Oxidation Behavior of High Thermal Conductivity Mesophase Pitch-Based Carbon Fibers
-
摘要:
高导热C/C复合材料由中间相沥青基碳纤维(CFMP)和具有良好导热性能的炭基体构成,在兼顾轻质高强、耐高温、抗热震、耐辐照等性能特点的同时,还具有高导热和高化学惰性的特性,是一种极具前景的极端环境热管理材料。高导热C/C复合材料在高温有氧环境下使役时,氧气会扩散至纤维/炭基体界面处和CFMP发生氧化反应,纤维氧化损伤的程度直接影响了复合材料力学性能和承载能力的衰减程度,但纤维的氧化行为尚不清晰。本文以自制高导热CFMP为研究对象,采用M55J纤维作为对照组,研究了CFMP在不同氧化温度和时间下的氧化行为。CFMP表现出“外层褶皱辐射+内层洋葱皮”状结构特征,石墨微晶发育程度好,取向度高,发生氧化时氧气分子优先沿着CFMP褶皱辐射状炭织构之间的微裂纹或微孔扩散和反应,形成具有径向裂纹和局部凹坑的氧化特征。在低温氧化阶段,纤维的氧化行为受碳-氧化学反应控制,CFMP石墨微晶的活性位浓度低,所以起始反应温度比M55J高,氧化失重率比M55J低;在高温氧化阶段,纤维的氧化行为受扩散控制,CFMP内部的氧扩散路径多,所以氧化失重率比M55J高;同时氧化造成了CFMP微观缺陷尺寸更大、数量更多,氧化后纤维强度保留率仅为78%,低于M55J的85%。 CFMP的氧化机制图,M55J为对照组 Abstract: The oxidation behaviors of the homemade high thermal conductive mesophase-pitch-based carbon fiber (CFMP) at different time and temperature were investigated using the polyacrylonitrile-based carbon fiber (M55J) as the control group. The results show that CFMP exhibits a fold radiation structure in the outer part and onion skin structure in the inner part. The CFMP has a well-developed graphite crystallite and a high degree of orientation. Oxygen atoms preferentially diffuse in the microcracks and micropores in the fold radiation carbon textures of CFMP and react with them resulting in radial cracks and localized pits. In the low temperature oxidation stage, the oxidation behaviors of the fibers are controlled by the carbon-oxygen chemical reaction. Because the active site concentration in graphite crystallite of CFMP is lower, its initial reaction temperature is higher than that of M55J, and its oxidation weight loss rate is relative lower. In the high temperature oxidation stage, the oxidation behaviors of the fibers are controlled by oxygen diffusion. The oxidation weight loss rate of CFMP is higher than that of M55J because there are more oxygen diffusion paths in the CFMP. Moreover, because there are more and larger microstructural defects in CFMP after oxidation, the strength retention rate of the CFMP is only 78%, which is lower than that of M55J (85%). This study provides certain technical and theoretical references for the structural design and actual service of high thermal conductive C/C composites. -
图 1 CFMP和M55 J的SEM图:(a) M55 J截面低倍放大图;(b) M55 J截面高倍放大图;(c) M55 J表面形貌;(d) CFMP截面低倍放大图;(e) CFMP截面高倍放大图;(f) CFMP表面形貌
Figure 1. SEM images of CFMP and M55 J: (a) Low magnification image of cross section of M55 J; (b) High magnification image of cross section of M55 J; (c) Surface of M55 J; (d) Low magnification image of cross section of CFMP; (e) High magnification image of cross section of CFMP; (f) Surface of CFMP
图 6 CFMP和对照组M55 J静态空气中氧化60 min的SEM图:(a) M55 J表面;(b) M55 J截面;(c) CFMP表面;(d) CFMP表面高倍放大图;(e) CFMP截面上的氧化凹坑;(f) CFMP截面的裂纹
Figure 6. SEM images of CFMP and M55 J oxidized in static air for 60 min: (a) Surface of M55 J; (b) Cross section of M55 J; (c) Surface of CFMP; (d) High magnification image of surface of CFMP; (e) Oxidation pits on cross section of CFMP; (f) Cracks on cross section of CFMP
图 8 CFMP氧化不同时间后的SEM图:(a) CFMP氧化10 min;(b) CFMP氧化40 min;(c) CFMP氧化90 min;(d) CFMP氧化240 min;(e) 对照组M55 J氧化10 min;(f) 对照组M55 J氧化90 min。
