Preparation of antimicrobial anti-swelling conductive hydrogels based on polyaniline and their applications
-
摘要: 导电水凝胶是柔性传感器件理想的候选材料。但在实际应用过程中,导电水凝胶的成本高,力学性能差、传感探测范围有限、功能单一、环保性等问题,严重阻碍了它的实际应用。为了开发一种力学性能优秀、成本低、环保和多功能的,可适用于各种复杂应用环境的导电水凝胶,选用聚乙烯醇(PVA)和导电聚合物聚苯胺(PANI)构成水凝胶主体的双网络结构,植酸(PA)和硼酸(BA)作为交联剂构建一种低成本、环境友好性、高强度和多功能PVA/PANI/PA/BA导电水凝胶。研究了不同配比的PVA/PANI的复合水凝胶的力学性能、微观结构、电化学性能、抗溶胀性和抗菌性等性能,探讨了基于此导电水凝胶制作的传感器的传感性能。研究表明在PVA质量分数15%的复合体系中,此水凝胶兼顾了具有优秀的拉伸强度(断裂应力达357 kPa,断裂形变达504%)、良好的电化学性能(导电率为146 mS/m)、优异的抗溶胀性(浸泡15天溶胀率仅4.56%,对应的断裂强度变化和断裂伸长率变化分别不超过20%和0.1%)和优秀的抗菌性能等多功能,做到了各功能的相互平衡。基于此水凝胶制作的传感器来监测人体实时的运动情况时,能将眉头、手指和手腕运动信号转换成稳定的电信号,可将其应用于电子皮肤和可穿戴传感器等领域。Abstract: Conductive hydrogels are ideal candidates for flexible sensor devices. However, in the practical application process, the high cost of conductive hydrogel, poor mechanical properties, limited sensing detection range, single function, environmental protection, and other issues, seriously hindered its practical application. To develop an electrically conductive hydrogel with excellent mechanical properties, low-cost, environmentally friendly, and multifunctional for a variety of complex application environments, polyvinyl alcohol (PVA) and the conductive polymer polyaniline (PANI) were selected to form a double network structure of the hydrogel body, and phytic acid (PA) and boronic acid (BA) were used as cross-linking agents to construct a low-cost, environmentally friendly, high-strength, and multifunctional PVA/PANI/PA/BA conductive hydrogel. The mechanical properties, microstructure, electrochemical properties, swelling resistance, and antimicrobial properties of composite hydrogels with different ratios of PVA/PANI were investigated, and the sensing performance of sensors based on this conductive hydrogel was discussed. It is shown that in the composite system with 15% PVA mass fraction, this hydrogel has excellent tensile strength (breaking stress up to 357 kPa, deformation at break up to 504%), good electrochemical properties (electrical conductivity of 146 mS/m), excellent resistance to swelling (the swelling rate is only 4.56% for 15 days of immersion, and the changes in breaking strength and elongation at break do not exceed 20% and 0.1%, respectively), and excellent antimicrobial properties, achieving a balance of functions. When sensors made based on this hydrogel are used to monitor the real-time movement of the human body, they can convert brows, finger, and wrist movement signals into stable electrical signals, which can be used in fields such as electronic skin and wearable sensors.
-
Key words:
- PVA /
- PANI /
- conductive hydrogels /
- antibiosis /
- sensing performance
-
-
[1] 江文静, 廖静文, 张雪慧, 等. 导电复合水凝胶的分类及其在柔性可穿戴设备中的应用 [J] 复合材料学报. 2023, 40(04): 1879-1895.Classification of conductive composite hydrogels and their application in flexible wearable devices[J]. Acta Materiae Compositae Sinica, 2023, 40(04): 1879-1895(in Chinese). [2] TIAN Y, WANG Z, CAO S, et al. Connective tissue-inspired elastomer-based hydrogel for artificial skin via radiation-indued penetrating polymerization[J]. Nature Communications, 2024, 15(1): 636. doi: 10.1038/s41467-024-44949-1 [3] XIE T, OU F, NING C, et al. Dual–network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high–performance triboelectric nanogenerators[J]. Carbohydrate Polymers, 2024, 333: 121960. doi: 10.1016/j.carbpol.2024.121960 [4] CHEN J, LIU F, ABDIRYIM T, et al. An overview of conductive composite hydrogels for flexible electronic devices[J]. Advanced Composites and Hybrid Materials, 2024, 7(2): 35. doi: 10.1007/s42114-024-00841-6 [5] 徐密, 张良, 何志仙. 纳米罗勒精油/聚乙烯吡咯烷酮-聚乙烯醇水凝胶伤口敷料制备及性能表征 [J] 复合材料学报. 2024, 41(02): 748-760.Preparation and characterization of Basil essential oil nanoparticles/polyvinylpyrrolidone-polyvinyl alcohol hydrogel wound dressing[J]. Acta Materiae Compositae Sinica, 2024, 41(02): 748-760 (in Chinese). [6] CHEN K, LIANG K, LIU H, et al. Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for Human-Machine Interaction[J]. Nano-Micro Letters, 2023, 15(1): 102. doi: 10.1007/s40820-023-01084-8 [7] WEN J, WANG S, FENG J, et al. Recent progress in polyaniline-based chemo resistive flexible gas sensors: design, nanostructures, and composite materials[J]. Journal of Materials Chemistry A, 2024, 12(11): 6190-6210. doi: 10.1039/D3TA07687C [8] HAN L, LI Y, CHEN C, et al. Multifunctional enhanced energy density of flexible wide-temperature supercapacitors based on MXene/PANI conductive hydrogel[J]. Chemical Engineering Journal, 2024, 485: 149951. doi: 10.1016/j.cej.2024.149951 [9] ZHANG X, ZHANG X, KONG X, et al. Ionic conductive soluble starch hydrogels for biocompatible and anti-freezing wearable sensors[J]. European Polymer Journal, 2024, 210: 112949. doi: 10.1016/j.eurpolymj.2024.112949 [10] 王亚芳, 姚安荣, 陈方春, 等. 