留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反蛋白石结构的功能型材料制备及其在水处理领域的研究进展

李菁 唐新军 黄勇

李菁, 唐新军, 黄勇. 基于反蛋白石结构的功能型材料制备及其在水处理领域的研究进展[J]. 复合材料学报, 2024, 41(8): 4004-4025. doi: 10.13801/j.cnki.fhclxb.20240315.001
引用本文: 李菁, 唐新军, 黄勇. 基于反蛋白石结构的功能型材料制备及其在水处理领域的研究进展[J]. 复合材料学报, 2024, 41(8): 4004-4025. doi: 10.13801/j.cnki.fhclxb.20240315.001
LI Jing, TANG Xinjun, HUANG Yong. Research progress in the preparation and application of functional materials based on inverse opal structure in water treatment fields[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4004-4025. doi: 10.13801/j.cnki.fhclxb.20240315.001
Citation: LI Jing, TANG Xinjun, HUANG Yong. Research progress in the preparation and application of functional materials based on inverse opal structure in water treatment fields[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4004-4025. doi: 10.13801/j.cnki.fhclxb.20240315.001

基于反蛋白石结构的功能型材料制备及其在水处理领域的研究进展

doi: 10.13801/j.cnki.fhclxb.20240315.001
基金项目: 新疆维吾尔自治区重点研发计划项目(2022B01036)
详细信息
    通讯作者:

    黄勇,博士,副教授,硕士生导师,研究方向为表面工程 E-mail: lishi182@163.com

  • 中图分类号: TB34;TB332

Research progress in the preparation and application of functional materials based on inverse opal structure in water treatment fields

Funds: Xinjiang Uygur Autonomous Region Key Research and Development Project (2022B01036)
  • 摘要: 反蛋白结构(IO)是光子晶体的一种典型的空间结构构型。IO除了具有相互连通、高度规整有序的均孔结构外,还具有光子晶体的慢光效应、多次散射效应和放大光子吸收、发射的特性等。近年来,对IO的应用包括均孔膜、光子墨水、电池电极、传感器等。本文首先简述了IO的构建策略,分为“三步法”和“两步法”。进而详细总结了IO在水处理领域的研究进展,包括过滤筛分、高效吸附、催化降解、水质检测4个方面。最后,对IO材料在水处理领域中现有的局限性和未来的发展趋势进行了阐述和展望。

     

  • 图  1  反蛋白石(IO)的“蜂巢”结构[14]

    Figure  1.  The "honeycomb" structure of inverse opal (IO)[14]

    图  2  用不同粒径的胶体粒子制备的反蛋白石膜[15]

    Figure  2.  Inverse opal films prepared from colloidal particles of different particle sizes[15]

    图  3  反蛋白石结构、光子禁带和光学性能[22-23]

    X, U, L, T, W, K—Different states of electrons

    Figure  3.  Inverse opal structure, photonic band-gap and optical properties[22-23]

    图  4  三步法(a)、两步法(b)制备反蛋白石结构的示意图

    Figure  4.  Preparation of inverse opal films by the three-step method (a) and the two-step method (b)

    图  5  单分散微球自组装的常见方法[72]

    Figure  5.  Common methods for self-assembly of monodisperse microspheres[72]

    图  6  液体在反蛋白石结构中的传输过程示意图[41]

    Figure  6.  Schematic diagram of liquid transport in inverse opal structure[41]

    图  7  示踪剂在反蛋白结构中的运动行为[100]:(a)在一个大孔内;(b)在2~3个大孔内

    Figure  7.  Movement behavior of tracers in inverse opal structure[100]: (a) In one large hole; (b) In 2-3 large holes

    图  8  (a) 胶体晶体模板中SiO2颗粒直径与IO膜中“较小”孔径之间的关系;(b) 使用375 nm、440 nm和835 nm SiO2颗粒制备的IO膜的纯水通量[30]

    Figure  8.  (a) Relationship between the diameter of SiO2 particles in the colloidal crystal template and the "smaller" pore size in the IO film; (b) Deionized water fluxes for membranes fabricated using 375 nm, 440 nm and 835 nm silica particles[30]

    图  9  (a)具有嵌套结构的IO膜[103];(b)具有二级结构的IO膜[104]

    Figure  9.  (a) IO membrane with embedded structure[103]; (b) IO membranes with secondary structures[104]

    图  10  (a)二元有序蛋白石模板及由其制备的IO膜[83];(b)具有“漏勺状”孔结构的IO膜[105]

    Figure  10.  (a) Binary ordered opal templates and IO membranes[83]; (d) IO membranes with a "colander-like" pore structure[105]

    图  11  (a)基于电化学制备的铜反蛋白石膜[108];(b)具有疏水/疏油性质的反蛋白石结构膜[78]

    PFOPA—1H, 1H, 2H, 2H-perfluorooctane-phosphonic acid

    Figure  11.  (a) Copper IO membranes based on electrochemistry[108]; (b) IO membranes with hydrophobic and oleophobic properties[78]

    图  12  基于反蛋白石结构的一体式过滤器[34]

    EDA—Electron donor-acceptor

    Figure  12.  One-piece filter based on inverse opal structure[34]

    图  13  (a) 黑磷纳米粒子(BPQDs)-IO TiO2的构筑和光催化性能[115];(b) 引入嵌段聚合物制备分级3D介孔TiO2 IO (3D-HPT)及对染料的催化降解性能[16]