Figure 8. SEM images of CFMP oxidized for different times: (a) Oxidation of CFMP for 10 min; (b) Oxidation of CFMP for 40 min; (c) Oxidation of CFMP for 90 min; (d) Oxidation of CFMP for 240 min; (e) Oxidation of M55 J for 10 min; (f) Oxidation of M55 J for 90 min
图 9 600℃氧化90 min后纤维原始截面的SEM图:(a) CFMP低倍放大图;(b) CFMP高倍放大图;(c) M55 J低倍放大图;(d) M55 J高倍放大图
Figure 9. SEM images of the original section of fibers after oxidation at 600℃ for 90 min: (a) Low magnification image of CFMP; (b) High magnification image of CFMP; (c) Low magnification image of M55 J; (d) High magnification image of M55 J
表 1 高导热中间相沥青基碳纤维(CFMP)和聚丙烯腈基碳纤维(M55 J)两种碳纤维的性能对比图
Table 1. Comparison of properties of high thermal conductive mesophase-pitch-based carbon fiber (CFMP) and polyacrylonitrile-based carbon fiber (M55 J) carbon fibers
Sample Strength/GPa Modulus/GPa Elongation at break/% Thermal conductivity/(W·m−1·K−1) TYG-3 2.8 872 0.32 816 M55 J 4.0 540 0.74 122 表 2 CFMP和M55 J的晶格参数表
Table 2. Lattice parameter table of CFMP and M55 J
Sample 2θ/(°) d(002)/nm Lc(002)/nm La(100)/nm g/% Z/(°) CFMP 26.37 0.3378 19.04 65.16 72.09 8.31 M55 J 26.07 0.3415 4.48 14.08 29.07 15.57 Notes: 2θ is the diffraction angle of the (002) peak; d(002) is the actual measured layer spacing of the carbon material (002) plane; Lc(002) is the stacking height of the messy layer structure organization; La(100) is the size of the graphene plane; g is the graphitization degree; Z is the degree of orientation of the graphite crystal parallel to the fiber axis. 表 3 CFMP和M55 J不同氧化时间后的线密度与真密度
Table 3. Data table of linear density and true density of CFMP and M55 J after different oxidation times
Oxidation time/min Linear density/(g·km−1) True density/(g·cm−3) CFMP Ratios M55 J Ratios CFMP M55 J 0 272.0 / 230.0 / 2.20 1.90 10 260.0 95.6% 212.0 92.2% 2.19 1.89 40 245.3 90.2% 199.0 86.5% 2.18 1.88 90 221.4 81.4% 181.0 78.7% 2.17 1.86 -
[1] SHI L, SESSIM M, TONKS M R, et al. High-temperature oxidation of carbon fiber and char by molecular dynamics simulation[J]. Carbon,2021,185:449-463. doi: 10.1016/j.carbon.2021.09.038 [2] FUKUNAGA A, UEDA S, NAGUMO M. Air-oxidation and anodization of pitch-based carbon fibers[J]. Carbon,1999,37(7):1081-1085. doi: 10.1016/S0008-6223(98)00307-8 [3] SESSIM M, SHI L Y, PHILLPOT S R, et al. Phase-field modeling of carbon fiber oxidation coupled with heat conduction[J]. Computational Materials Science,2022,204:1-17. [4] 李贺军, 史小红, 沈庆凉, 等. 国内C/C复合材料研究进展[J]. 中国有色金属学报, 2019, 29(9):2142-2154. doi: 10.19476/j.ysxb.1004.0609.2019.09.15LI Hejun, SHI Xiaohong, SHEN Qingliang, et al. Research and development of C/C composites in China[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):2142-2154(in Chinese). doi: 10.19476/j.ysxb.1004.0609.2019.09.15 [5] HUANG D, LIU Q L, ZHANG Y F, et al. Ablation behavior and thermal conduction mechanism of 3 D ZrC–SiC-modified carbon/carbon composite having high thermal conductivity using mesophase-pitch-based carbon fibers and pyrocarbon as heat transfer channels[J]. Composites Part B,2021,224:1-14. [6] HUANG D, TAN R X, LIU L, et al. Preparation and properties of the three-dimensional highly thermal conductive carbon/carbon-silicon carbide composite using the mesophase-pitch-based carbon fibers and pyrocarbon as thermal diffusion channels[J]. Journal of the European Ceramic Society,2021,41(8):4438-4446. doi: 10.1016/j.jeurceramsoc.2021.03.011 [7] ZHANG X, LI X, YUAN G, et al. Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration[J]. Carbon,2017,114(Complete):59-69. [8] LI T Q, XU Z H, HU Z J, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system - ScienceDirect[J]. Carbon,2010,48(3):924-925. doi: 10.1016/j.carbon.2009.10.043 [9] 刘宇峰, 李同起, 冯志海, 等. 薄层化碳布缝合碳/碳复合材料制备与性能[J]. 复合材料学报, 2021, 38(4):1210-1222. doi: 10.13801/j.cnki.fhclxb.20200713.005LIU Yufeng, LI Tongqi, FENG Zhihai, et al. Preparation and properties of spreading carbon cloth stitched C/C composites[J]. Acta Mater. Compositae Sin.,2021,38(4):1210-1222(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200713.005 [10] YE C, HUANG D, LI B L, et al. Ablation Behavior of the SiC-Coated Three-Dimensional Highly Thermal Conductive Mesophase-Pitch-Based Carbon-Fiber-Reinforced Carbon Matrix Composite under Plasma Flame[J]. Materials,2019,12(17):1-15. [11] ZHUANG L, FU Q G, MA W H, et al. Oxidation protection of C/C composites: Coating development with thermally stabile SiC@PyC nanowires and an interlocking TaB2-SiC structure[J]. Corrosion Science,2019,148:307-316. doi: 10.1016/j.corsci.2018.12.024 [12] 王玲玲, 肖春, 王坤杰, 等. 不同制备方法下(C/C)/ZrB2-SiC复合材料的抗烧蚀性能[J]. 复合材料学报, 2019, 36(12):2878-2886.WANG Lingling, XIAO Chun, WANG Kunjie, et al. Ablation performance of (C/C)/ZrB2-SiC composites by different fabrication methods[J]. Acta Mater. Compositae Sin.,2019,36(12):2878-2886(in Chinese). [13] 王玲玲, 闫联生, 郭春园, 等. 不同ZrC含量的(C/C)/SiC-ZrC复合材料的抗烧蚀性能[J]. 复合材料学报, 2020, 37(9):2250-2257. doi: 10.13801/j.cnki.fhclxb.20200110.003WANG Lingling, YAN Liansheng, GUO Chunyuan, et al. Anti-ablative property of (C/C)/SiC-ZrC composites with different ZrC content[J]. Acta Mater. Compositae Sin.,2020,37(9):2250-2257(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200110.003 [14] 李昭锐, 张东, 徐樑华, 等. 碳纤维形貌结构对其电化学氧化行为及其复合材料界面性能的影响[J]. 复合材料学报, 2015, 32(4):1218-1224. doi: 10.13801/j.cnki.fhclxb.20141204.002LI Zhaorui, ZHANG Dong, XU Lianghua, et al. Influence of carbon fiber morphology structure on electrochemical oxidation behaviors and interfacial properties of its composites[J]. Acta Mater. Compositae Sin.,2015,32(4):1218-1224(in Chinese). doi: 10.13801/j.cnki.fhclxb.20141204.002 [15] 徐翊桄, 靳玉伟, 张海龙, 等. 碳纤维热氧化行为及其机理[J]. 合成纤维工业, 2010(6):5-7. doi: 10.3969/j.issn.1001-0041.2010.06.002XU Yiguang, JIN Yuwei, ZHANG Hailong, et al. Thermal oxidation behavior and mechanism of carbon fiber[J]. China Synthetic Fiber Industry,2010(6):5-7(in Chinese). doi: 10.3969/j.issn.1001-0041.2010.06.002 [16] TJC A, RRU B, GO C, et al. Nanoscale oxidation behavior of carbon fibers revealed with in situ gas cell STEM[J]. Scripta Materialia,2021,199:1-6. [17] SerfSERF P, FIGUEIREDO J L. An investigation of vapor-grown carbon fiber behavior towards air oxidation[J]. Carbon,1997,35(5):675-683. doi: 