Effect of High-Entropy Dodecaboride Reinforcements on the Properties of Magnesium Alloys
-
摘要: 海洋装备科技的飞速发展促使海洋装备轻量化需求不断增加。镁合金因比重小、比强度高和铸造性佳,在交通运输、航空航天等领域广泛应用,是极具潜力的材料。然而,其较低的硬度和较差的耐蚀性严重制约了在海洋环境中的应用。本研究以超硬的十二硼化物高熵陶瓷作为AZ31镁合金的增强相,制备了一系列不同增强相含量的复合材料,系统探讨高熵陶瓷相对AZ31镁合金组织和性能的影响。研究发现,经氢氟酸表面活化处理后,增强相与基体的结合性能得到改善。其中,2%经活化的高熵陶瓷增强相镁合金综合性能最佳,其自腐蚀电位提升至−1.398V,自腐蚀电流密度降至 49.58 μA/cm2,硬度提高到83.42 HV,屈服强度提升至52.17 MPa。Abstract: As the demand for lightweight marine equipment continues to grow, lightweight and high-strength magnesium alloy materials have shown broad application prospects in the field of marine equipment. However, magnesium alloys have relatively low hardness and poor corrosion resistance, which severely limits their application in marine environments. In this study, ultra-hard material high-entropy ceramics (high-entropy dodecaboride REB12, RE = Dy, Ho, Er, Tm, Lu) were used as reinforcement phases for AZ31 magnesium alloy to prepare composite materials with different mass percentage contents of high-entropy ceramic reinforcement phases. The influence of high-entropy ceramics on the microstructure and properties of AZ31 magnesium alloy was investigated. The results showed that the high-entropy ceramics did not react with the AZ31 magnesium alloy, and the combination performance between the reinforcement phase and the matrix was improved after hydrofluoric acid surface activation treatment of the high-entropy ceramics. After 2% activation treatment, the self-corrosion potential of the high-entropy ceramic reinforced magnesium alloy was increased to −1.398 V, the self-corrosion current density was reduced to 49.58 μA/cm2, the hardness was increased to 83.4 HV, and the yield strength was increased to 62.7 MPa, showing the best comprehensive performance.
-
糖尿病是一种严重威胁人类健康的慢性病。全球糖尿病患者人数从1980年的1.08亿增加到2023年的5.37亿。葡萄糖传感器在糖尿病的诊断和治疗中起着重要作用[1-3]。糖尿病患者要定期检测生理血糖水平,并将血糖水平维持在正常浓度范围内。而且,准确评价食品中的葡萄糖含量对维持糖尿病患者血液中葡萄糖的生理水平至关重要[4-5]。食品和饮料中葡萄糖含量的信息对生产者和消费者都有参考价值。葡萄糖检测在葡萄酒酿造工艺和乳制品工业的发酵过程中是至关重要的[4-5]。迄今为止,检测葡萄糖的方法很多。在各种分析方法中,电化学葡萄糖传感器具有灵敏度高、选择性好、操作简单、成本低等优点,并能实现自我监控和床边血糖检测[5-8]。基于酶的电化学葡萄糖传感器已经商业化并取得了巨大的成功。由于自然酶容易受到环境(温度、湿度、酸碱度等)影响,非酶葡萄糖传感器受到广泛关注[1-3, 8]。
金属-有机框架(Metal-origanic frameworks,MOFs)材料是一类新兴的多孔材料,存在电化学传感器应用潜力[9-12]。它们具有金属活性位点丰富、表面积大、结构多样、孔径可调和功能可调等优点。Li等[13]开发了Co-MOF纳米片阵列构建葡萄糖检测平台,其灵敏度为