    NHE—Normal hydrogen electrode; P25—Commercially P25 TiO2 powders; kapp—The apparent kinetic constants; 3DOM—Three-dimensional macro-porous; P123—Pluronic P123 (PEG-PPG-PEG), a versatile tri-block copolymer; MO—Methylorange; MB—Methylene blue; RhB—Rhodamine B; X3B—Reactive brilliant red; 3D-T—Conventional three-dimensional macro-porous TiO2; 3D-HPT—Three-dimensional hierarchical mesoporous structures of TiO2

    Figure  13.  (a) Construction and photocatalytic performance of black phosphorus nanoparticles (BPQDs)-IO TiO2[115]; (b) Preparation of the hierarchical 3D macro-porous TiO2 IO by introducing block polymers (3D-HPT) and its catalytic degradation performance of dyes[16]

    图  14  (a) 氧化石墨烯纳米胶粒表面功能化的TiO2反蛋白石膜 (nano GO-PC)[17];(b) 空心半球形结构Si掺杂TiO2 (HHS-Si/TiO2)的构筑策略和催化性能[35]

    TiO2 IO are named as PC220, PC350, PC425 and PC510, according to the diameter of the PS colloidal sphere; PCmix stands for the disordered TiO2 IO; P25 denote the commercially P25 TiO2 powders; k—The apparent rate constants; MB—Methylene blue; GO—Graphene oxide

    Figure  14.  (a) Graphene oxide nanocolloids (nano GO) surface-functionalized TiO2 IO[17]; (b) Construction strategy and catalytic performance of the hollow hemispherical structured Si-doped TiO2 (HHS-Si/TiO2)[35]

    图  15  反蛋白石结构的S型异质结−Ag/ZnO/CeO2 IO的构建策略及对染料的催化降解性能[113]

    SM—Styrene; AA—Methacrylic acid; KPS—Potassium persulfate; Ag NPs—Ag nanoparticles; Selt—Blank experiments; C0, C—Initial (t = 0) and residual (t time) concentrations of RhB

    Figure  15.  Construction strategy and catalytic degradation performance of dyes of S-type heterojunction—Ag/ZnO/CeO2 IO[113]

    图  16  (a) 漆酶固定的反蛋白石水凝胶(LAC@MPEGDA@CS@IOH)的制备[25];(b)氧化锌负载苯胺黑-聚偏氟乙烯反蛋白石(ZnO/AB-PVDF IO)的制备策略及光催化性能的增强[112]

    Figure  16.  (a) Preparation of immobilization of laccase on the poly(ethylene glycol) diacrylate (PEGDA)–chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH) and their catalytic degradation performance of bisphenol contaminants[25]; (b) Preparation strategy and photocatalytic performance of ZnO/the aniline black-poly(vinylidene fluoride) (AB-PVDF) IO[112]

    图  17  (a)合成反蛋白石金属有机框架(IO MOF)的通用策略和对4-硝基苯酚(4-NP)的水解速率[20];(b)基于多巴胺层原位生长银纳米粒子(Ag NPs)的IO膜[18]

    DMF—Dimethyl fumarate; PS—Polystyrene; PVP—Polyvinyl pyrrolidone; PCN-777—A zeo type mesoporous Zr-containing MOF; MOD-808, PCN-777, UN-1200, NU-1000, UiO-6—A series of inverse opal zirconium-based MOFs with intrinsic micro- and/or meso-pores; IO+MOFs—MOFs material with inverse opal structure; ZrO2—Commercial ZrO2 powder; Active C—Activated carbon

    Figure  17.  (a) General strategy for the synthesis of inverse opal metal-organic frameworks (IO MOFs) and hydrolysis of 4-nitrophenol (4-NP) [20]; (b) IO membranes based on dopamine layer-based in-situ growth of Ag nanoparticles (Ag NPs) [18]

    图  18  负载酞菁铜的聚(丙烯酰胺-丙烯酸共聚物)水凝胶反蛋白石珠(CuPc-PACA HIOBs)的制备 [114]

    PACA—Poly(acrylamide-co-acrylic acid); CuPc—Copper phthalocyanine

    Figure  18.  Preparation of the poly(acrylamide-acrylic copolymer) hydrogel inverse opal beads loaded with CuPc (CuPc-PACA HIOBs)[114]

    图  19  (a) 用于水中Hg(II)浓度可视化检测的反蛋白石聚合光子晶体 (IOPPC) [40];(b) 用于Cr(VI)检测的壳聚糖反蛋白石颗粒(IOP)[119];(c) 用于水中乙醇浓度检测的新型聚醚砜/聚丙烯酸反蛋白石光子晶体[121]

    CS—Chitosan; PEGDA—Polyethylene glycol diacrylate; c[Cr(VI)]—The concentration of Cr(VI); t—Response time; R2—Coefficient of determination; K=(λ1λion)/(λ1λ0), where λ0 is the original peak position of the IOPPCs, λ1 is the peak position of the IOPPCs immersed in the solution of urea with urease, λion is the peak position of the IOPPCs after adding various metal ions; IOPPCs means the pH-sensitive inverse opal polymeric photonic crystals