保湿抗冻型导电水凝胶在柔性电子方面的研究进展 [J] 复合材料学报. 1-10.Research progress on moisturizing and anti-freezing conductive hydrogels in flexible electronics[J]. Acta Materiae Compositae Sinica, 1-10 (in Chinese). [11] MAJUMDER M, SAMANTA S, NARJINARY M B, et al. Highly Sensitive and Wearable ZnO–Graphene Nanocomposite-Based Strain Sensors for Human Motion Detection[J]. IEEE Sensors Journal, 2023, 23(13): 14226-14233. doi: 10.1109/JSEN.2023.3277994 [12] 师财鑫. 聚苯胺导电水凝胶的制备及其在柔性电极中的应用 [D], 2022.Preparation of polyaniline conductive hydrogel and its application in flexible electrodes [D], 2022(in Chinese). [13] BENJAMAA R, ELBOUNY H, ERRATI H, et al. Comparative evaluation of antioxidant activity, total phenolic content, anti-inflammatory, and antibacterial potential of Euphorbia-derived functional products[J]. Frontiers in Pharmacology, 2024, (15): 1-18 [14] BAI Z, JIANG J, ZHU H, et al. Multi-network PVA/SA aerogel fiber: Unveiling superior mechanical, thermal insulation, and extreme condition stability[J]. Polymer Degradation and Stability, 2024, 223: 110734. doi: 10.1016/j.polymdegradstab.2024.110734 [15] LIU X, CAO Y, WANG H, et al. Phytic acid cross-linked and Hofmeister effect strengthened polyvinyl alcohol hydrogels for zinc ion storage[J]. Chemical Communications, 2024, 60(5): 554-557. doi: 10.1039/D3CC05008D [16] LI Y, LI Y, CAO R, et al. Amplifying the Mechanical Resilience of Chemically Cross-Linked Poly(vinyl alcohol) Films with the Addition of Boric Acid[J]. Macromolecules, 2024, 57(13): 6321-6332. doi: 10.1021/acs.macromol.4c01098 [17] LIU Z, LIU Z, SHU B, et al. One-pot preparation of tough, anti-swelling, antibacterial and conductive multiple-crosslinked hydrogels assisted by phytic acid and ferric trichloride[J]. Journal of Applied Polymer Science, 2023, 140(32): e54243. doi: 10.1002/app.54243 [18] WANG G, LIU Y, ZU B, et al. Reversible adhesive hydrogel with enhanced sampling efficiency boosted by hydrogen bond and van der Waals force for visualized detection[J]. Chemical Engineering Journal, 2023, 455: 140493. doi: 10.1016/j.cej.2022.140493 [19] LUO J, HU Y, LUO S, et al. Strong and Multifunctional Lignin/Liquid Metal Hydrogel Composite as Flexible Strain Sensors[J]. ACS Sustainable Chemistry & amp; Engineering, 2024, 12(18): 7105-7114. [20] XIAO S, LAO Y, LIU H, et al. A nanocomposite hydrogel loaded with Ag nanoparticles reduced by aloe vera polysaccharides as an antimicrobial multifunctional sensor[J]. International Journal of Biological Macromolecules, 2024, 267: 131541. doi: 10.1016/j.ijbiomac.2024.131541 [21] LEI Z, LIANG H, SUN W, et al. A biodegradable PVA coating constructed on the surface of the implant for preventing bacterial colonization and biofilm formation[J]. Journal of Orthopaedic Surgery and Research, 2024, 19(1): 175. doi: 10.1186/s13018-024-04662-7 [22] ZHOU Q, ZHAO Y, DANG H, et al. Antibacterial Effects of Phytic Acid against Foodborne Pathogens and Investigation of Its Mode of Action[J]. Journal of Food Protection, 2019, 82(5): 826-833. doi: 10.4315/0362-028X.JFP-18-418 [23] AUNG Y Y, KRISTANTI A N, KHAIRUNISA S Q, et al. Inactivation of HIV-1 Infection through Integrative Blocking with Amino Phenylboronic Acid Attributed Carbon Dots[J]. ACS Biomaterials Science & amp; Engineering, 2020, 6(8): 4490-4501. [24] MOURER M, FONTANAY S, DUVAL R E, et al. Synthesis, Characterization, and Biological Evaluation as Antibacterial Agents of Water-Soluble Calix[4]arenes and Phenol Derivatives Incorporating Carboxylate Groups[J]. Helvetica Chimica Acta, 2012, 95(8): 1373-1386. doi: 10.1002/hlca.201200044 [25] Hydrophobic Association Hydrogel Enabled by Multiple Noncovalent Interactions for Wearable Bioelectronics in Amphibious Environments [Z]. American Chemical Society (ACS). 10.1021/acs. chemmater. 3c02454. s001 [26] ZHANG M, CHEN S, SHENG N, et al. Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior[J]. Nanoscale, 2021, 13(17): 8126-8136. doi: 10.1039/D1NR00867F
点击查看大图
计量
- 文章访问数: 30
- HTML全文浏览量: 17
- 被引次数: 0