留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热拉伸对三维编织聚乳酸复合材料性能的影响

王静 卢潇楠 吕东阳 焦亚男

王静, 卢潇楠, 吕东阳, 等. 热拉伸对三维编织聚乳酸复合材料性能的影响[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 王静, 卢潇楠, 吕东阳, 等. 热拉伸对三维编织聚乳酸复合材料性能的影响[J]. 复合材料学报, 2024, 42(0): 1-9.
WANG Jing, LU Xiaonan, LV Dongyang, et al. Effect of hot drawing on the properties of Three-dimensional braided polylactic acid composites[J]. Acta Materiae Compositae Sinica.
Citation: WANG Jing, LU Xiaonan, LV Dongyang, et al. Effect of hot drawing on the properties of Three-dimensional braided polylactic acid composites[J]. Acta Materiae Compositae Sinica.

热拉伸对三维编织聚乳酸复合材料性能的影响

详细信息
    通讯作者:

    王静,博士,副研究员,博士生导师,研究方向为先进纺织复合材料 E-mail: jingwang@tiangong.edu.cn

  • 中图分类号: TB332

Effect of hot drawing on the properties of Three-dimensional braided polylactic acid composites

  • 摘要: 三维编织热塑性复合材料有着更易回收,生产周期短的特点。其中,聚乳酸(polylactic acid, PLA)的生物相容性较好,且成本较低,得到广泛关注。热压成型(hot pressing, HP)工艺有着较高的设计自由度,然而,采取HP工艺制备三维编织聚乳酸复合材料因模具合模时对预制体挤压,可能会破坏编织结构,造成纤维的分布不匀,破坏界面性能,导致力学性能下降。热拉伸成型工艺(hot drawing, HD)作为一种自增强技术,在HP工艺的基础上于三维编织预制体的轴向施以拉伸力,可以有效提高PLA的结晶度和复合材料的力学性能。本实验分别采取HD和HP两种成型工艺制备玻璃纤维(glass fiber, GF)增强PLA复合材料并进行测试,发现:HD复合材料较HP复合材料的剪切强度高出了33.03%,弯曲强度高出了26.92%,拉伸强度高出了39.67%,结晶度提高了20.03%,并略微提升热稳定性。热拉伸工艺促进了PLA分子晶体沿轴向有序排列和晶核的生长,使得PLA分子链排列更加简单,提高了PLA的结晶度,同时提高了复合材料的力学性能。结合宏观以及3D轮廓观察,发现HD工艺改善了编织结构遭到破坏的问题,保证了三维编织花节的完整性,GF纤维束排列有序,利于复合材料整体性能的提升。

     

  • 图  1  PLA纤维的DSC曲线

    Figure  1.  DSC curve of PLA fibers

    图  2  热拉工艺成型模具

    Figure  2.  Hot-drawing process molding tooling

    图  3  热拉工艺流程曲线图

    Figure  3.  Hot drawing process flow curves

    图  4  热压工艺流程曲线图

    Figure  4.  Hot pressing process flow curves

    图  5  热拉伸成型工艺(HD)和热压成型(HP)复合材料的剪切载荷位移曲线对比

    Figure  5.  Comparison of shear load displacement curves for hot drawing (HD) and hot pressing (HP) composites

    图  6  HD和HP复合材料的剪切强度对比

    Figure  6.  Comparison of shear strength of HD and HP composites

    图  7  HD和HP复合材料的弯曲载荷位移曲线对比

    Figure  7.  Comparison of bending load displacement curves for HD and HP composites

    图  8  HD和HP复合材料的弯曲强度对比

    Figure  8.  Comparison of bending strength of HD and HP composites

    图  9  HD和HP复合材料的拉伸载荷位移曲线对比

    Figure  9.  Comparison of tensile load displacement curves for HD and HP composites

    图  10  HD和HP复合材料的拉伸强度对比

    Figure  10.  Comparison of tensile strength of HD and HP composites

    图  11  HD和HP复合材料的DSC曲线对比

    Figure  11.  Comparison of DSC curves of HD and HP composites

    图  12  HD和HP复合材料(a) TG, (b) DTG曲线对比

    Figure  12.  Comparison of (a) TG, (b) DTG curves of HD and HP composites

    图  13  (a) HD和(b) HP复合材料的宏观形貌对比

    Figure  13.  Comparison of macroscopic morphology of (a) HD and (b) HP composites

