留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高熵十二硼化物增强相对镁合金性能影响

褚振华 陈景昆 李斯勇 许竞翔 郑兴伟

褚振华, 陈景昆, 李斯勇, 等. 高熵十二硼化物增强相对镁合金性能影响[J]. 复合材料学报, 2024, 43(0): 1-11.
引用本文: 褚振华, 陈景昆, 李斯勇, 等. 高熵十二硼化物增强相对镁合金性能影响[J]. 复合材料学报, 2024, 43(0): 1-11.
CHU Zhen hua, CHEN Jingkun, LI Siyong, et al. Effect of High-Entropy Dodecaboride Reinforcements on the Properties of Magnesium Alloys[J]. Acta Materiae Compositae Sinica.
Citation: CHU Zhen hua, CHEN Jingkun, LI Siyong, et al. Effect of High-Entropy Dodecaboride Reinforcements on the Properties of Magnesium Alloys[J]. Acta Materiae Compositae Sinica.

高熵十二硼化物增强相对镁合金性能影响

基金项目: 国家自然科学基金 (51872072)
详细信息
  • 中图分类号: TB333

Effect of High-Entropy Dodecaboride Reinforcements on the Properties of Magnesium Alloys

Funds: National Natural Science Foundation of China (No.51872072)
  • 摘要: 海洋装备科技的飞速发展促使海洋装备轻量化需求不断增加。镁合金因比重小、比强度高和铸造性佳,在交通运输、航空航天等领域广泛应用,是极具潜力的材料。然而,其较低的硬度和较差的耐蚀性严重制约了在海洋环境中的应用。本研究以超硬的十二硼化物高熵陶瓷作为AZ31镁合金的增强相,制备了一系列不同增强相含量的复合材料,系统探讨高熵陶瓷相对AZ31镁合金组织和性能的影响。研究发现,经氢氟酸表面活化处理后,增强相与基体的结合性能得到改善。其中,2%经活化的高熵陶瓷增强相镁合金综合性能最佳,其自腐蚀电位提升至−1.398V,自腐蚀电流密度降至 49.58 μA/cm2,硬度提高到83.42 HV,屈服强度提升至52.17 MPa。

     

  • 图  1  拉伸试样参数图 单位:mm

    Figure  1.  Tensile specimen parameter diagram. Unit:mm

    图  2  高熵陶瓷活化前后形貌图:(a)活化前高熵陶瓷形貌图;(b)活化后高熵陶瓷形貌图

    Figure  2.  Morphology of High-Entropy Ceramics Before and After Activation: (a) Morphology of high-entropy ceramics before activation; (b) Morphology of high-entropy ceramics after activation

    图  3  xHECBs /AZ31 镁合金 XRD 图

    Figure  3.  XRD pattern of xHECBs /AZ31 magnesium alloy

    图  4  xHECBs /AZ31镁合金抛光态光学显微组织图与晶界图;

    (a) 2%HECBs/AZ31(活)抛光态光学显微组织图(b) 0%HECBs/AZ31(未)金相图(c) 2%HECBs/AZ31(活)金相图

    Figure  4.  The optical microstructure and grain boundary images of the xHECBs/AZ31 magnesium alloy in the polished state;

    (a) Optical microstructure of 2%HECBs/AZ31 (activated) in the polished state (b) Metallographic image of 0%HECBs/AZ31 (unactivated) (c) Metallographic image of 2%HECBs/AZ31 (activated).

    图  5  xHECBs/AZ31镁合金SEM和部分EDS能谱图(a) xHECBs/AZ31镁合金SEM扫描图(b) EDS的Er能谱(c) EDS的Dy能谱(d) EDS 的 Ho 能谱

    Figure  5.  SEM images and partial EDS spectra of xHEDBs/AZ31 magnesium alloy; (a) Enlarged SEM image (b) EDS spectrum for Er (c) EDS spectrum for Dy (d) EDS spectrum for Ho

    图  6  xHECBs/AZ31 极化图

    Figure  6.  Polarization plot of xHECBs/AZ31 magnesium alloy.

