留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高导热中间相沥青基碳纤维的氧化行为

王昊 王归 周星明 樊桢 吴晃 叶崇 张岳峰 黄东

王昊, 王归, 周星明, 等. 高导热中间相沥青基碳纤维的氧化行为[J]. 复合材料学报, 2023, 40(9): 5189-5200. doi: 10.13801/j.cnki.fhclxb.20221117.002
引用本文: 王昊, 王归, 周星明, 等. 高导热中间相沥青基碳纤维的氧化行为[J]. 复合材料学报, 2023, 40(9): 5189-5200. doi: 10.13801/j.cnki.fhclxb.20221117.002
WANG Hao, WANG Gui, ZHOU Xingming, et al. Oxidation behavior of high thermal conductivity mesophase-pitch-based carbon fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5189-5200. doi: 10.13801/j.cnki.fhclxb.20221117.002
Citation: WANG Hao, WANG Gui, ZHOU Xingming, et al. Oxidation behavior of high thermal conductivity mesophase-pitch-based carbon fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5189-5200. doi: 10.13801/j.cnki.fhclxb.20221117.002

高导热中间相沥青基碳纤维的氧化行为

doi: 10.13801/j.cnki.fhclxb.20221117.002
基金项目: 国家自然科学基金(U21 B2067;52202037);湖南省创新建设专项基金(2020 GK4029);湖南省自然科学基金(2021 JJ40144;2021 JJ40145);湖南省科技人才托举工程项目(2022 TJ-N11);广东省现代表面工程技术重点实验室(2020 B1212060049);长沙科技局重大专项(KQ2102005);湖南省十大技术攻关项目(2021 GK1140)
详细信息
    通讯作者:

    黄东,博士,副研究员,研究方向为碳纤维及复合材料 E-mail: hd52923212@hnu.edu.cn

  • 中图分类号: TB321

Oxidation behavior of high thermal conductivity mesophase-pitch-based carbon fibers

Funds: National Natural Science Foundation of China (U21 B2067; 52202037); Special Fund for Innovative Construction Province of Hunan (2020 GK4029); Natural Science Foundation of Hunan Province China (2021 JJ40144; 2021 JJ40145); Hunan Province Scientific and Technological Talents Support Project (2022 TJ-N11); Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology (2020 B1212060049); Changsha Municipal Science and Technology Project (KQ2102005); Ten Key Technical Projects of Hunan Province (2021 GK1140)
  • 摘要: 以自制高导热中间相沥青基碳纤维(CFMP)为研究对象,采用M55J聚丙烯腈基碳纤维作为对照组,研究了CFMP在不同氧化温度和时间下的氧化行为。结果表明:CFMP表现出“外层褶皱辐射+内层洋葱皮”状结构特征,石墨微晶发育程度好,取向度高,发生氧化时氧气分子优先沿着CFMP褶皱辐射状炭织构之间的微裂纹或微孔扩散和反应,形成具有径向裂纹和局部凹坑的氧化特征。在低温氧化阶段,纤维的氧化行为受碳-氧化学反应控制,CFMP石墨微晶的活性位浓度低,所以起始反应温度比M55J高,氧化失重率比M55J低;在高温氧化阶段,纤维的氧化行为受扩散控制,CFMP内部的氧扩散路径多,所以氧化失重率比M55J高;同时氧化造成了CFMP微观缺陷尺寸更大、数量更多,氧化后纤维强度保留率仅为78%,低于M55J的85%。本文为高导热C/C复合材料的结构设计和实际服役提供一定的技术和理论参考。

     

  • 图  1  CFMP和M55 J的SEM图像:(a) M55 J截面低倍放大图;(b) M55 J截面高倍放大图;(c) M55 J表面形貌;(d) CFMP截面低倍放大图;(e) CFMP截面高倍放大图;(f) CFMP表面形貌

    Figure  1.  SEM images of CFMP and M55 J: (a) Low magnification image of cross section of M55 J; (b) High magnification image of cross section of M55 J; (c) Surface of M55 J; (d) Low magnification image of cross section of CFMP; (e) High magnification image of cross section of CFMP; (f) Surface of CFMP

    图  2  CFMP和M55 J的XRD图谱:(a) 粉末衍射图谱;(b) 方位角扫描

    Figure  2.  XRD patterns of CFMP and M55 J: (a) Powder diffraction patterns; (b) Azimuth scan

    图  3  CFMP和M55 J的拉曼光谱分析:(a) 截面表层区,图1(a)中A点和图1(d)中C点;(b) 截面芯部,图1(a)中B点和图1(d)中D点

    Figure  3.  Raman spectroscopy analysis of CFMP and M55 J: (a) Cross sectional surface area, point A in Fig.1(a) and point C in Fig.1(d); (b) Cross section of core, point B in Fig.1(a) and point D in Fig.1(d)