10886 μA·L/(mmol·cm2),检测极限为1.3 nmol/L。Khan等[14]以MOF-199为前驱体合成 CuO/C复合材料,催化葡萄糖的氧化反应。Cu-MOFs修饰电极在0.06至5 mmol/L的线性范围内,对葡萄糖氧化显示出相对较好的电催化活性,其灵敏度为89 mA·L/(mmol·cm2),检测限为10.5 nmol/L。在另一份报告中,球形Ni-MOFs 颗粒在单独使用时表现出较差的电化学葡萄糖传感性能[15]。然而,当它们与碳纳米管的杂交后,对葡萄糖检测的灵敏度为13.85 mA·L/(mmol·cm2),检测极限为0.82 mmol/L,线性范围为1至1.6 mmol/L。此外,Zha等[16]开发了基于NiCo-MOF/C复合材料的无创血糖检测平台,其高灵敏度和检测极限分别为2701.29 μA·L/(mmol·cm2)和0.09 μmol/L。MOFs衍生复合材料在电化学葡糖糖传感器领域得到一定程度的应用。另一方面,随着实时传感设备和护理点设备的发展需要,经济的、可靠的、规模化的电极制备方法受到广泛关注[17]。作为一种商业化电极制备方法,丝网印刷技术具有设备简单、图案设计灵活、操作简单、经济等特点[17]。该技术在生物传感器领域,尤其指尖血糖检测中取得商业成功。Li等[18]实验组通过丝网印刷技术开发了一种具有优化三电极配置的多功能电化学平台,检测葡萄糖浓度。Ji等[19]实验组基于智能手机的循环伏安系统,采用石墨烯修饰的丝网印刷电极检测葡萄糖浓度。因此,本文在室温条件合成Co基MOFs(Co-ZIF-67),采用丝网印刷技术,制备了Co-ZIF-67修饰的商业银-碳电极,研究其对葡萄糖的传感性能。
1. 实验方法
1.1 原材料与试剂
六水硝酸钴(Co(NO3)2·6H2O,99.5%) 、聚乙烯醇(PVA,92%~94%)、聚乙烯吡咯烷酮(PVP,K23-27)、甲醇(CH2OH,99.5%)、3-(N-吗啉)丙磺酸钠(MOPs-Na,C7H14NO4SNa,99.5%)、羟乙基纤维素(HEC)、丙烯酰胺(C3H5NO,99.0%)、抗坏血酸(C6H6O8,99.0%)、半乳糖(C6H12O6,99.0%)、羧甲基纤维素((C6+2yH7+x+2yO2+x+3yNay)n)、柠檬酸(C6H8O7,99.5%)、葡萄糖(C6H12O6,96%)和葡聚糖(DEAE-Dextran,70 kDa)购自上海阿拉丁生化科技股份有限公司。过硫酸铵(H8N2O8S2,98.5%)购自上海麦克林生化科技有限公司。
1.2 材料表征
采用X-射线衍射仪(Smartlab9kw,Rigaku)对样品的物相和晶体结构进行表征。通过X射线光电子能谱(ESCALAB 250Xi,赛默飞)对样品的元素和表面信息进行分析。采用扫描电子显微镜扫描电镜(SEM,SU8100,日立)和透射电子显微镜(TEM,JEM2100,JEOL)对样品进行形貌表征。通过电化学工作站(CH650E,上海辰华仪器有限公司)评估修饰电极对葡萄糖的电化学传感性能。本研究配制了不同浓度葡萄糖(0.1~0.5 mmol/L)的0.1 mol/L氢氧化钠溶液。
1.3 Co-ZIF-67及Co-ZIF-67修饰电极的制备
Co-ZIF-67纳米材料在室温条件下制备而成。合成过程中,12 mmol/L的Co(NO3)2·6H2O完全溶解于100 mL甲醇中,记为溶液 A;48 mmol/L的2-甲基咪唑溶解于
1000 mL甲醇中,记为溶液 B。溶液B迅速地加入到溶液A中,形成混合液C。该混合液C磁力搅拌10 min后,在室温环境下静置24 h,形成沉淀物。采用甲醇清洗沉淀物,并在60℃干燥过夜,得到紫色Co-ZIF-67粉末。把20 mg Co-ZIF-67在1 mL的超纯水中超声30 min,得到溶液D。0.55 g MOPs 钠盐,0.075 g的羟乙基纤维素,1.75 g丙烯酰胺和0.05 g过硫酸铵分别溶解于25 mL的超纯水中,磁力搅拌2 h后形成混合浆料。将1 mL溶液D与9 mL浆料磁性搅拌1 h后,形成 Co-ZIF-67丝网印刷油墨。
将Co-ZIF-67油墨均匀的丝网印刷在商业银-碳电极的工作区域,经烘干(45℃,15 min)、贴亲水膜、裁剪,制备了便携式一次性条形葡萄糖检测电极。该电极包括一个工作电极,一个对电极。工作电极的表面积为3.78 mm×0.252 mm=
0.9526 mm2。每个电极所分析的溶液量为10 μL。亲水膜的作用是形成流道,吸附检测样品。Co-MOF修饰电极的制备过程见图1。2. 结果与讨论
2.1 Co-ZIF-67物相分析
采用XRD技术研究了Co-ZIF-67的晶体结构。从图2(a)可以看出,在2θ=10.4°、12.7°、14.7°、16.4°、18.0°、22.1°、24.4°、26.5°、29.8°、30.5°和32.5°时,分别对应于ZIF-67的(002)、(112)、(022)、(013)、(222)、(114)、(233)、(134)、(044)、(244)、(235)晶面,这与已报道的ZIF-67样品的XRD结果一致[20-22]。采用X射线光电子能谱(XPS)对Co-ZIF-67的表面信息进行了分析。从图2(b)可以看出,样品包含Co2p、O1s、N1s、C1s、Co3s和Co3p核能级区域。Co2p和 C1s的XPS精细谱分别如图2(c)和图2(d)所示。Co2p精细谱含有两个主峰,其中780.1 eV峰来自Co2p3/2;795.3 eV峰来自Co2p1/2。激振峰分别位于785.5和801.7 eV。除了主峰,C1s精细谱还有两个拟合峰。结合能位于286.2和288.1 eV,分别归属于C—N和C—O。上述结果表明,Co-ZIF-67已经被成功制备。采用SEM和TEM研究了样品的形貌。如图3(a)~3(f)所示,Co-ZIF-67呈现多面形,且尺寸分布相对较窄。