    图  8  2%HECBs /AZ31腐蚀产物截面膜图

    Figure  8.  2%HECBs /AZ31 Cross-sectional Image of Corrosion Products

    图  7  xHECBs /AZ31 阻抗 Bode 和Nyquist (a)阻抗 Nyquist 图;(b) Bode 图阻抗和频率图;(c) Bode 图相位角和频率关图

    Figure  7.  Impedance Bode and Nyquist plots of xHECBs /AZ31 magnesium alloy; (a) Impedance Nyquist plot; (b) Bode plot of impedance versus frequency; (c) Bode plot of phase angle versus frequency

    图  9  x%HECBs /AZ31模拟电路示意图:(a)拟合等效电路;(b)拟合等效电路物理模型

    Figure  9.  Schematic diagram of x%HECBs/AZ31 analog circuit: (a) Fitting the equivalent circuit; (b)Fitting the physical model of the equivalent circuit

    图  10  xHECBs/AZ31镁合金常温下维氏硬度规律图(10 N, 15 s)

    Figure  10.  Vickers hardness pattern of xHECBs/AZ31 magnesium alloy at room temperature (10 N, 15 s).

    图  11  xHECBs /AZ31镁合金拉伸性应力应变图

    Figure  11.  Tensile stress - strain diagram of xHECBs/AZ31 magnesium alloy

    图  12  拉伸后断面 SEM 图(a)无添加高熵陶瓷相拉伸断面图;(b)活 化前高熵陶瓷相拉伸断面图;(c)活化后高熵陶瓷相拉伸断面图

    Figure  12.  SEM image of the tensile fracture surface:(a) Fracture surface SEM image without high-entropy ceramic phase addition; (b) Fracture surface SEM image before activation of the high-entropy ceramic phase; (c) Fracture surface SEM image after activation of the high-entropy ceramic phase.

    图  13  (a)活化前高熵陶瓷与基体截面状态图(b)活化后高熵陶瓷与基体截面状态图

    Figure  13.  (a) Pre-activation state of high-entropy ceramic and matrix cross-section (b) Post-activation state of high-entropy ceramic and matrix cross-section

    表  1  高熵陶瓷粉末与AZ31镁合金熔炼质量

    Table  1.   Melting Mass of High-Entropy Ceramic Powders and AZ31 Magnesium Alloy

    AlloysQuality of AZ31/gQuality of High-entropy ceramic powder/g
    0%HECBs/AZ31(Unactivated)10000
    (Unactivated)
    1%HECBs/AZ31(Unactivated)100010
    (Unactivated)
    2%HECBs/AZ31(Unactivated)100020.4
    (Unactivated)
    1%HECBs/AZ31(Activated)100010
    (Activated)
    2%HECBs/AZ31(Activated)100020.4
    (Activated)
    5%HECBs/AZ31(Unactivated)100052.6
    (Unactivated)
    Note: HECB—High-entropy Bodecaboride
    下载: 导出CSV

    表  2  添加高熵陶瓷前后 AZ31 镁合金极化曲线 的拟合结果

    Table  2.   Fitting Results of Polarization Curves for AZ31 Magnesium Alloy Before and After the Addition of High-Entropy Ceramics.

    Alloys Ecorr/V Icorr/(μA·cm−2) Corrosion Rate
    (mm·a−1)
    0%HECBs/AZ31
    (Unactivated)
    −1.792 6.103×103 1.969×10
    1%HECBs/AZ31
    (Unactivated)
    −1.715 9.516×103 3.071×10
    2%HECBs/AZ31
    (Unactivated)
    −1.426 3.552×102 1.146×10−1
    1%HECBs/AZ31
    (Activated)
    −1.553 1.672×102 5.395×10−2
    2%HECBs/AZ31
    (Activated)
    −1.398 4.958×10 1.959×10−2
    5%HECBs/AZ31
    (Unactivated)
    −1.516 4.686×102 1.512×10−1
    Notes Ecorr represents self - corrosion voltage; Icorr represents self - corrosion curren
    下载: 导出CSV

    表  3  xHECBs/AZ31电化学阻抗谱的拟合结果

    Table  3.   Fitting Results of Electrochemical Impedance Spectroscopy for xHECBs/AZ31.