    Figure  19.  (a) Inverse opal polymeric photonic crystals (IOPPCs) for visual detection of Hg(II) concentrations in water[40]; (b) Chitosan inverse opal particles (IOPs) for Cr(VI) detection[119]; (c) Novel polyethersulfone/polyacrylic acid inverse opal photonic crystals for the detection of ethanol concentration in water[121]

  • [1] SLATER A G, COOPER A I. Function-led design of new porous materials[J]. Science, 2015, 348(6238): aaa8075.
    [2] 邓诗琴, 赵春霞, 向东, 等. 乳液模板法制备油水分离用多孔材料研究进展[J]. 应用化工, 2021, 50(S1): 292-296. doi: 10.3969/j.issn.1671-3206.2021.z1.060

    DENG Shiqin, ZHAO Chunxia, XIANG Dong, et al. Progress of porous materials for oil-water separation by emulsion template method[J]. Applied Chemical Industry, 2021, 50(S1): 292-296. doi: 10.3969/j.issn.1671-3206.2021.z1.060
    [3] 颜肖潇. Pickering乳液凝胶模板法制备多孔材料及其在太阳能界面蒸发中的应用研究[D]. 杭州: 浙江大学, 2022.

    YAN Xiaoxiao. Application in solar interfacial evaporation gel-templated porous materials and preparation of attractive pickering emulsion[D]. Hangzhou: Zhejiang University, 2022(in Chinese).
    [4] GUPTA A D, KIRTI N, KATIYAR P, et al. A critical review on three-dimensional cellulose-based aerogels: Synthesis, physico-chemical characterizations and applications as adsorbents for heavy metals removal from water[J]. Cellulose, 2023, 30(6): 3397-3427.
    [5] JIANG F, HSIEH Y L. Cellulose nanofibril aerogels: Synergistic improvement of hydrophobicity, strength, and thermal stability via cross-linking with diisocyanate[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2825-2834.
    [6] ZHAO X, SU Y, CAO J, et al. Fabrication of antifouling polymer-inorganic hybrid membranes through the synergy of biomimetic mineralization and nonsolvent induced phase separation[J]. Journal of Materials Chemistry A, 2015, 3(14): 7287-7295.

    ZHAO X, SU Y, CAO J, et al. Fabrication of antifouling polymer-inorganic hybrid membranes through the synergy of biomimetic mineralization and nonsolvent induced phase separation[J]. Journal of Materials Chemistry A, 2015, 3(14): 7287-7295.
    [7] 陈文娟. 抗污染自清洁膜表面的仿生构建及油水分离过程强化研究[D]. 天津: 天津大学, 2012.

    CHEN Wenjuan. Bioinspired construction of antifouling and self-cleaning membrane surfaces and process intensification for oil/water separation[D]. Tianjin: Tianjin University, 2012(in Chinese).
    [8] 刘媛. 基于表面偏析功能化超滤膜的制备及其性能研究[D]. 天津: 天津大学, 2015.

    LIU Yuan. Study on the performance of functional ultrafiltration membranes fabricated by surface segregation[D]. Tianjin: Tianjin University, 2015(in Chinese).
    [9] 陈赛赛. 铜MOFs及其衍生多孔材料对水中磺胺及对乙酰氨基酚的电化学分析性能[D]. 南京: 南京理工大学, 2022.

    CHEN Saisai. Copper MOFs and their derived porous materials for electrochemical analysis of sulfanilamide and acetaminophen in water[D]. Nanjing: Nanjing University of Science and Technology, 2022(in Chinese).
    [10] 王东东. 锆基金属有机框架对水中染料的吸附性能研究[D]. 上海: 东华大学, 2023.

    WANG Dongdong. Study on adsorption performance of zirconium-based metal organic framework for dyes in water[D]. Shanghai: Donghua University, 2023(in Chinese).
    [11] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.
    [12] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.
    [13] CAI Z, LI Z, RAVAINE S, et al. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications[J]. Chemical Society Reviews, 2021, 50(10): 5898-5951.
    [14] 何文玉, 马万彬, 向娇娇, 等. 基于反蛋白石结构的功能性薄膜制备及应用研究进展[J]. 复合材料学报, 2022, 39(6): 2556-2570.