    图  14  HD复合材料的(a) 表面形貌,(b) 3D扫描轮廓图

    Figure  14.  (a) Surface morphology, (b) 3D scanning contour of HD composites

    图  15  HP复合材料的(a) 表面形貌,(b) 3D扫描轮廓图

    Figure  15.  (a) Surface morphology, (b) 3D scanning contour of HP composites

  • [1] PUGLIA D, LUZI F, TORRE L. Preparation and Applications of Green Thermoplastic and Thermosetting Nanocomposites Based on Nanolignin[J]. Polymers. 2022, 14(24): 5470: 1-15.
    [2] CAMPOS B M, BOURBIGOT S, FONTAINE G, et al. Thermoplastic matrix-based composites produced by resin transfer molding : A review[J]. Polymer Composites. 2022, 43(5): 2485-2506.
    [3] ALSHAMMARI B A, ALSUHYBANI M S, ALMUSHAIKEH A M, et al. Comprehensive Review of the Properties and Modifications of Carbon Fiber-Reinforced Thermoplastic Composites[J]. Polymers. 2021, 13(15): 2474: 1-32.
    [4] ALMUSHAIKEH A M, ALASWAD S O, ALSUHYBANI M S, et al. Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber : A review[J]. Polymers Testing. 2023, 122, 108029: 1-19.
    [5] AN W L, WANG X L, LIU X H, et al. Chemical recovery of thermosetting unsaturated polyester resins[J]. Green Chemistry, 2022, 24(2): 701-712. doi: 10.1039/D1GC03724B
    [6] KORKMAZ M, OKUR A. The review about the numerical modelling and analysis of 3D woven fabrics[J]. Journal of the Textile Institute, 2022, 114(3): 496-522.
    [7] GRIES T, BETTERMANN I, BLAUROCK C, et al. Aachen Technology Overview of 3D Textile Materials and Recent Innovation and Applications[J]. Applied Composite Materials, 2022, 29(1): 43-64. doi: 10.1007/s10443-022-10011-w
    [8] 李紫伦, 杨安坤, 覃小红, 等. 三维编织玻璃纤维/环氧树脂复合材料薄壁管轴向压缩性能的温度效应[J]. 复合材料学报, 2023, 40(10): 5588-5600.

    LI Zilun, YANG Ankun, QIN Xiaohong, et al. Temperature effect on axial compressive properties of three-dimensional glass fiber/epoxy resin braided composite thin-walled tubes[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5588-5600(in Chinese).
    [9] GU Q J, QUAN Z Z, SHEN M D, et al. Fabrication and braiding angle effect on the improved interlaminar shear performances of 3D braided sandwich hybrid composites[J]. Journal of Materials Research and Technology-Jmr& T, 2023, 25: 5795-5806.
    [10] ZHANG D, ZHENG X T, WANG Z B, et al. Effects of braiding architectures on damage resistance and damage tolerance behaviors of 3D braided composites[J]. Composite Structures, 2020, 232,111565: 1-24.
    [11] KANAKANNAVAR S, PITCHAIMANI J, RAMESH M R. Tribological behaviour of natural fibre 3D braided woven fabric reinforced PLA composites[J]. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology, 2021, 235(7): 1353-1364. doi: 10.1177/1350650120954949
    [12] 俞锐晨, 姜金华, 朱晓锦, 等. 航空发动机复合材料叶片先进制造技术研究进展[J]. 科技导报. 2023, 41(05): 27-33.