2.2 Co-ZIF-67的电催化性能
采用循环伏安(CV)技术评估了Co-ZIF-67修饰电极的电化学性能。图4(a)是Co-ZIF-67修饰电极在50 mV/s扫速时对0.3 mmol/L葡萄糖在不同pH值溶液中的响应信号。很明显,当pH=13时,Co-ZIF-67表现出对葡萄糖较大的催化活性。当葡萄糖浓度增加时,Co-ZIF-67修饰电极电流信号也随之增强(图4(b))。然而,信号的区分度不大。图4(c)是Co-ZIF-67修饰电极在不同扫速(10、30、50、70、90、110和130 mV/s)下对葡萄糖信号的变化。随着扫速增大,电流信号明显得到加强。将0.5 V电流强度与扫描速度的算术平方根进行拟合,其线性关系为:I (μA/cm2)=0.14v1/2–0.12 (R2=0.988,R2为决定系数)。这说明Co-ZIF-67修饰电极对应的电化学反应是受扩散控制的[23]。
图 4 Co-ZIF-67修饰电极在不同pH值(a)、葡萄糖浓度(b)、扫速(c)对葡萄糖的CV测试曲线;(d)扫描速率(v)的算数平方根与电流(I) (0.5 V)之间的线性关系Figure 4. CV curves of Co-ZIF-67 modified electrodes with different pH (a), glucose concentrations (b), and scan rates (c); (d) Corresponding linear relationship between the arithmetic square root of the scanning rate (v) and current (I, 0.5 V)R2—The coefficient of determination, which determinates the linear relationship of the fit curve采用差分脉冲伏安法(Differential pulse voltammetry,DPV)进一步评估了Co-ZIF-67修饰电极的电化学性能。如图5(a)所示,在0~0.5 mmol/L 葡萄糖溶液中观测了Co-ZIF-67修饰电极表面的氧化和还原反应,其对葡萄糖可能的催化机制为:Co-ZIF-67修饰电极对葡萄糖表现出较CV更强的DPV响应信号,这也表明,Co-ZIF-67对葡萄糖确实存在电催化效果[24-27]。此外,溶液中没有葡萄糖时,Co-ZIF-67修饰电极在0.4~0.6 V有一个不明显的氧化还原峰。随着葡萄糖浓度的增加,该修饰电极的响应信号也随之增强,氧化还原峰变得更加明显,这主要是由于高电位下碱性溶液中Co-ZIF-67中Co2+被氧化为Co3+。此时,Co3+因从葡萄糖得电子(变为Co2+)并不断将葡萄糖氧化为葡萄糖酸从而产生电流信号[28-29]。因此,Co-ZIF-67修饰电极具有较好的电催化性能。如图5(b)所示,Co-ZIF-67修饰电极的电流平均值(0.55 V)与葡萄糖浓度呈线性关系,其线性方程为:I (μA/cm2)=−3.730×C(mmol/L) − 5.720 (R2=
0.9639 )。图 5 (a) Co-ZIF-67修饰电极在不同葡萄糖浓度中的差分脉冲伏安法(DPV)测试曲线;(b)每5支Co-ZIF-67修饰电极在0.55 V电位对不同浓度葡萄糖的平均电流响应信号;(c) Co-ZIF-67修饰电极对不同葡萄糖浓度的安培响应;(d)每5支电极对不同葡萄糖浓度的平均响应电流(取第15 s数值)Figure 5. (a) Differential pulse voltammetry (DPV) curves of Co-ZIF-67 modified electrodes in the presence of glucose; (b) Linear relationship between average DPV current density response and different glucose concentrations of every five electrodes at 0.55 V; (c) Amperometric response of Co-ZIF-67 modified SPEs to different glucose concentration; (d) Corresponding linear curve of average current density of five electrodes in the 15th s to glucose concentrations采用安培响应技术在Co-ZIF-67修饰电极上对葡萄糖的传感性能做了进一步的评估。图5(c)显示随着电解质溶液中葡萄糖浓度的增加,响应电流随之增强。安培响应电流与葡萄糖浓度之间呈线性关系(图5(d)),其方程为:I (μA/cm2)=−1.390×C(mmol/L)−2.630 (R2=