    HE Wenyu, MA Wanbin, XIANG Jiaojiao, et al. Research progress in preparation and application of functional films based on inverse opal structure[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2556-2570(in Chinese).
    [15] PHILLIPS K R, SHIRMAN T, AIZENBERG M, et al. Silica–titania hybrids for structurally robust inverse opals with controllable refractive index[J]. Journal of Materials Chemistry C, 2020, 8(1): 109-116.
    [16] POOLWONG J, KIATBOONYARIT T, ACHIWAWANICH S, et al. Three-dimensional hierarchical porous TiO2 for enhanced adsorption and photocatalytic degradation of remazol dye[J]. Nanomaterials, 2021, 11(7): 1715.
    [17] DIAMANTOPOULOU A, SAKELLIS E, ROMANOS G E, et al. Titania photonic crystal photocatalysts functionalized by graphene oxide nanocolloids[J]. Applied Catalysis B: Environmental, 2019, 240: 277-290.
    [18] CHOI G H, RHEE D K, PARK A R, et al. Ag nanoparticle/polydopamine-coated inverse opals as highly efficient catalytic membranes[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3250-3257.
    [19] SEN T, TIDDY G J T, CASCI J L, et al. One-pot synthesis of hierarchically ordered porous-silica materials with three orders of length scale[J]. Angewandte Chemie International Edition, 2003, 42(38): 4649-4653.
    [20] WANG C, ZHANG H, WANG Y, et al. A general strategy for the synthesis of hierarchically ordered metal-organic frameworks with tunable macro-, meso-, and micro-pores[J]. Small, 2023, 19(3): 2206116.
    [21] FAN S, HE W, LIU G, et al. Preparation of a new PVDF membrane with inverse opal structure for high-precision separation[J]. Journal of Industrial and Engineering Chemistry, 2023, 129: 211-226.
    [22] GAILLOT D P, SUMMERS C J. Atomic layer deposition of nanostructured materials[M]. Hoboken: John Wiley & Sons, Ltd, 2011: 345-376.
    [23] FREYMANN G V, KITAEV V, LOTSCH B V, et al. Bottom-up assembly of photonic crystals[J]. Chemical Society Reviews, 2013, 42(7): 2528-2554.
    [24] 李会鹏, 孙新宇, 赵华, 等. 反蛋白石结构光催化剂的制备与应用进展[J]. 分子催化, 2021, 35(1): 65-75.

    LI Huipeng, SUN Xinyu, ZHAO Hua, et al. Preparation and application of inverse opal photocatalyst[J]. Journal of Molecular Catalysis, 2021, 35(1): 65-75(in Chinese).
    [25] AGUIRRE C I, REGUERA E, STEIN A. Tunable colors in opals and inverse opal photonic crystals[J]. Advanced Functional Materials, 2010, 20(16): 2565-2578.
    [26] DU M, LIU J, WANG Q, et al. Immobilization of laccase on magnetic PEGDA-CS inverse opal hydrogel for enhancement of bisphenol A degradation in aqueous solution[J]. Journal of Environmental Sciences, 2023, 147: 74-82.
    [27] CAI Z, XIONG Z, LU X, et al. In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity[J]. Journal of Materials Chemistry A, 2013, 2(2): 545-553.
    [28] 张萱, 韩异祥. 现代膜技术与水处理工艺[M]. 北京: 化学工业出版社, 2013: 99-184.

    ZHANG Xuan, HAN Yixiang. Modern membrane technology and water treatment process[M]. Beijing: Chemical Industry Press, 2013: 99-184(in Chinese).
    [29] WANG X, HUSSON S M, QIAN X, et al. Inverse colloidal crystal ultrafiltration membranes[J]. Separation and Purification Technology, 2012, 93: 33-41.
    [30] WANG X, HUSSON S M, QIAN X, et al. Inverse colloidal crystal microfiltration membranes[J]. Journal of Membrane Science, 2010, 365(1): 302-310.
    [31] HE W Y, FAN S, LIU G J, et al. Preparation and properties of poly (vinylidene fluoride) membrane with inverse opal-like structure[J]. Separation and Purification Technology, 2023, 306: 122446. doi: 10.1016/j.seppur.2022.122446
    [32] WANG X, GUO Y, NAN X, et al. Preparation of inverse opal adsorbent by water-soluble colloidal crystal template to obtain ultrahigh adsorption capacity for salicylic acid removal from aqueous solution[J]. Journal of Hazardous Materials, 2019, 371: 362-369. doi: 10.1016/j.jhazmat.2019.03.020
    [33] MARTÍNEZ M G A, BUENO J DE J P, REZA E M, et al. Lead adsorption in manganese oxides as powders and coatings supported on silica gel beads and tin inverse opal-like structures[J]. Current Analytical Chemistry, 2021, 17(6): 831-838.
    [34] KIM H J, HAN G S, KIM J, et al. Inverse opal-structured all-in-one water purification filter designed for the effective removal of multi-pollutants[J]. Journal of Water Process Engineering, 2023, 52: 103496.
    [35] ZHOU Y, ZHANG H, WU L, et al. Hollow hemispherical Si-doped anatase for efficient carbamazepine degradation via photocatalytic activation of peroxymonosulfate[J]. Chemical Engineering Journal, 2023, 457: 141234.
    [36] BIRNAL P, MARCO DE LUCAS M C, POCHARD I, et al. Photocatalytic properties of atomic layer deposited TiO2 inverse opals and planar films for the degradation of dyes[J]. Applied Surface Science, 2020, 512: 145693.
    [37] ZHANG Y, WANG L, LIU D, et al. Morphology effect of honeycomb-like inverse opal for efficient photocatalytic water disinfection and photodegradation of organic pollutant[J]. Molecular Catalysis, 2018, 444: 42-52. doi: 10.1016/j.mcat.2017.10.030
    [38] LI H, XU Z, SUN N. Porphyrin-infiltrated SiO2 inverse opal photonic crystal as fluorescence sensor for selective detection of trace mercury ion[J]. Optical Materials, 2021, 122: 111696. doi: 10.1016/j.optmat.2021.111696
    [39] 李巧荣. 罗丹明类衍生物填充的SiO2反蛋白石光子晶体荧光薄膜高效检测金属离子[D]. 西安: 延安大学, 2019.