10.1016/S0008-6223(97)00023-7 [18] MERINO C, BRANDL W. Oxidation behaviour and microstructure of vapour grown carbon fibres[J]. Solid State Sciences,2003,5(4):663-668. doi: 10.1016/S1293-2558(03)00039-6 [19] MANOCHA L M, WARRIER A, MANOCHA S, et al. Oxidation behaviour of ribbon shape carbon fibers and their composites[J]. Materials Science and Engineering B,2006,132(1/2):121-125. [20] DHAMI T L, MANOCHA L M, BAHL O P. Oxidation behaviour of pitch based carbon fibers[J]. Carbon,1991,29(1):51-60. doi: 10.1016/0008-6223(91)90094-Y [21] NAKAMURA K, TANABE Y, FUKUSHIMA M, et al. Analysis of surface oxidation behavior at 500℃ under dry air of glass-like carbon heat-treated from 1200 to 3000℃[J]. Materials Science and Engineering B,2009,161(1-3):40-45. doi: 10.1016/j.mseb.2008.11.012 [22] GUO W M, XIAO H N, ZHANG G J. Kinetics and mechanisms of non-isothermal oxidation of graphite in air[J]. Corrosion Science,2008,50(7):2007-2011. doi: 10.1016/j.corsci.2008.04.017 [23] NAITO K, TANAKA Y, YANG J. M, et al. Tensile Properties of Ultrahigh Strength PAN-Based, Ultrahigh Modulus Pitch-Based and High Ductility Pitch-Based Carbon Fibers[J]. Carbon,2008,46(2):189-195. doi: 10.1016/j.carbon.2007.11.001 [24] YE C, WU H, ZHU S P, et al. Microstructure of high thermal conductivity mesophase pitch-based carbon fibers[J]. New Carbon Materials,2021,36(5):980-986. doi: 10.1016/S1872-5805(21)60050-1 [25] EMMERICH F G. Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers[J]. Carbon,2014,79:274-293. doi: 10.1016/j.carbon.2014.07.068 [26] YUAN G M, LI X K, DONG Z J, et al. The structure and properties of ribbon-shaped carbon fibers with high orientation[J]. Carbon,2014,68:426-439. doi: 10.1016/j.carbon.2013.11.019 [27] 马兆昆, 宁淑丽, 宋怀河. 高导热炭纤维的研究进展[J]. 北京化工大学学报:自然科学版, 2014(1):1-13.MA Zhaokun, NING Shuli, SONG Huaihe. Recent progress in the study of carbon fibers with high thermal conductivity[J]. Journal of Beijing University of Chemical Technology (Natural Science),2014(1):1-13(in Chinese). [28] MOCHIDA I, YOON S. H, TAKANO N, et al. Microstructure of mesophase pitch-based carbon fiber and its control[J]. Carbon,1996,34(8):941-956. doi: 10.1016/0008-6223(95)00172-7 [29] WU H, HUANG D, YE C, et al. Engineering microstructure toward split-free mesophase pitch-based carbon fibers[J]. Journal of Materials Science,2022,57(4):2411-2423. doi: 10.1007/s10853-021-06770-9 [30] HUANG D, LIU Q L, ZHANG P, et al. Thermal response of the two-directional high-thermal-conductive carbon fiber reinforced aluminum composites with low interface damage by a vacuum hot pressure diffusion method[J]. Journal of Alloys and Compounds,2022,905:1-11. [31] 中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会. 碳纤维单丝拉伸性能的测定: GB/T 31290-2014[S]. 北京: 中国标准出版社, 2014.General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China; Standardization Administration of the People’s Republic of China. Carbon fibre-Determination of the tensile properties of single-filament specimens: GB/T 31290-2014[S]. Beijing: China Standards Press, 2014(Chinese). -

计量
- 文章访问数: 170
- HTML全文浏览量: 85
- 被引次数: 0