    Alloys Rs/(Ω·cm2) Rf/(Ω·cm2) CPEf/(F·cm−2) Rct/(Ω·cm2) CPEdl/(F·cm−2) L/(H·cm2) Fitting Percentage/%
    0%HECBs/AZ31(Unactivated) 16.19 8.68 9.5787 e−6 48.19 8.3309 e−6 11.25 95.6
    1%HECBs/AZ31(Unactivated) 10.66 33.63 1.8457 e−5 95.58 2.1758 e−5 30 94.2
    2%HECBs/AZ31(Unactivated) 14.54 110.2 1.1564 e−5 298.9 1.6486 e−5 35.6 96.8
    1%HECBs/AZ31(Activated) 16.65 48.39 3.5798 e−5 169.6 5.0000 e−5 35.25 96.5
    2%HECBs/AZ31
    (Activated)
    30.41 113.2 6.4743 e−6 288.4 1.0842 e−5 44.68 97.6
    5%HECBs/AZ31(Unactivated) 10.27 55.5 7.6560 e−6 134.6 9.0412 e−6 60.34 98.4
    Notes Rs represents the solution resistance; Rf represents the film resistance; Rct represents the charge - transfer resistance; CPEf represents the capacitive effect formed by the NaCl solution and the corrosion product film on the alloy surface; CPEdl represents the capacitive effect formed between the area below the corrosion product film and the metal substrate;L represents the inductance generated after the magnesium alloy is corroded.
    下载: 导出CSV
  • [1] 王建强, 关绍康, 王迎新. RE对Mg-8Zn-4Al-0.3Mn镁合金阻尼性能的影响[J]. 材料科学与工程学报, 2004, (2): 280-283. doi: 10.3969/j.issn.1673-2812.2004.02.030

    WANG J Q, GUAN S K, WANG Y X. Effect of RE on damping properties of Mg-8Zn-4Al-0.3Mn magnesium alloy[J]. Journal of Materials Science and Engineering, 2004, (2): 280-283(in Chinese). doi: 10.3969/j.issn.1673-2812.2004.02.030
    [2] WINZER N, ATRENS A, SONG G, et al. A critical review of the stress corrosion cracking (SCC)of magnesium alloys[J]. Advanced Engineering Materials, 2005, 7(8): 659-693. doi: 10.1002/adem.200500071
    [3] 王晓鸽, 高克玮, 颜鲁春等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.

    WANG X G, GAO K W, YAN L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg -alloy[J]. J. Chin. Soc. Corros. Prot., 2021, 41(3): 335-340(in Chinese).
    [4] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.

    LIU Y X, XU A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating[J]. J. Chin. Soc. Corros. Prot. , 2022, 42: 1034. (in Chinese)
    [5] MARTIN Jönsson, DAN Persson, CHRISTOFER Leygraf. Atmosphericorrosion of field-exposed magnesium alloy AZ91D[J]. Corrosion Science, 2008, 50(5): 1406-1413. doi: 10.1016/j.corsci.2007.12.005
    [6] LIAO J S, HOTTA M. Atmospheric corrosion behavior of field-exposed magnesium alloys: Influences of chemical composition and microstructure[J]. Corrosio-nScience, 2015, 100: 353-364.
    [7] 杨秉烨, 卜少科, 吴博, 等, 挤压态AZ31镁合金板的电化学腐蚀行为[J]. 热加工工艺, 2023, 52(15): 34-37.

    YANG B Y, BU S K, WU B, et a. Electrochemical corrosion b-ehavior of extruded AZ31 magnesium alloy plate[J]. Hot W-orking Technology, 2023. (in Chinese)
    [8] 周元庆. 镁钕合金防腐蚀性能研究[D]. 上海海洋大学, 2023.

    ZHOU Y Q. Research on the corrosion resistance of magne-sium neodymium alloy[D]. Shang hai Ocean University, 2023.
    [9] 刘乃华, 华振虎, 蓝永庭. 石墨烯对AZ31镁合金在模拟体液中腐蚀性能的影响[J]. 有色金属工程, 2023, 13(6): 1-8. doi: 10.3969/j.issn.2095-1744.2023.06.001

    LIU N H, HUA Z H, LAN Y T. Effect of graphene on corrosion properties of AZ31 magnesium alloy in simulated body fluid[J]. Nonferrous Metals Engineering, 2023, 13(6): 1-8(in Chinese). doi: 10.3969/j.issn.2095-1744.2023.06.001
    [10] 张鹏程. 氮缺位Ti2AlN颗粒制备及其增强AE44镁基复合材料的研究[D]. 北京交通大学, 2021.