    LI Qiaorong. Fluorescence film sensor for highly effective detection of metal ions based on Rhodamine derivative infiltrated SiO2 inverse opal photonic crystals[D]. Xi'an: Yan'an University, 2019(in Chinese).
    [40] LI L, DONG X, LIU Z, et al. Visual and ultrasensitive detection of mercury ions based on urease catalysis and responsive photonic crystals[J]. Dyes and Pigments, 2021, 195: 109676. doi: 10.1016/j.dyepig.2021.109676
    [41] YEO S J, CHOI G H, YOO P J. Multiscale-architectured functional membranes utilizing inverse opal structures[J]. Journal of Materials Chemistry A, 2017, 5(33): 17111-17134. doi: 10.1039/C7TA05033J
    [42] LAMER V K. Model of nanocrystal formation in solution by burst nucleation and diffusional growth[J]. Industrial and Engineering Chemistry Research, 1952, 44: 1270-1280.
    [43] JEONG U, WANG Y, IBISATE M, et al. Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres[J]. Advanced Functional Materials, 2005, 15(12): 1907-1921.
    [44] WANG Y, YU Y, GUO J, et al. Bio-inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics[J]. Advanced Functional Materials, 2020, 30(32): 2000151.
    [45] LIU J, WAN L, ZHANG M, et al. Electrowetting-induced morphological evolution of metal-organic inverse opals toward a water-lithography approach[J]. Advanced Functional Materials, 2017, 27(7): 1605221. doi: 10.1002/adfm.201605221
    [46] DIAO Y Y, LIU X Y, TOH G W, et al. Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing[J]. Advanced Functional Materials, 2013, 23(43): 5373-5380.
    [47] HAN D, LI Q, WANG E, et al. The evolution of NiMo unsupported catalysts with 3DOM structure for thiophene hydrodesulfurization[J]. Catalysis Today, 2022, 405-406: 329-336.
    [48] SHI T, CHEN Z, XU J, et al. Research on factors of influencing the preparation of 2D/3D poly(methyl methacrylate) (PMMA) colloidal crystal films at the air/water interface[J]. Journal of Dispersion Science and Technology, 2020, 41(8): 1246-1253.
    [49] CAO Y, CHEN Y, LIU N, et al. Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation[J]. Journal of Materials Chemistry A, 2014, 2(48): 20439-20443. doi: 10.1039/C4TA05075D
    [50] HAN Y, LU Z, TENG Z, et al. Unraveling the growth mechanism of silica particles in the Stöber method: In situ seeded growth model[J]. Langmuir, 2017, 33(23): 5879-5890.

    HAN Y, LU Z, TENG Z, et al. Unraveling the growth mechanism of silica particles in the Stöber method: In situ seeded growth model[J]. Langmuir, 2017, 33(23): 5879-5890.
    [51] MING W, WU D, VAN BENTHEM R, et al. Superhydrophobic films from raspberry-like particles[J]. Nano Letters, 2005, 5(11): 2298-2301. doi: 10.1021/nl0517363
    [52] 张琦. 单分散功能聚合物微球的研究[D]. 天津: 天津大学, 2010.

    ZHANG Qi. A study of functional monodisperse polymer microspheres[D]. Tianjin: Tianjin University, 2010(in Chinese).
    [53] SU X, XIA H, ZHANG S, et al. Vivid structural colors with low angle dependence from long-range ordered photonic crystal films[J]. Nanoscale, 2017, 9(9): 3002-3009. doi: 10.1039/C6NR07523A
    [54] SU X, JIANG Y, SUN X, et al. Fabrication of tough photonic crystal patterns with vivid structural colors by direct handwriting[J]. Nanoscale, 2017, 9(45): 17877-17883. doi: 10.1039/C7NR06570A
    [55] LUO H, YANG H, ZHANG M, et al. The fabrication of full chromatography SiO2@PDA photonic crystal structural colored fabric with high thermal stability[J]. Coatings, 2022, 12(8): 1085. doi: 10.3390/coatings12081085
    [56] LIU P, SHENG T, XIE Z, et al. Robust, highly visible, and facile bioconjugation colloidal crystal beads for bioassay[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29378-29384.
    [57] LIU P, CHEN J, ZHANG Z, et al. Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays[J]. Nanoscale, 2018, 10(8): 3673-3679. doi: 10.1039/C7NR08056E
    [58] LI P, LU Z, MA K, et al. UV-triggered self-healing SiO2/PDA hybrid microcapsules with both enhanced UV-shielding ability and improved compatibility for epoxy resin coating[J]. Progress in Organic Coatings, 2022, 163: 106636. doi: 10.1016/j.porgcoat.2021.106636
    [59] 何圣超. 贵金属@SiO2核壳结构材料的制备及其催化性能研究[D]. 南京: 南京大学, 2012.

    HE Shengchao. Noble metal@SiO2 core-shell nanoparticles: Synthesis and application as catalysts[D]. Nanjing: Nanjing University, 2012(in Chinese).
    [60] LI Y, WANG X, HU M, et al. Patterned SiO2/polyurethane acrylate inverse opal photonic crystals with high color saturation and tough mechanical strength[J]. Langmuir, 2019, 35(44): 14282-14290. doi: 10.1021/acs.langmuir.9b02485
    [61] LI H, WANG J, YANG L, et al. Superoleophilic and superhydrophobic inverse opals for oil sensors[J]. Advanced Functional Materials, 2008, 18(20): 3258-3264. doi: 10.1002/adfm.200800507
    [62] 刘震东. 光子带隙调制光物理过程的研究[D]. 北京: 清华大学, 2013.