0.9504 )。经过处理,Co-ZIF-67修饰电极对葡萄糖的检测灵敏度为1390 nA·L/(mmol·cm2),检测限为0.58 μmol/L (S/N=3),线性范围为0.1~0.5 mmol/L。值得一提的是,与已报道的电极相比,Co-ZIF-67修饰电极的灵敏度具有较大的优势,如表1所示[27, 29-34]。表 1 Co-ZIF-67修饰电极及其他电极的葡萄糖传感性能Table 1. Glucose sensing performance of Co-ZIF-67-modified electrodes and other previously reported electrodesType of electrode Sensitivity/(μA·L·mmol−1·cm−2) Detection limit/(μmol·L−1) Linear range/(mmol·L−1) Ref. Ag NPs/MOF-74(Ni) 1290 4.7 0.01-4 [27] NF/NiCo2O4 NWs@Co3O4 NPs 8163.2 – 0.001-1.7 [29] CuCo-MOF 6861 0.12 – [30] Ni2Co1-BDC/GCE 3925.3 0.29 0.0005 -2.8995 [31] Ni/Co(HHTP)MOF/CC 3250 0.1 0.0003 -2.312[32] MIL-88A@NiFe-PB 1963.2 0.12 0.005-1 [33] Ni3(HHTP)2/CNT 4774 4.1 0.004-3.9 [34] Co-MOFs/SPEs 1.393 0.58 0.1-0.5 This work Notes: CC—Carbon cloth; BDC—1, 4-benzenedicarboxylic acid; GCE—Glassy carbon electrode; HHTP—2, 3, 6, 7, 10, 11-hexahydroxytriphenylene; MIL—Materials from Institute Lavoisier; PB—Prussian blue; CNT—Carbon nanotubes; NF—Nickel foam; NWs—Nanowires; NPs—Nanoparticles; SPEs—Screen-printing electrodes. 2.3 抗干扰性、稳定性和重现性
图6(a)描述了Co-ZIF-67修饰电极抗干扰性能。从图上可以看出,干扰物质抗坏血酸(AA,3 mmol/L)、艾考糊精(INN,0.164 mol/L)、半乳糖(GAL,8 mmol/L)、谷胱甘肽(GSH,30 mmol/L)、麦芽糖(MAL,0.584 mol/L)引起的响应电流变化分别为−3.9%、−14.3%、−19.3%、−14.6%和−8.4%。与干扰物质相比,滴加0.1 mmol/L葡萄糖溶液时电流响应的显著变化表明。因此,Co-ZIF-67修饰电极具有较强的抗干扰能力。随后,通过长时间空气存放观察Co-ZIF-67修饰电极对0.1 mmol/L 葡萄糖的电流响应来评估的其稳定性。如图6(b)所示,Co-ZIF-67修饰电极表现出良好的稳定性。16天后,该电极仍然具有96%的初始响应。重现性是对电极的一个重要衡量标准。如图6(c)所示,Co-ZIF-67修饰电极的相对标准方差(Relative standard deviation,RSD)仅为10%,这说明该电极具有较好的重现性。
图 6 (a)干扰检查:5支Co-ZIF-67修饰电极 对0.1 mmol/L 葡萄糖(GLU)、0.164 mol/L 艾考糊精(INN)、9 mmol/L 半乳糖(GAL)、30 mmol/L谷胱甘肽(GSH)和0.584 mol/L 麦芽糖(MAL) 的平均安培响应;(b)稳定性:每5支Co-ZIF-67修饰电极在第1 d、4 d、7 d、10 d、13 d和16 d内对0.1 mmol/L 葡萄糖的安培响应信号;(c)重现性:10支Co-ZIP-67修饰电极对0.1 mmol/L 葡萄糖的响应Figure 6. (a) Interference examination: Average amperometric responses of five CuO nanomaterials modified SPEs to 0.1 mmol/L glucose (GLU), 0.164 mol/L alcodextrin (INN), 9 mmol/L galactose (GAL), 30 mmol/L glutathione (GSH) and 0.584 mol/L maltose (MAL); (b) Stability of every 5 Co-ZIF-67 modified electrodes to 0.1 mmol/L glucose on the 1st, 4th, 7th, 10th, 13th and 16th days; (c) Reproducibility of Co-ZIF-67 modified electrodes to 0.1 mmol/L glucose2.4 血清测试
为了研究Co-ZIF-67修饰电极在实际样品中检测葡萄糖的性能,我们进行了加标回收实验(拜安进血糖仪(拜安进血糖试纸(葡萄糖脱氢酶),拜耳公司))。将血清稀释在NaOH溶液中,血清浓度为0.12 mmol/L。如表2所示,葡萄糖的回收率在93.97%~101.5%,RSD小于6.2%。这也表明Co-ZIF-67修饰电极具有潜在应用。
表 2 Co-ZIF-67修饰的Ag-C电极检测血清样品的葡萄糖含量(n=3)Table 2. Glucose detection in human serum samples using Co-ZIF-67 modified Ag-C electrodes (n=3)Sample Serum glucose/(mmol·L−1) Added glucose/(mmol·L−1) Detected glucose/(mmol·L−1) RSD/% Recovery rate/% Human