    图  4  CFMP和M55 J的氧化失重曲线

    Figure  4.  Oxidative weight loss curves of CFMP and M55 J

    图  5  600℃恒温氧化时CFMP和M55 J的TG曲线 (a) 与DTG曲线 (b)

    Figure  5.  TG (a) and DTG (b) curves of CFMP and M55 J under constant temperature oxidation at 600℃

    图  6  CFMP和对照组M55 J静态空气中氧化60 min的SEM图像:(a) M55 J表面;(b) M55 J截面;(c) CFMP表面;(d) CFMP表面高倍放大图;(e) CFMP截面上的氧化凹坑;(f) CFMP截面的裂纹

    Figure  6.  SEM images of CFMP and M55 J oxidized in static air for 60 min: (a) Surface of M55 J; (b) Cross section of M55 J; (c) Surface of CFMP; (d) High magnification image of surface of CFMP; (e) Oxidation pits on cross section of CFMP; (f) Cracks on cross section of CFMP

    图  7  CFMP和M55 J纤维氧化90 min前 (a) 和后 (b) 表面的拉曼光谱分析

    Figure  7.  Raman spectroscopy analysis of CFMP and M55 J surface before (a) and after (b) 90 min oxidation

    图  8  CFMP氧化不同时间后的SEM图像:(a) CFMP氧化10 min;(b) CFMP氧化40 min;(c) CFMP氧化90 min;(d) CFMP氧化240 min;(e) 对照组M55 J氧化10 min;(f) 对照组M55 J氧化90 min

    Figure  8.  SEM images of CFMP oxidized for different time: (a) Oxidation of CFMP for 10 min; (b) Oxidation of CFMP for 40 min; (c) Oxidation of CFMP for 90 min; (d) Oxidation of CFMP for 240 min; (e) Oxidation of M55 J for 10 min; (f) Oxidation of M55 J for 90 min

    图  9  600℃氧化90 min后纤维原始截面的SEM图像:(a) CFMP低倍放大图;(b) CFMP高倍放大图;(c) M55 J低倍放大图;(d) M55 J高倍放大图

    Figure  9.  SEM images of the original section of fibers after oxidation at 600℃ for 90 min: (a) Low magnification image of CFMP; (b) High magnification image of CFMP; (c) Low magnification image of M55 J; (d) High magnification image of M55 J

    图  10  氧化前后纤维拉伸强度保留率:(a) 氧化前后的拉伸强度;(b)氧化前后的强度保留率

    Figure  10.  Tensile strength retention of fiber before and after oxidation: (a) Tensile strength before and after oxidation; (b) Strength retention rate before and after oxidation

    图  11  CFMP的氧化机制

    Figure  11.  Diagram of oxidation mechanism of CFMP

    表  1  高导热中间相沥青基碳纤维(CFMP)和聚丙烯腈基碳纤维(M55 J)的性能对比

    Table  1.   Comparison of properties of high thermal conductive mesophase-pitch-based carbon fiber (CFMP) and polyacrylonitrile-based carbon fiber (M55 J) carbon fibers

    SampleStrength/GPaModulus/GPaElongation at break/%Thermal conductivity/(W·m−1·K−1)
    CFMP2.88720.32816
    M55 J4.05400.74122
    下载: 导出CSV

    表  2  CFMP和M55 J的晶格参数表

    Table  2.   Lattice parameter table of CFMP and M55 J

    Sample/(°)d(002)/nmLc(002)/nmLa(100)/nmg/%Z/(°)
    CFMP26.370.337819.0465.1672.09 8.31
    M55 J26.070.3415 4.4814.0829.0715.57
    Notes: —Diffraction angle of the (002) peak; d(002)—Actual measured layer spacing of the carbon material (002) plane; Lc(002)—Stacking height of the messy layer structure organization; La(100)—Size of the graphene plane; g—Graphitization degree; Z—Degree of orientation of the graphite crystal parallel to the fiber axis.
    下载: 导出CSV

    表  3  CFMP和M55 J不同氧化时间后的线密度与真密度

    Table  3.   Data table of linear density and true density of CFMP and M55 J after different oxidation time