    LIU Zhendong. Research on the photophysical process modulated by the photonic band gap[D]. Beijing: Tsinghua University, 2013(in Chinese).
    [63] 王金权. 反蛋白石结构光子晶体材料制备及性能研究[D]. 扬州: 扬州大学, 2015.

    WANG Jinquan. Preparation and properties of inverse opals structured photonic crystal materials[D]. Yangzhou: Yangzhou University, 2015(in Chinese).
    [64] LEE W, BRAUN P V. Epitaxially grown colloidal crystals of silica microspheres on patterned substrate of triangular arrays[J]. Materials Science and Engineering: C, 2007, 27(5): 961-967.
    [65] LAI C F, WANG Y C. Colloidal photonic crystals containing silver nanoparticles with tunable structural colors[J]. Crystals, 2016, 6(5): 61. doi: 10.3390/cryst6050061
    [66] MA C, JIANG Y, YANG X, et al. Centrifugation-induced water-tunable photonic colloidal crystals with narrow diffraction bandwidth and highly sensitive detection of SCN[J]. ACS Applied Materials & Interfaces, 2013, 5(6): 1990-1996.
    [67] HUA C, XU H, ZHANG P, et al. Process optimization and optical properties of colloidal self-assembly via refrigerated centrifugation[J]. Colloid and Polymer Science, 2017, 295(9): 1655-1662. doi: 10.1007/s00396-017-4121-x
    [68] FAN W, CHEN M, YANG S, et al. Centrifugation-assisted assembly of colloidal silica into crack-free and transferrable films with tunable crystalline structures[J]. Scientific Reports, 2015, 5(1): 1-10. doi: 10.9734/JSRR/2015/14076
    [69] RAN L, QIU S, ZHAI P, et al. Conformal macroporous inverse opal oxynitride-based photoanode for robust photoelectrochemical water splitting[J]. Journal of the American Chemical Society, 2021, 143(19): 7402-7413. doi: 10.1021/jacs.1c00946
    [70] CHEN L Y, LAI C H, WU P W, et al. Electrowetting of superhydrophobic ZnO inverse opals[J]. Journal of the Electrochemical Society, 2011, 158(8): P93. doi: 10.1149/1.3594723
    [71] MÍGUEZ H, YANG S M, OZIN G A. Colloidal photonic crystal microchannel array with periodically modulated thickness[J]. Applied Physics Letters, 2002, 81(14): 2493-2495. doi: 10.1063/1.1510959
    [72] VELEV O D, LENHOFF A M. Colloidal crystals as templates for porous materials[J]. Current Opinion in Colloid & Interface Science, 2000, 5(1-2): 56-63.
    [73] CHEN K, JIA J, ZHAO Y, et al. Transparent smart surface with pH-induced wettability transition between superhydrophobicity and underwater superoleophobicity[J]. Materials & Design, 2017, 135: 69-76.
    [74] PHAM K, PELISSET S, KINNUNEN N, et al. Controlled photocatalytic activity of TiO2 inverse opal structures with atomic layer deposited (ALD) metal oxide thin films[J]. Materials Chemistry and Physics, 2022, 277: 125533. doi: 10.1016/j.matchemphys.2021.125533
    [75] QI Y, ZHOU C, QIU Y, et al. Biomimetic Janus photonic soft actuator with structural color self-reporting[J]. Materials Horizons, 2022, 9(4): 1243-1252. doi: 10.1039/D1MH01693H
    [76] AI M, WANG Z, CHEN X, et al. Multi-color inkless UV printing using angle-independent structural color paper[J]. Journal of Materials Chemistry C, 2022, 10(43): 16446-16452. doi: 10.1039/D2TC03370D
    [77] ZHOU S, TANG R, ZHANG L, et al. Au nanoparticles coupled three-dimensional macroporous BiVO4/SnO2 inverse opal heterostructure for efficient photoelectrochemical water splitting[J]. Electrochimica Acta, 2017, 248: 593-602. doi: 10.1016/j.electacta.2017.07.058
    [78] DOUGLAS L D, O’LOUGHLIN T E, CHALKER C J, et al. Three-dimensional inverse opal TiO2 coatings to enable the gliding of viscous oils[J]. Energy & Fuels, 2020, 34(11): 13606-13613.
    [79] YANG T, XUE J, TAN H, et al. Highly ordered ZnO/ZnFe2O4 inverse opals with binder-free heterojunction interfaces for high-performance photoelectrochemical water splitting[J]. Journal of Materials Chemistry A, 2018, 6(3): 1210-1218. doi: 10.1039/C7TA07798J
    [80] ZHOU Q, XU L, KAN Z, et al. A multi-platform sensor for selective and sensitive H2S monitoring: Three-dimensional macroporous ZnO encapsulated by MOFs with small Pt nanoparticles[J]. Journal of Hazardous Materials, 2022, 426: 128075. doi: 10.1016/j.jhazmat.2021.128075
    [81] YANG S, SUN J, XU L, et al. Au@ZnO functionalized three–dimensional macroporous WO3: A application of selective H2S gas sensor for exhaled breath biomarker detection[J]. Sensors and Actuators B: Chemical, 2020, 324: 128725. doi: 10.1016/j.snb.2020.128725
    [82] LYTLE J C, STEIN A. Recent progress in syntheses and applications of inverse opals and related macroporous materials prepared by colloidal crystal templating[J]. Annual Review of Nano Research, 2006, 1: 1-79.
    [83] WANG J, AHL S, LI Q, et al. Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition[J]. Journal of Materials Chemistry, 2008, 18(9): 981.
