Effect of High-Entropy Dodecaboride Reinforcements on the Properties of Magnesium Alloys
-
摘要: 海洋装备科技的飞速发展促使海洋装备轻量化需求不断增加。镁合金因比重小、比强度高和铸造性佳,在交通运输、航空航天等领域广泛应用,是极具潜力的材料。然而,其较低的硬度和较差的耐蚀性严重制约了在海洋环境中的应用。本研究以超硬的十二硼化物高熵陶瓷作为AZ31镁合金的增强相,制备了一系列不同增强相含量的复合材料,系统探讨高熵陶瓷相对AZ31镁合金组织和性能的影响。研究发现,经氢氟酸表面活化处理后,增强相与基体的结合性能得到改善。其中,2%经活化的高熵陶瓷增强相镁合金综合性能最佳,其自腐蚀电位提升至−1.398V,自腐蚀电流密度降至 49.58 μA/cm2,硬度提高到83.42 HV,屈服强度提升至52.17 MPa。Abstract: As the demand for lightweight marine equipment continues to grow, lightweight and high-strength magnesium alloy materials have shown broad application prospects in the field of marine equipment. However, magnesium alloys have relatively low hardness and poor corrosion resistance, which severely limits their application in marine environments. In this study, ultra-hard material high-entropy ceramics (high-entropy dodecaboride REB12, RE = Dy, Ho, Er, Tm, Lu) were used as reinforcement phases for AZ31 magnesium alloy to prepare composite materials with different mass percentage contents of high-entropy ceramic reinforcement phases. The influence of high-entropy ceramics on the microstructure and properties of AZ31 magnesium alloy was investigated. The results showed that the high-entropy ceramics did not react with the AZ31 magnesium alloy, and the combination performance between the reinforcement phase and the matrix was improved after hydrofluoric acid surface activation treatment of the high-entropy ceramics. After 2% activation treatment, the self-corrosion potential of the high-entropy ceramic reinforced magnesium alloy was increased to −1.398 V, the self-corrosion current density was reduced to 49.58 μA/cm2, the hardness was increased to 83.4 HV, and the yield strength was increased to 62.7 MPa, showing the best comprehensive performance.
-
图 4 xHECBs /AZ31镁合金抛光态光学显微组织图与晶界图;
(a) 2%HECBs/AZ31(活)抛光态光学显微组织图(b) 0%HECBs/AZ31(未)金相图(c) 2%HECBs/AZ31(活)金相图
Figure 4. The optical microstructure and grain boundary images of the xHECBs/AZ31 magnesium alloy in the polished state;
(a) Optical microstructure of 2%HECBs/AZ31 (activated) in the polished state (b) Metallographic image of 0%HECBs/AZ31 (unactivated) (c) Metallographic image of 2%HECBs/AZ31 (activated).
图 12 拉伸后断面 SEM 图(a)无添加高熵陶瓷相拉伸断面图;(b)活 化前高熵陶瓷相拉伸断面图;(c)活化后高熵陶瓷相拉伸断面图
Figure 12. SEM image of the tensile fracture surface:(a) Fracture surface SEM image without high-entropy ceramic phase addition; (b) Fracture surface SEM image before activation of the high-entropy ceramic phase; (c) Fracture surface SEM image after activation of the high-entropy ceramic phase.
表 1 高熵陶瓷粉末与AZ31镁合金熔炼质量
Table 1. Melting Mass of High-Entropy Ceramic Powders and AZ31 Magnesium Alloy
Alloys Quality of AZ31/g Quality of High-entropy ceramic powder/g 0%HECBs/AZ31(Unactivated) 1000 0
(Unactivated)1%HECBs/AZ31(Unactivated) 1000 10
(Unactivated)2%HECBs/AZ31(Unactivated) 1000 20.4
(Unactivated)1%HECBs/AZ31(Activated) 1000 10
(Activated)2%HECBs/AZ31(Activated) 1000 20.4
(Activated)5%HECBs/AZ31(Unactivated) 1000 52.6
(Unactivated)Note: HECB—High-entropy Bodecaboride 表 2 添加高熵陶瓷前后 AZ31 镁合金极化曲线 的拟合结果
Table 2. Fitting Results of Polarization Curves for AZ31 Magnesium Alloy Before and After the Addition of High-Entropy Ceramics.
Alloys Ecorr/V Icorr/(μA·cm−2) Corrosion Rate
(mm·a−1)0%HECBs/AZ31
(Unactivated)−1.792 6.103×103 1.969×10 1%HECBs/AZ31
(Unactivated)−1.715 9.516×103 3.071×10 2%HECBs/AZ31
(Unactivated)−1.426 3.552×102 1.146×10−1 1%HECBs/AZ31
(Activated)−1.553 1.672×102 5.395×10−2 2%HECBs/AZ31
(Activated)−1.398 4.958×10 1.959×10−2 5%HECBs/AZ31
(Unactivated)−1.516 4.686×102 1.512×10−1 Notes Ecorr represents self - corrosion voltage; Icorr represents self - corrosion curren 表 3 xHECBs/AZ31电化学阻抗谱的拟合结果
Table 3. Fitting Results of Electrochemical Impedance Spectroscopy for xHECBs/AZ31.