    YU Haochen, JIANG Jinhua, ZHU Xiaojin, et al Research Progress on Advanced Manufacturing Technology of Aero-engine Composite Blades[J]. Science& Technology Review, 2023, 41(05): 27-33(in Chinese).
    [13] EL-DESSOUKY H M, LIU B, SALEH M N, et al. Co-woven carbon and nylon fibres for manufacturing thermoplastic composite plaques[J]. 2Nd Cirp Conference On Composite Material Parts Manufacturing, 2019, 85: 272-276.
    [14] MA J, XUE Y Z B, LIANG X Y, et al. Bi-directional regulatable mechanical properties of 3D braided Polyetheretherketone (PEEK)[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 103,109811: 1-9.
    [15] GHAEDSHARAF M, BRUNEL J, LEBEL L L. Multiscale numerical simulation of the forming process of biaxial braids during thermoplastic braid-trusion: Predicting 3D and internal geometry and fiber orientation distribution[J]. Composites Part a-Applied Science and Manufacturing. 2021, 150: 106637: 1-15.
    [16] WU S H, LIU J, CAI J Y, et al. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles[J]. Biofabrication. 2021, 13(4): 045018: 1-17.
    [17] DEBBABI F, ABDESSALEM S B. Impact of hot-stretching treatment on physical and mechanical properties of braided polyamide suture[J]. Textile Research Journal, 2016, 86(7): 696-709. doi: 10.1177/0040517514566108
    [18] CAI H, MENG J, LI X, et al. In vitro degradation behavior of Mg wire/poly ( lactic acid ) composite rods prepared by hot pressing and hot drawing[J]. Acta Biomaterialia, 2019, 98: 125-141. doi: 10.1016/j.actbio.2019.05.059
    [19] HUANG T, WANG Y L, WANG G. Review of the Mechanical Properties of a 3D Woven Composite and Its Applications[J]. Polymer-Plastics Technology and Engineering, 2018, 57(8): 740-756. doi: 10.1080/03602559.2017.1344857
    [20] American Society for Testing Materials. Standard test method for short beam shear strength of polymer matrix composites and their laminates: ASTM/D 2344-2016[S]. West Conshohocken, PA: American Society for Testing Materials, 2016.
    [21] American Society for Testing Materials. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials: ASTM/D 7264-2015[S]. West Conshohocken, PA: American Society for Testing Materials, 2015.
    [22] American Society for Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM/D 3039[S]. West Conshohocken, PA: American Society for Testing Materials, 2017.
    [23] KASHIF M, HAMDANI S T, ZUBAIR M, et al. Effect of interlocking pattern on short beam strength of 3D woven composites[J]. Journal of Composite Materials, 2018, 53(20): 2789-2799.
    [24] LI Z X, GUO L C, ZHANG L, et al. In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites[J]. Composites Science and Technology, 2018, 162: 101-109. doi: 10.1016/j.compscitech.2018.04.024
    [25] ZHU L, LYU L, ZHANG X, et al. Bending Properties of Zigzag-Shaped 3D Woven Spacer Composites: Experiment and FEM Simulation[J]. Materials, 2019, 12(7): 1075. doi: 10.3390/ma12071075
    [26] LI P, MA J, HE L, et al. Pultrusion preparation and properties of continuous glass fiber reinforced polylactic acid thermoplastic composites[J]. Journal of Applied Polymer Science. 2023, 140(33): e54292: 1-15.
    [27] YILMAZ E, ALTAS S. Development of 3D hollow woven fabrics with superior mechanical properties by using nitinol and steel wire core hybrid yarns[J]. Journal of Industrial Textiles. 2023, 53: 1528083720968833: 1-38.
    [28] JAYSWAL A, ADANUR S. Characterization of PLA/TPU composite filaments manufactured for 3D printing with FDM[J]. Journal of Thermoplastic Composite Materials, 2023, 36(4): 1450-1471. doi: 10.1177/08927057211062561
    [29] JAYSWAL A, ADANUR S. Effect of heat treatment on crystallinity and mechanical properties of flexible structures 3D printed with fused deposition modeling[J]. Journal of Industrial Textiles, 2022, 51(2S): 2616S-2641S.
    [30] ZHANG M, SUN S, LIU J, et al. Recycling polypropylene from non-woven disposable masks in developing a three-dimensional printing filament[J]. Textile Research Journal, 2023, 93(11-12): 2789-2808. doi: 10.1177/00405175221147722
  • 加载中
计量
  • 文章访问数:  107
  • HTML全文浏览量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-04-13
  • 录用日期:  2024-04-21
  • 网络出版日期:  2024-05-24

目录

    /

    返回文章
    返回