serum0.12 0.18 0.29 6.20 93.97 0.28 0.39 4.37 101.5 0.36 0.47 3.90 98.97 Note: RSD—Relative standard deviation. 3. 结 论
(1)基于室温合成的Co-ZIF-67,采用丝网印刷技术批量构建了Co-ZIF-67修饰的商业银-碳电极。
(2) Co-ZIF-67修饰电极表现出优异的葡萄糖电催化性能:0.58 μmol/L的检测极限,1.393 μA·L/(mmol·cm2)的灵敏度,高的抗干扰性,96%的空气稳定性。
(3)研究表明,Co-ZIF-67的低能耗合成及其Co-ZIF-67修饰电极的批量化制备为葡萄糖传感器的发展提供一个可参考的方向。
-
图 4 xHECBs /AZ31镁合金抛光态光学显微组织图与晶界图;
(a) 2%HECBs/AZ31(活)抛光态光学显微组织图(b) 0%HECBs/AZ31(未)金相图(c) 2%HECBs/AZ31(活)金相图
Figure 4. The optical microstructure and grain boundary images of the xHECBs/AZ31 magnesium alloy in the polished state;
(a) Optical microstructure of 2%HECBs/AZ31 (activated) in the polished state (b) Metallographic image of 0%HECBs/AZ31 (unactivated) (c) Metallographic image of 2%HECBs/AZ31 (activated).
图 12 拉伸后断面 SEM 图(a)无添加高熵陶瓷相拉伸断面图;(b)活 化前高熵陶瓷相拉伸断面图;(c)活化后高熵陶瓷相拉伸断面图
Figure 12. SEM image of the tensile fracture surface:(a) Fracture surface SEM image without high-entropy ceramic phase addition; (b) Fracture surface SEM image before activation of the high-entropy ceramic phase; (c) Fracture surface SEM image after activation of the high-entropy ceramic phase.
表 1 高熵陶瓷粉末与AZ31镁合金熔炼质量
Table 1 Melting Mass of High-Entropy Ceramic Powders and AZ31 Magnesium Alloy
Alloys Quality of AZ31/g Quality of High-entropy ceramic powder/g 0%HECBs/AZ31(Unactivated) 1000 0
(Unactivated)1%HECBs/AZ31(Unactivated) 1000 10
(Unactivated)2%HECBs/AZ31(Unactivated) 1000 20.4
(Unactivated)1%HECBs/AZ31(Activated) 1000 10
(Activated)2%HECBs/AZ31(Activated) 1000 20.4
(Activated)5%HECBs/AZ31(Unactivated) 1000 52.6
(Unactivated)Note: HECB—High-entropy Bodecaboride 表 2 添加高熵陶瓷前后 AZ31 镁合金极化曲线 的拟合结果
Table 2 Fitting Results of Polarization Curves for AZ31 Magnesium Alloy Before and After the Addition of High-Entropy Ceramics.
Alloys Ecorr/V Icorr/(μA·cm−2) Corrosion Rate
(mm·a−1)0%HECBs/AZ31
(Unactivated)−1.792 6.103×103 1.969×10 1%HECBs/AZ31
(Unactivated)−1.715 9.516×103 3.071×10 2%HECBs/AZ31
(Unactivated)−1.426 3.552×102 1.146×10−1 1%HECBs/AZ31
(Activated)−1.553 1.672×102 5.395×10−2 2%HECBs/AZ31
(Activated)−1.398 4.958×10 1.959×10−2 5%HECBs/AZ31
(Unactivated)−1.516 4.686×102 1.512×10−1 Notes Ecorr represents self - corrosion voltage; Icorr represents self - corrosion curren 表 3 xHECBs/AZ31电化学阻抗谱的拟合结果
Table 3 Fitting Results of Electrochemical Impedance Spectroscopy for xHECBs/AZ31.