    [84] WANG D, SALGUEIRIÑO-MACEIRA V, LIZ-MARZÁN L M, et al. Gold-silica inverse opals by colloidal crystal templating[J]. Advanced Materials, 2002, 14(12): 908. doi: 10.1002/1521-4095(20020618)14:12<908::AID-ADMA908>3.0.CO;2-1
    [85] BRINKER C J, LU Y, SELLINGER A, et al. Evaporation-induced self-assembly: Nanostructures made easy[J]. Advanced Materials, 1999, 11(7): 579-585. doi: 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
    [86] SEL O, SALLARD S, BREZESINSKI T, et al. Periodically ordered meso- and macroporous SiO2 thin films and their induced electrochemical activity as a function of pore hierarchy[J]. Advanced Functional Materials, 2007, 17(16): 3241-3250. doi: 10.1002/adfm.200700079
    [87] ZHOU Y, WU X, ZHANG J, et al. In situ formation of tannic (TA)-aminopropyltriethoxysilane (APTES) nanospheres on inner and outer surface of polypropylene membrane toward enhanced dye removal capacity[J]. Chemical Engineering Journal, 2022, 433: 133843. doi: 10.1016/j.cej.2021.133843
    [88] REN Y, GUO J, LU Q, et al. Polypropylene nonwoven fabric@poly(ionic liquid)s for switchable oil/water separation, dye absorption, and antibacterial applications[J]. ChemSusChem, 2018, 11(6): 1092-1098. doi: 10.1002/cssc.201702320
    [89] YANG J, YU T, WANG Z, et al. Substrate-independent multifunctional nanostructured coating for diverse wastewater treatment[J]. Journal of Membrane Science, 2022, 654: 120562. doi: 10.1016/j.memsci.2022.120562
    [90] YU H, ZHONG Q Z, LIU T G, et al. Surface deposition of juglone/Fe(III) on microporous membranes for oil/water separation and dye adsorption[J]. Langmuir, 2019, 35(10): 3643-3650. doi: 10.1021/acs.langmuir.8b03914
    [91] YAN L, YANG X, ZENG H, et al. Nanocomposite hydrogel engineered hierarchical membranes for efficient oil/water separation and heavy metal removal[J]. Journal of Membrane Science, 2023, 668: 121243. doi: 10.1016/j.memsci.2022.121243
    [92] ZHANG F, CUI P, ZHU L, et al. Construction of hydrophilic hydroxyl-rich porous organic polymers for efficient removal of heavy metal ions[J]. Inorganic Chemistry Communications, 2023, 153: 110821.
    [93] YUE X, LI Z, ZHANG T, et al. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications[J]. Chemical Engineering Journal, 2019, 364: 292-309. doi: 10.1016/j.cej.2019.01.149
    [94] ZHU B, KOU H, LIU Z, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014.
    [95] SALEEM H, TRABZON L, KILIC A, et al. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination[J]. Desalination, 2020, 478: 114178. doi: 10.1016/j.desal.2019.114178
    [96] LIU W, XIANG S, LIU X, et al. Underwater superoleophobic surface based on silica hierarchical cylinder arrays with a low aspect ratio[J]. ACS Nano, 2020, 14(7): 9166-9175. doi: 10.1021/acsnano.0c04670
    [97] WANG S, LIU Y, GE P, et al. Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio[J]. Lab on a Chip, 2018, 18(6): 979-988. doi: 10.1039/C7LC01326D
    [98] ALIZADEH A, RAZMJOU A, GHAEDI M, et al. Nanoporous solid-state membranes modified with multi-wall carbon nanotubes with anti-biofouling property[J]. International Journal of Nanomedicine, 2019, 14: 1669-1685. doi: 10.2147/IJN.S189728
    [99] ABD-ELNAIEM A M, MEBED A M, GABER A, et al. Tailoring the porous nanostructure of porous anodic alumina membrane with the impurity control[J]. Journal of Alloys and Compounds, 2016, 659: 270-278. doi: 10.1016/j.jallcom.2015.11.069
    [100] CHERDHIRANKORN T, RETSCH M, JONAS U, et al. Tracer diffusion in silica inverse opals[J]. Langmuir, 2010, 26(12): 10141-10146. doi: 10.1021/la1002572
    [101] VU A T, WANG X, WICKRAMASINGHE S R, et al. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography[J]. Journal of Separation Science, 2015, 38(16): 2819-2825. doi: 10.1002/jssc.201500295
    [102] KIM J H, KIM J H, CHOI K H, et al. Inverse opal-inspired, nanoscaffold battery separators: A new membrane opportunity for high-performance energy storage systems[J]. Nano Letters, 2014, 14(8): 4438-4448. doi: 10.1021/nl5014037
    [103] RHEE D K, JUNG B, KIM Y H, et al. Particle-nested inverse opal structures as hierarchically structured large-scale membranes with tunable separation properties[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 9950-9954.
    [104] RETSCH M, JONAS U. Hierarchically structured, double-periodic inverse composite opals[J]. Advanced Functional Materials, 2013, 23(43): 5381-5389. doi: 10.1002/adfm.201300803
    [105] KIM Y H, KANG H, PARK S, et al. Multiscale porous interconnected nanocolander network with tunable transport properties[J]. Advanced Materials, 2014, 26(47): 7998-8003. doi: 10.1002/adma.201402436
    [106] 李义臣. 柔性纺织基材表面结构生色光子晶体的稳定性及快速大面积组装研究[D]. 杭州: 浙江理工大学, 2021.

