抗菌性能,比PNA和PNAB更优秀的抗菌性。PNAB具有优异的抗溶胀性,在浸泡15天后,断裂强度和断裂伸长率变化分别不超过20%和0.1%。3PNAB表现出稳定的电化学性质和高电导率,具有良好的压敏性和传感性能,可应用于电子皮肤和可穿戴传感器等领域。

  • 导电水凝胶是柔性传感器件理想的候选材料。但在实际应用过程中,导电水凝胶的成本高,力学性能差、传感探测范围有限、功能单一、环保性等问题,严重阻碍了它的实际应用。许多研究人员在导电水凝胶强度、环境友好领域和多功能性能做出了大量努力。

    聚乙烯醇(PVA)水凝胶具有较弱的力学性能、有限的功能和较差的导电性。聚苯胺(PANI)作为导电聚合物,导电率低,在超级电容研究较多。本课题采用PVA和PANI构成水凝胶的双网络结构,植酸(PA)和硼酸(BA)作为交联剂构建一种低成本、环境友好性、高强度和多功能的PVA/PANI/PA/BA导电水凝胶。PVA和PANI的双网络的柔韧性,提高了力学性能。在氢键和硼酸酯键的相互作用下,PVA链和PANI链之间形成连结,进一步提高了力学性能。PANI与PA间的相互缠绕形成三维网络结构可作为离子导电的传输路径,增强了导电性能。冷冻解冻过程中形成了多孔的结构有利于离子传输,使导电路径更加顺畅,同时提高了材料的电化学性能和力学性能。PVA15/PANI/PA/BA具有优秀的拉伸强度(应力357 kPa,断裂形变达504%),良好的导电性(导电率为146 mS/m),优异的抗溶胀性(浸泡15天溶胀率仅4.56%,断裂强度和断裂伸长率变化分别不超过20%和0.1%)和优秀的抗菌性能。基于水凝胶制作的传感器来监测人体实时的运动情况时,能将手指、手腕和眉头运动信号转换成稳定的电信号,可将其应用于电子皮肤和可穿戴传感器等领域。

    (a)&(b)原水凝胶与浸泡15天后的水凝胶的断裂强度和断裂伸长率的对比

图(9)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  91
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-18
  • 修回日期:  2024-08-03
  • 录用日期:  2024-08-16
  • 网络出版日期:  2024-09-02
  • 刊出日期:  2025-06-14

目录

/

返回文章
返回