Alloys Rs/(Ω·cm2) Rf/(Ω·cm2) CPEf/(F·cm−2) Rct/(Ω·cm2) CPEdl/(F·cm−2) L/(H·cm2) Fitting Percentage/% 0%HECBs/AZ31(Unactivated) 16.19 8.68 9.5787 e−648.19 8.3309 e−611.25 95.6 1%HECBs/AZ31(Unactivated) 10.66 33.63 1.8457 e−595.58 2.1758 e−530 94.2 2%HECBs/AZ31(Unactivated) 14.54 110.2 1.1564 e−5298.9 1.6486 e−535.6 96.8 1%HECBs/AZ31(Activated) 16.65 48.39 3.5798 e−5169.6 5.0000 e−535.25 96.5 2%HECBs/AZ31
(Activated)30.41 113.2 6.4743 e−6288.4 1.0842 e−544.68 97.6 5%HECBs/AZ31(Unactivated) 10.27 55.5 7.6560 e−6134.6 9.0412 e−660.34 98.4 Notes Rs represents the solution resistance; Rf represents the film resistance; Rct represents the charge - transfer resistance; CPEf represents the capacitive effect formed by the NaCl solution and the corrosion product film on the alloy surface; CPEdl represents the capacitive effect formed between the area below the corrosion product film and the metal substrate;L represents the inductance generated after the magnesium alloy is corroded. -
[1] 王建强, 关绍康, 王迎新. RE对Mg-8Zn-4Al-0.3Mn镁合金阻尼性能的影响[J]. 材料科学与工程学报, 2004, (2): 280-283. DOI: 10.3969/j.issn.1673-2812.2004.02.030 WANG J Q, GUAN S K, WANG Y X. Effect of RE on damping properties of Mg-8Zn-4Al-0.3Mn magnesium alloy[J]. Journal of Materials Science and Engineering, 2004, (2): 280-283(in Chinese). DOI: 10.3969/j.issn.1673-2812.2004.02.030
[2] WINZER N, ATRENS A, SONG G, et al. A critical review of the stress corrosion cracking (SCC)of magnesium alloys[J]. Advanced Engineering Materials, 2005, 7(8): 659-693. DOI: 10.1002/adem.200500071
[3] 王晓鸽, 高克玮, 颜鲁春等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340. WANG X G, GAO K W, YAN L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg -alloy[J]. J. Chin. Soc. Corros. Prot., 2021, 41(3): 335-340(in Chinese).
[4] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042. LIU Y X, XU A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating[J]. J. Chin. Soc. Corros. Prot. , 2022, 42: 1034. (in Chinese)
[5] MARTIN Jönsson, DAN Persson, CHRISTOFER Leygraf. Atmosphericorrosion of field-exposed magnesium alloy AZ91D[J]. Corrosion Science, 2008, 50(5): 1406-1413. DOI: 10.1016/j.corsci.2007.12.005
[6] LIAO J S, HOTTA M. Atmospheric corrosion behavior of field-exposed magnesium alloys: Influences of chemical composition and microstructure[J]. Corrosio-nScience, 2015, 100: 353-364.
[7] 杨秉烨, 卜少科, 吴博, 等, 挤压态AZ31镁合金板的电化学腐蚀行为[J]. 热加工工艺, 2023, 52(15): 34-37. YANG B Y, BU S K, WU B, et a. Electrochemical corrosion b-ehavior of extruded AZ31 magnesium alloy plate[J]. Hot W-orking Technology, 2023. (in Chinese)
[8] 周元庆. 镁钕合金防腐蚀性能研究[D]. 上海海洋大学, 2023. ZHOU Y Q. Research on the corrosion resistance of magne-sium neodymium alloy[D]. Shang hai Ocean University, 2023.