    Oxidation time/minLinear density/(g·km−1)True density/(g·cm−3)
    CFMPRatio/%M55 JRatio/%CFMPM55 J
    0272.0230.02.201.90
    10260.095.6212.092.22.191.89
    40245.390.2199.086.52.181.88
    90221.481.4181.078.72.171.86
    下载: 导出CSV
  • [1] SHI L Y, SESSIM M, TONKS M R, et al. High-temperature oxidation of carbon fiber and char by molecular dynamics simulation[J]. Carbon,2021,185:449-463. doi: 10.1016/j.carbon.2021.09.038
    [2] FUKUNAGA A, UEDA S, NAGUMO M. Air-oxidation and anodization of pitch-based carbon fibers[J]. Carbon,1999,37(7):1081-1085. doi: 10.1016/S0008-6223(98)00307-8
    [3] SESSIM M, SHI L Y, PHILLPOT S R, et al. Phase-field modeling of carbon fiber oxidation coupled with heat conduction[J]. Computational Materials Science,2022,204:1-17.
    [4] 李贺军, 史小红, 沈庆凉, 等. 国内C/C复合材料研究进展[J]. 中国有色金属学报, 2019, 29(9):2142-2154. doi: 10.19476/j.ysxb.1004.0609.2019.09.15

    LI Hejun, SHI Xiaohong, SHEN Qingliang, et al. Research and development of C/C composites in China[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):2142-2154(in Chinese). doi: 10.19476/j.ysxb.1004.0609.2019.09.15
    [5] HUANG D, LIU Q L, ZHANG Y F, et al. Ablation behavior and thermal conduction mechanism of 3D ZrC-SiC-modified carbon/carbon composite having high thermal conductivity using mesophase-pitch-based carbon fibers and pyrocarbon as heat transfer channels[J]. Composites Part B: Engineering,2021,224:1-14.
    [6] HUANG D, TAN R X, LIU L, et al. Preparation and properties of the three-dimensional highly thermal conductive carbon/carbon-silicon carbide composite using the mesophase-pitch-based carbon fibers and pyrocarbon as thermal diffusion channels[J]. Journal of the European Ceramic Society,2021,41(8):4438-4446. doi: 10.1016/j.jeurceramsoc.2021.03.011
    [7] ZHANG X, LI X K, YUAN G M, et al. Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration[J]. Carbon,2017,114:59-69.
    [8] LI T Q, XU Z H, HU Z J, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system[J]. Carbon,2010,48(3):924-925. doi: 10.1016/j.carbon.2009.10.043
    [9] 刘宇峰, 李同起, 冯志海, 等. 薄层化碳布缝合碳/碳复合材料制备与性能[J]. 复合材料学报, 2021, 38(4):1210-1222. doi: 10.13801/j.cnki.fhclxb.20200713.005

    LIU Yufeng, LI Tongqi, FENG Zhihai, et al. Preparation and properties of spreading carbon cloth stitched C/C compo-sites[J]. Acta Materiae Compositae Sinica,2021,38(4):1210-1222(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200713.005
    [10] YE C, HUANG D, LI B L, et al. Ablation behavior of the SiC-coated three-dimensional highly thermal conductive mesophase-pitch-based carbon-fiber-reinforced carbon matrix composite under plasma flame[J]. Materials,2019,12(17):1-15.
    [11] ZHUANG L, FU Q G, MA W H, et al. Oxidation protection of C/C composites: Coating development with thermally stabile SiC@PyC nanowires and an interlocking TaB2-SiC structure[J]. Corrosion Science,2019,148:307-316. doi: 10.1016/j.corsci.2018.12.024
    [12] 王玲玲, 肖春, 王坤杰, 等. 不同制备方法下(C/C)/ZrB2-SiC复合材料的抗烧蚀性能[J]. 复合材料学报, 2019, 36(12):2878-2886.

    WANG Lingling, XIAO Chun, WANG Kunjie, et al. Ablation performance of (C/C)/ZrB2-SiC composites by different fabrication methods[J]. Acta Materiae Compositae Sinica,2019,36(12):2878-2886(in Chinese).
    [13] 王玲玲, 闫联生, 郭春园, 等. 不同ZrC含量的(C/C)/SiC-ZrC复合材料的抗烧蚀性能[J]. 复合材料学报, 2020, 37(9):2250-2257. doi: 10.13801/j.cnki.fhclxb.20200110.003

    WANG Lingling, YAN Liansheng, GUO Chunyuan, et al. Anti-ablative property of (C/C)/SiC-ZrC composites with different ZrC content[J]. Acta Materiae Compositae Sinica,2020,37(9):2250-2257(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200110.003
    [14] 李昭锐, 张东, 徐樑华, 等. 碳纤维形貌结构对其电化学氧化行为及其复合材料界面性能的影响[J]. 复合材料学报, 2015, 32(4):1218-1224. doi: 10.13801/j.cnki.fhclxb.20141204.002

    LI Zhaorui, ZHANG Dong, XU Lianghua, et al. Influence of carbon fiber morphology structure on electrochemical oxidation behaviors and interfacial properties of its composites[J]. Acta Materiae Compositae Sinica,2015,32(4):1218-1224(in Chinese). doi: 10.13801/j.cnki.fhclxb.20141204.002
    [15] 徐翊桄, 靳玉伟, 张海龙, 等. 碳纤维热氧化行为及其机理[J]. 合成纤维工业, 2010, 33(6):5-7. doi: 10.3969/j.issn.1001-0041.2010.06.002