Alloys Rs/(Ω·cm2) Rf/(Ω·cm2) CPEf/(F·cm−2) Rct/(Ω·cm2) CPEdl/(F·cm−2) L/(H·cm2) Fitting Percentage/% 0%HECBs/AZ31(Unactivated) 16.19 8.68 9.5787 e−648.19 8.3309 e−611.25 95.6 1%HECBs/AZ31(Unactivated) 10.66 33.63 1.8457 e−595.58 2.1758 e−530 94.2 2%HECBs/AZ31(Unactivated) 14.54 110.2 1.1564 e−5298.9 1.6486 e−535.6 96.8 1%HECBs/AZ31(Activated) 16.65 48.39 3.5798 e−5169.6 5.0000 e−535.25 96.5 2%HECBs/AZ31
(Activated)30.41 113.2 6.4743 e−6288.4 1.0842 e−544.68 97.6 5%HECBs/AZ31(Unactivated) 10.27 55.5 7.6560 e−6134.6 9.0412 e−660.34 98.4 Notes Rs represents the solution resistance; Rf represents the film resistance; Rct represents the charge - transfer resistance; CPEf represents the capacitive effect formed by the NaCl solution and the corrosion product film on the alloy surface; CPEdl represents the capacitive effect formed between the area below the corrosion product film and the metal substrate;L represents the inductance generated after the magnesium alloy is corroded. -
[1] 王建强, 关绍康, 王迎新. RE对Mg-8Zn-4Al-0.3Mn镁合金阻尼性能的影响[J]. 材料科学与工程学报, 2004, (2): 280-283. doi: 10.3969/j.issn.1673-2812.2004.02.030WANG J Q, GUAN S K, WANG Y X. Effect of RE on damping properties of Mg-8Zn-4Al-0.3Mn magnesium alloy[J]. Journal of Materials Science and Engineering, 2004, (2): 280-283(in Chinese). doi: 10.3969/j.issn.1673-2812.2004.02.030 [2] WINZER N, ATRENS A, SONG G, et al. A critical review of the stress corrosion cracking (SCC)of magnesium alloys[J]. Advanced Engineering Materials, 2005, 7(8): 659-693. doi: 10.1002/adem.200500071 [3] 王晓鸽, 高克玮, 颜鲁春等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.WANG X G, GAO K W, YAN L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg -alloy[J]. J. Chin. Soc. Corros. Prot., 2021, 41(3): 335-340(in Chinese). [4] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.LIU Y X, XU A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating[J]. J. Chin. Soc. Corros. Prot. , 2022, 42: 1034. (in Chinese) [5] MARTIN Jönsson, DAN Persson, CHRISTOFER Leygraf. Atmosphericorrosion of field-exposed magnesium alloy AZ91D[J]. Corrosion Science, 2008, 50(5): 1406-1413. doi: 10.1016/j.corsci.2007.12.005 [6] LIAO J S, HOTTA M. Atmospheric corrosion behavior of field-exposed magnesium alloys: Influences of chemical composition and microstructure[J]. Corrosio-nScience, 2015, 100: 353-364. [7] 杨秉烨, 卜少科, 吴博, 等, 挤压态AZ31镁合金板的电化学腐蚀行为[J]. 热加工工艺, 2023, 52(15): 34-37.YANG B Y, BU S K, WU B, et a. Electrochemical corrosion b-ehavior of extruded AZ31 magnesium alloy plate[J]. Hot W-orking Technology, 2023. (in Chinese) [8] 周元庆. 镁钕合金防腐蚀性能研究[D]. 上海海洋大学, 2023.ZHOU Y Q. Research on the corrosion resistance of magne-sium neodymium alloy[D]. Shang hai Ocean University, 2023. [9] 刘乃华, 华振虎, 蓝永庭. 石墨烯对AZ31镁合金在模拟体液中腐蚀性能的影响[J]. 有色金属工程, 2023, 13(6): 1-8. doi: 10.3969/j.issn.2095-1744.2023.06.001LIU N H, HUA Z H, LAN Y T. Effect of graphene on corrosion properties of AZ31 magnesium alloy in simulated body fluid[J]. Nonferrous Metals Engineering, 2023, 13(6): 1-8(in Chinese). doi: 10.3969/j.issn.2095-1744.2023.06.001 [10] 张鹏程. 氮缺位Ti2AlN颗粒制备及其增强AE44镁基复合材料的研究[D]. 北京交通大学, 2021.ZHANG P C. Preparation of nitrogen-deficient Ti2AlN particles and research on its reinforced AE44 magnesium matrix composites[D]. Beijing Jiaotong University, 2021. (in Chinese) [11] DONG L, MI G, LI C, et al. Effects of SiC particle volum-e fraction on microstructure and mechancial properties of Si-Cp/6061Al composites[J]. Integrated Ferroelectrics, 2020, 210(1): 215-226. doi: 10.1080/10584587.2020.1728678 [12] 叶东明, 韩鹏, 王文, 等. Co CrFeNi/6061Al复合材料冷喷摩擦复合增材制造及增强相影响规律研究[J]. 