[9] 刘乃华, 华振虎, 蓝永庭. 石墨烯对AZ31镁合金在模拟体液中腐蚀性能的影响[J]. 有色金属工程, 2023, 13(6): 1-8. DOI: 10.3969/j.issn.2095-1744.2023.06.001 LIU N H, HUA Z H, LAN Y T. Effect of graphene on corrosion properties of AZ31 magnesium alloy in simulated body fluid[J]. Nonferrous Metals Engineering, 2023, 13(6): 1-8(in Chinese). DOI: 10.3969/j.issn.2095-1744.2023.06.001
[10] 张鹏程. 氮缺位Ti2AlN颗粒制备及其增强AE44镁基复合材料的研究[D]. 北京交通大学, 2021. ZHANG P C. Preparation of nitrogen-deficient Ti2AlN particles and research on its reinforced AE44 magnesium matrix composites[D]. Beijing Jiaotong University, 2021. (in Chinese)
[11] DONG L, MI G, LI C, et al. Effects of SiC particle volum-e fraction on microstructure and mechancial properties of Si-Cp/6061Al composites[J]. Integrated Ferroelectrics, 2020, 210(1): 215-226. DOI: 10.1080/10584587.2020.1728678
[12] 叶东明, 韩鹏, 王文, 等. Co CrFeNi/6061Al复合材料冷喷摩擦复合增材制造及增强相影响规律研究[J]. 塑性工程学报, 2024, 31(3): 206-213. DOI: 10.3969/j.issn.1007-2012.2024.03.024 YE D M, HAN P, WANG W, et al. Research on cold spray friction composite additive manufacturing of CoCrFeNi/6061Al composites and the influence law of reinforcement phase[J]. Journal of Plasticity Engineering, 2024, 31(3): 206-213(in Chinese). DOI: 10.3969/j.issn.1007-2012.2024.03.024
[13] MA Y J, MA Y, WANG Q S, et al. High-entropy energy materials: challenges and new opportunities[J]. Energy& Environmental Science, 2021, 14(5): 2883-2905
[14] 谢鸿翔, 项厚政, 马瑞奇等. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 61-68. DOI: 10.11896/cldb.20070201 XIE H X, XIANG H H, MA R Q, et al. Research progress of high-entropy ceramic materials[J]. Materials Reports, 2022, 36(6): 61-68(in Chinese). DOI: 10.11896/cldb.20070201
[15] WINZER N, ATRENS A, SONG, G. et al. A Critical Review of t-he Stress Corrosion Cracking(SCC)of Magnesium Alloys[J]. Advanced Engineering Materials, 2005, 7(8): 659-693 DOI: 10.1002/adem.200500071
[16] SONG G, Atrens A. Understanding magnesium corrosioa framework for improved alloy performance[J]. Advanced engineering materials, 2003, 5(12): 837-858. DOI: 10.1002/adem.200310405
[17] XING W Z, CUI J, GU C, et al. Superhard high-entropy decaboride with high electrical conductivity[J]. Scripta Materialia, 2022, 220: 114938. DOI: 10.1016/j.scriptamat.2022.114938
[18] DU X, D W, WANG Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets resinforced magnesium matrix composites[J]. Materials Science& Engineering A, 2011, 7(11): 633-642.
[19] WANG N G, WANG R C, PENG C Q, et al. Corrosion behavior of Mg-Al-Pb and Mg-Al-Pb-Zn-Mn alloys in 3.5% NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10): 1936-1943. DOI: 10.1016/S1003-6326(09)60398-8
[20] LIU Z Y, LI X G, CHENG Y F. Electrochemical stat-e conversion model for occurrence of pitting corrosion on acathodically polarized carbon steel in a near-neutral pH solution[J]. Electrochimica Acta, 2011, 56(11): 4167-4175. DOI: 10.1016/j.electacta.2011.01.100
[21] BRETT C M A, DIAS L, TRINDADE B, et al. Characterisation by EIS of ternary Mg alloys synthesised by mechanical alloying[J]. Electrochimica Acta, 2006, 51(8-9): 1752-1760. DOI: 10.1016/j.electacta.2005.02.124
[22] MAKAR G L, KRUGER J L. Corrosion of magnesium[J]. International materials reviews, 1993, 38(3): 138-153. DOI: 10.1179/imr.1993.38.3.138
[23] CAO C N. Principle of corrosion electrochemistry[M], Press CI. Chemical Industry Press Beijing, 2004.
[24] GUADARRAMA-MUNOZ F, MENDOZA-FLORES J, DURAN ROMEROR, et al. Electrochemical study on magnesium anodes in Na-Cl and CaSO4–Mg (OH) 2aqueous solutions[J]. Electrochimi-ca acta, 2006, 51(8-9):
[25] 王新印. 纯镁腐蚀行为研究: 基于扫描电化学显微镜产生/收集和反馈模式[D]. 浙江大学, 2015. WANG X Y. Study on the corrosion behavior of pure- magnesium: Based on generation/collection and feedback modesof scanning electrochemical microscopy [D]. Zhejiang Univ-ersity, 2015. (in Chinese)
[26] 杨汉章, 聂慧慧, 刘群峰, 等. 应力三轴度对AZ31镁合金断裂应变的影响[J]. 热加工工艺, 2024, 53(10): 133-136. YANG H Z, NIE H H, LIU QF, et al. Effect of stress triaxiality on fracture strain of AZ31 magnesium alloy[J]. Hot Working Technology, 2024, 53(10): 133-136.
[27] 李淑波, 吴海荣, 王朝辉, 等. Mg-Zn-Gd准晶增强AZ31镁基复合材料的摩擦磨损性能[J]. 中国有色金属学报, 2016, 26(4): 732-738. LI S B, WU H R, WANG Z H, et al. Friction and wear p-roperties of Mg-Zn-Gd quasicrystal reinforced AZ31 magne-sium matrix composites[J]. The Chinese Journalof Nonferrous Metals, 2016, 26(4): 732-738.