    LI Yichen. Study on the stability and rapid large-scale assembly of photonic crystals with structural color on flexible textile substrates[D]. Hangzhou: Zhejiang Sci-Tech University, 2021(in Chinese).
    [107] LIAN Z, ZHOU J, REN W, et al. Recent progress in bio-inspired macrostructure array materials with special wettability—From surface engineering to functional applications[J]. International Journal of Extreme Manufacturing, 2023, 6(1): 012008.
    [108] PHAM Q N, SHAO B, KIM Y, et al. Hierarchical and well-ordered porous copper for liquid transport properties control[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 16015-16023.
    [109] LIKODIMOS V. Photonic crystal-assisted visible light activated TiO2 photocatalysis[J]. Applied Catalysis B:Environmental, 2018, 230: 269-303. doi: 10.1016/j.apcatb.2018.02.039
    [110] 田云浩. 反蛋白石结构环境功能材料的制备及其在高级氧化技术中的应用[D]. 上海: 华东理工大学, 2022.

    TIAN Yunhao. Preparation of environmental functional materials with inverse opal structure and their applications in advanced oxidation processes[D]. Shanghai: East China University of Science and Technology, 2022(in Chinese).
    [111] PYLARINOU M, SAKELLIS E, TSIPAS P, et al. Mo-BiVO4/Ca-BiVO4 homojunction nanostructure-based inverse opals for photoelectrocatalytic pharmaceutical degradation under visible light[J]. ACS Applied Nano Materials, 2023, 6(8): 6759-6771. doi: 10.1021/acsanm.3c00469
    [112] CHEN Y, WANG Y, FANG J, et al. Design of a ZnO/poly (vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photo-catalysis[J]. Chinese Journal of Catalysis, 2021, 42(1): 184-192. doi: 10.1016/S1872-2067(20)63588-4
    [113] XU Z, WANG F, FENG L, et al. S-scheme Ag/ZnO/CeO2 inverse opal photonic crystals with enhanced photocatalytic properties[J]. Optical Materials, 2023, 139: 113770. doi: 10.1016/j.optmat.2023.113770
    [114] SHEN F, WANG J, WANG L, et al. Copper phthalocyanine modified hydrogel inverse opal beads for enhanced photocatalytic removal of dyes[J]. Journal of Materials Chemistry A, 2023, 11(19): 10195-10203. doi: 10.1039/D3TA00699A
    [115] SUN Q, ZHANG B, HE Y, et al. Design and synthesis of black phosphorus quantum dot sensitized inverse opal TiO2 photonic crystal with outstanding photocatalytic activities[J]. Applied Surface Science, 2023, 609: 155442. doi: 10.1016/j.apsusc.2022.155442
    [116] FU J, XU Q, LOW J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 243: 556-565. doi: 10.1016/j.apcatb.2018.11.011
    [117] XU Q, ZHANG L, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. doi: 10.1016/j.chempr.2020.06.010
    [118] SORDELLO F, MINERO C. Photocatalytic hydrogen production on Pt-loaded TiO2 inverse opals[J]. Applied Catalysis B: Environmental, 2015, 163: 452-458. doi: 10.1016/j.apcatb.2014.08.028
    [119] SU H, CHEN H, WEN B, et al. Chitosan-based fluorescent inverse opal particles for Cr(VI) sensing[J]. npj Clean Water, 2023, 6(1): 1-8. doi: 10.1038/s41545-022-00218-6
    [120] CHI C, BAI F, XU X, et al. Silica-templated photonic crystal sensors for specific detection of Cu2+[J]. Analyst, 2022, 147(15): 3486-3493.
    [121] HONGBO X, DAN L, SULI W, et al. H2O- and ethanol concentration-responsive polymer/gel inverse opal photonic crystal[J]. Journal of Colloid and Interface Science, 2022, 605: 803-812.
    [122] 李乐天. 响应型光子晶体珠用于金属离子检测及药物控释的研究[D]. 长沙: 湖南大学, 2022.

    LI Letian. Responsive photonic crystal beads for metal ion detection and research on controlled release of drugs[D]. Changsha: Hunan University, 2022(in Chinese).
    [123] 程栋梁. 基于反蛋白石大孔结构In2O3和SnO2的气体传感器研究[D]. 郑州: 郑州大学, 2022.

    CHENG Dongliang. Research of gas sensors based on indium oxide and tin oxide with inverse opal macroporous structures[D]. Zhengzhou: Zhengzhou University, 2022(in Chinese).
  • 加载中
图(19)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  127
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 修回日期:  2024-02-11
  • 录用日期:  2024-03-01
  • 网络出版日期:  2024-03-15
  • 刊出日期:  2024-08-15

目录

    /

    返回文章
    返回