塑性工程学报, 2024, 31(3): 206-213. doi: 10.3969/j.issn.1007-2012.2024.03.024YE D M, HAN P, WANG W, et al. Research on cold spray friction composite additive manufacturing of CoCrFeNi/6061Al composites and the influence law of reinforcement phase[J]. Journal of Plasticity Engineering, 2024, 31(3): 206-213(in Chinese). doi: 10.3969/j.issn.1007-2012.2024.03.024 [13] MA Y J, MA Y, WANG Q S, et al. High-entropy energy materials: challenges and new opportunities[J]. Energy& Environmental Science, 2021, 14(5): 2883-2905 [14] 谢鸿翔, 项厚政, 马瑞奇等. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 61-68. doi: 10.11896/cldb.20070201XIE H X, XIANG H H, MA R Q, et al. Research progress of high-entropy ceramic materials[J]. Materials Reports, 2022, 36(6): 61-68(in Chinese). doi: 10.11896/cldb.20070201 [15] WINZER N, ATRENS A, SONG, G. et al. A Critical Review of t-he Stress Corrosion Cracking(SCC)of Magnesium Alloys[J]. Advanced Engineering Materials, 2005, 7(8): 659-693 doi: 10.1002/adem.200500071 [16] SONG G, Atrens A. Understanding magnesium corrosioa framework for improved alloy performance[J]. Advanced engineering materials, 2003, 5(12): 837-858. doi: 10.1002/adem.200310405 [17] XING W Z, CUI J, GU C, et al. Superhard high-entropy decaboride with high electrical conductivity[J]. Scripta Materialia, 2022, 220: 114938. doi: 10.1016/j.scriptamat.2022.114938 [18] DU X, D W, WANG Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets resinforced magnesium matrix composites[J]. Materials Science& Engineering A, 2011, 7(11): 633-642. [19] WANG N G, WANG R C, PENG C Q, et al. Corrosion behavior of Mg-Al-Pb and Mg-Al-Pb-Zn-Mn alloys in 3.5% NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10): 1936-1943. doi: 10.1016/S1003-6326(09)60398-8 [20] LIU Z Y, LI X G, CHENG Y F. Electrochemical stat-e conversion model for occurrence of pitting corrosion on acathodically polarized carbon steel in a near-neutral pH solution[J]. Electrochimica Acta, 2011, 56(11): 4167-4175. doi: 10.1016/j.electacta.2011.01.100 [21] BRETT C M A, DIAS L, TRINDADE B, et al. Characterisation by EIS of ternary Mg alloys synthesised by mechanical alloying[J]. Electrochimica Acta, 2006, 51(8-9): 1752-1760. doi: 10.1016/j.electacta.2005.02.124 [22] MAKAR G L, KRUGER J L. Corrosion of magnesium[J]. International materials reviews, 1993, 38(3): 138-153. doi: 10.1179/imr.1993.38.3.138 [23] CAO C N. Principle of corrosion electrochemistry[M], Press CI. Chemical Industry Press Beijing, 2004. [24] GUADARRAMA-MUNOZ F, MENDOZA-FLORES J, DURAN ROMEROR, et al. Electrochemical study on magnesium anodes in Na-Cl and CaSO4–Mg (OH) 2aqueous solutions[J]. Electrochimi-ca acta, 2006, 51(8-9): [25] 王新印. 纯镁腐蚀行为研究: 基于扫描电化学显微镜产生/收集和反馈模式[D]. 浙江大学, 2015.WANG X Y. Study on the corrosion behavior of pure- magnesium: Based on generation/collection and feedback modesof scanning electrochemical microscopy [D]. Zhejiang Univ-ersity, 2015. (in Chinese) [26] 杨汉章, 聂慧慧, 刘群峰, 等. 应力三轴度对AZ31镁合金断裂应变的影响[J]. 热加工工艺, 2024, 53(10): 133-136.YANG H Z, NIE H H, LIU QF, et al. Effect of stress triaxiality on fracture strain of AZ31 magnesium alloy[J]. Hot Working Technology, 2024, 53(10): 133-136. [27] 李淑波, 吴海荣, 王朝辉, 等. Mg-Zn-Gd准晶增强AZ31镁基复合材料的摩擦磨损性能[J]. 中国有色金属学报, 2016, 26(4): 732-738.LI S B, WU H R, WANG Z H, et al. Friction and wear p-roperties of Mg-Zn-Gd quasicrystal reinforced AZ31 magne-sium matrix composites[J]. The Chinese Journalof Nonferrous Metals, 2016, 26(4): 732-738. [28] 杨钊. 固相合成SCFs/AZ31镁基复合材料的组织演变及强化机制[D]. 哈尔滨理工大学, 2022.YANG Z. Microstructure evolution and strengthening mecha-nism of SCFs/AZ31 magnesium matrix composites synthesized by solid-state method [D]. Harbin University of Science and Technology, 2022.
计量
- 文章访问数: 27
- HTML全文浏览量: 26
- 被引次数: 0