[28] 杨钊. 固相合成SCFs/AZ31镁基复合材料的组织演变及强化机制[D]. 哈尔滨理工大学, 2022. YANG Z. Microstructure evolution and strengthening mecha-nism of SCFs/AZ31 magnesium matrix composites synthesized by solid-state method [D]. Harbin University of Science and Technology, 2022.
-
目的
随着海洋装备科技飞速发展,海洋装备轻量化的需求越来越多,镁合金具备比重轻、比强度高、铸造性好等优点,在交通运输、航空航天等领域得到普遍的运用,被认为是最具前途的材料之一。但镁合金硬度较低且耐蚀性较差,严重限制了镁合金在海洋环境下的应用。本文使用高熵十二硼化物作为增强相,提升镁合金性能使其在海洋环境下使用更加广泛。
方法使用氢氟酸对高熵陶瓷进行活化处理,通过坩埚电阻炉熔炼制备xHECBs/AZ31复合材料熔炼全程通1vol.%SF6+99vol.%CO2混合保护气体。利用金相显微镜观察分析铸造合金微观组织,后使用X射线衍射仪对合金进行物相鉴定,选用SEM扫描电镜(蔡司GeminiSEM300牛津能谱场发射电镜)进行EDS能谱分析。合金的腐蚀性能测试选用美国Gamry公司Reference 600+电化学工作站。通过拉伸测试仪器(CMT6103拉伸仪器)进行拉伸力学性能测试使用显微维氏硬度计(HVS-100手动转塔数显微维氏硬度计)测试合金的硬度。
结果1.加入HECB相高熵陶瓷后三强峰发生向右偏移,高熵陶瓷相成功融入镁合金中,进行峰对比可知新型镁合金的XRD图中没有明显杂相峰存在,高熵陶瓷相使出现峰高降低证明结晶度变差,峰宽变宽也证明结晶度变差但晶粒数量变多,晶粒变小,晶粒从125-200μm.减小至100-150μm。2.AZ31镁合金添加高熵陶瓷相后,其自腐蚀电位均升高,腐蚀电流密度比未添加高熵陶瓷的AZ31镁合金腐蚀电流密度低,且经过活化处理的高熵陶瓷/AZ31镁合金其自腐蚀电流密度比未活化处理的高熵陶瓷/AZ31镁合金低。自腐蚀电位提升至-1.398V、自腐蚀电流密度下降至4.958×10μA/cm。其性能自腐蚀电位最大提升0.5 v。阻抗测试中,经过活化处理的高熵陶瓷/AZ31镁合金其阻抗比未活化处理的高熵陶瓷/AZ31镁合金大,相比未增加高熵陶瓷/AZ31镁合金电阻率提升了92%。奈奎斯特图半径大要大5-6倍。3添加无活化的高熵陶瓷(1%,2%和5%)的合金显微维氏硬度的平均值分别75.86HV, 85.68HV与92.24HV。添加相高熵陶瓷经过活化处理后,相比于未活化的高熵陶瓷镁合金硬度有少量变小,分别为72.265HV和83.415HV(高熵陶瓷含量分别为1%和2%)。其拉伸性能镁合金中加入未经活化处理的高熵陶瓷后,屈服强度应力会明显增加,极限拉伸强度会由明显的下降,屈服应力从29.6Mpa提升至46.6MPa,最高可到671.3MPa,但延伸率会随高熵陶瓷含量从26.84%下降至4.5%。将高熵陶瓷活化处理后,活化处理后高熵陶瓷增强相镁合金延展率相比未经处理的高熵陶瓷增强相镁合金延展率出现明显增长,屈服应力也有明显增强,屈服应力相比未活化前能提升47.72%~54.45%。
结论高熵陶瓷能使AZ31镁合金晶粒从125~200μm变小至100-150μm,高熵陶瓷含量为2%时,高熵陶瓷粉末大小约为10~15μm。增加高熵陶瓷后没有明显杂相。增加高熵陶瓷能够有效抑制镁合金在3.5% NaCl溶液中的Cl-点蚀,在电化学测试中,高熵陶瓷的添加使材料的腐蚀电位向正移,腐蚀电流密度减小,2%活化后高熵陶瓷增强相镁合金耐蚀效果最好。在结合电化学的基础上,对2%含量高熵陶瓷增强相进行分析,增加高熵陶瓷后镁合金维氏硬度与屈服应力有所增加,延展性与极限应力会随之降低,但活化后高熵陶瓷增强相延展性相对更好,综合可知2%含量活化后高熵陶瓷增强相镁合金性能最好。