    XU Yiguang, JIN Yuwei, ZHANG Hailong, et al. Thermal oxidation behavior and mechanism of carbon fiber[J]. China Synthetic Fiber Industry,2010,33(6):5-7(in Chinese). doi: 10.3969/j.issn.1001-0041.2010.06.002
    [16] COCHELL T J, UNOCIC R R, GRANA-OTERO J, et al. Nanoscale oxidation behavior of carbon fibers revealed with in situ gas cell STEM[J]. Scripta Materialia,2021,199:1-6.
    [17] SERF P, FIGUEIREDO J L. An investigation of vapor-grown carbon fiber behavior towards air oxidation[J]. Carbon,1997,35(5):675-683. doi: 10.1016/S0008-6223(97)00023-7
    [18] MERINO C, BRANDL W. Oxidation behaviour and microstructure of vapour grown carbon fibres[J]. Solid State Sciences,2003,5(4):663-668. doi: 10.1016/S1293-2558(03)00039-6
    [19] MANOCHA L M, WARRIER A, MANOCHA S, et al. Oxidation behaviour of ribbon shape carbon fibers and their composites[J]. Materials Science and Engineering: B,2006,132(1-2):121-125.
    [20] DHAMI T L, MANOCHA L M, BAHL O P. Oxidation behaviour of pitch based carbon fibers[J]. Carbon,1991,29(1):51-60. doi: 10.1016/0008-6223(91)90094-Y
    [21] NAKAMURA K, TANABE Y, FUKUSHIMA M, et al. Analysis of surface oxidation behavior at 500℃ under dry air of glass-like carbon heat-treated from 1200 to 3000℃[J]. Materials Science and Engineering: B,2009,161(1-3):40-45. doi: 10.1016/j.mseb.2008.11.012
    [22] GUO W M, XIAO H N, ZHANG G J. Kinetics and mechanisms of non-isothermal oxidation of graphite in air[J]. Corrosion Science,2008,50(7):2007-2011. doi: 10.1016/j.corsci.2008.04.017
    [23] NAITO K, TANAKA Y, YANG J M, et al. Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers[J]. Carbon,2008,46(2):189-195. doi: 10.1016/j.carbon.2007.11.001
    [24] YE C, WU H, ZHU S P, et al. Microstructure of high thermal conductivity mesophase pitch-based carbon fibers[J]. New Carbon Materials,2021,36(5):980-986. doi: 10.1016/S1872-5805(21)60050-1
    [25] EMMERICH F G. Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers[J]. Carbon,2014,79:274-293. doi: 10.1016/j.carbon.2014.07.068
    [26] YUAN G M, LI X K, DONG Z J, et al. The structure and pro-perties of ribbon-shaped carbon fibers with high orientation[J]. Carbon,2014,68:426-439. doi: 10.1016/j.carbon.2013.11.019
    [27] 马兆昆, 宁淑丽, 宋怀河. 高导热炭纤维的研究进展[J]. 北京化工大学学报:自然科学版, 2014, 41(1):1-13.

    MA Zhaokun, NING Shuli, SONG Huaihe. Recent progress in the study of carbon fibers with high thermal conducti-vity[J]. Journal of Beijing University of Chemical Technology (Natural Science),2014,41(1):1-13(in Chinese).
    [28] MOCHIDA I, YOON S H, TAKANO N, et al. Microstructure of mesophase pitch-based carbon fiber and its control[J]. Carbon,1996,34(8):941-956. doi: 10.1016/0008-6223(95)00172-7
    [29] WU H, HUANG D, YE C, et al. Engineering microstructure toward split-free mesophase pitch-based carbon fibers[J]. Journal of Materials Science,2022,57(4):2411-2423. doi: 10.1007/s10853-021-06770-9
    [30] HUANG D, LIU Q L, ZHANG P, et al. Thermal response of the two-directional high-thermal-conductive carbon fiber reinforced aluminum composites with low interface damage by a vacuum hot pressure diffusion method[J]. Jour-nal of Alloys and Compounds,2022,905:1-11.
    [31] 中华人民共和国国家质量监督检验检疫总局. 中国国家标准化管理委员会. 碳纤维单丝拉伸性能的测定: GB/T 31290—2014[S]. 北京: 中国标准出版社, 2014.

    General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China. Standardization Administration of the People's Republic of China. Carbon fibre-Determination of the tensile properties of single-filament specimens: GB/T 31290—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  573
  • HTML全文浏览量:  279
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 修回日期:  2022-10-27
  • 录用日期:  2022-11-06
  • 网络出版日期:  2022-11-19
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回