    ZHANG P C. Preparation of nitrogen-deficient Ti2AlN particles and research on its reinforced AE44 magnesium matrix composites[D]. Beijing Jiaotong University, 2021. (in Chinese)
    [11] DONG L, MI G, LI C, et al. Effects of SiC particle volum-e fraction on microstructure and mechancial properties of Si-Cp/6061Al composites[J]. Integrated Ferroelectrics, 2020, 210(1): 215-226. doi: 10.1080/10584587.2020.1728678
    [12] 叶东明, 韩鹏, 王文, 等. Co CrFeNi/6061Al复合材料冷喷摩擦复合增材制造及增强相影响规律研究[J]. 塑性工程学报, 2024, 31(3): 206-213. doi: 10.3969/j.issn.1007-2012.2024.03.024

    YE D M, HAN P, WANG W, et al. Research on cold spray friction composite additive manufacturing of CoCrFeNi/6061Al composites and the influence law of reinforcement phase[J]. Journal of Plasticity Engineering, 2024, 31(3): 206-213(in Chinese). doi: 10.3969/j.issn.1007-2012.2024.03.024
    [13] MA Y J, MA Y, WANG Q S, et al. High-entropy energy materials: challenges and new opportunities[J]. Energy& Environmental Science, 2021, 14(5): 2883-2905
    [14] 谢鸿翔, 项厚政, 马瑞奇等. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 61-68. doi: 10.11896/cldb.20070201

    XIE H X, XIANG H H, MA R Q, et al. Research progress of high-entropy ceramic materials[J]. Materials Reports, 2022, 36(6): 61-68(in Chinese). doi: 10.11896/cldb.20070201
    [15] WINZER N, ATRENS A, SONG, G. et al. A Critical Review of t-he Stress Corrosion Cracking(SCC)of Magnesium Alloys[J]. Advanced Engineering Materials, 2005, 7(8): 659-693 doi: 10.1002/adem.200500071
    [16] SONG G, Atrens A. Understanding magnesium corrosioa framework for improved alloy performance[J]. Advanced engineering materials, 2003, 5(12): 837-858. doi: 10.1002/adem.200310405
    [17] XING W Z, CUI J, GU C, et al. Superhard high-entropy decaboride with high electrical conductivity[J]. Scripta Materialia, 2022, 220: 114938. doi: 10.1016/j.scriptamat.2022.114938
    [18] DU X, D W, WANG Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets resinforced magnesium matrix composites[J]. Materials Science& Engineering A, 2011, 7(11): 633-642.
    [19] WANG N G, WANG R C, PENG C Q, et al. Corrosion behavior of Mg-Al-Pb and Mg-Al-Pb-Zn-Mn alloys in 3.5% NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10): 1936-1943. doi: 10.1016/S1003-6326(09)60398-8
    [20] LIU Z Y, LI X G, CHENG Y F. Electrochemical stat-e conversion model for occurrence of pitting corrosion on acathodically polarized carbon steel in a near-neutral pH solution[J]. Electrochimica Acta, 2011, 56(11): 4167-4175. doi: 10.1016/j.electacta.2011.01.100
    [21] BRETT C M A, DIAS L, TRINDADE B, et al. Characterisation by EIS of ternary Mg alloys synthesised by mechanical alloying[J]. Electrochimica Acta, 2006, 51(8-9): 1752-1760. doi: 10.1016/j.electacta.2005.02.124
    [22] MAKAR G L, KRUGER J L. Corrosion of magnesium[J]. International materials reviews, 1993, 38(3): 138-153. doi: 10.1179/imr.1993.38.3.138
    [23] CAO C N. Principle of corrosion electrochemistry[M], Press CI. Chemical Industry Press Beijing, 2004.
    [24] GUADARRAMA-MUNOZ F, MENDOZA-FLORES J, DURAN ROMEROR, et al. Electrochemical study on magnesium anodes in Na-Cl and CaSO4–Mg (OH) 2aqueous solutions[J]. Electrochimi-ca acta, 2006, 51(8-9):
    [25] 王新印. 纯镁腐蚀行为研究: 基于扫描电化学显微镜产生/收集和反馈模式[D]. 浙江大学, 2015.

    WANG X Y. Study on the corrosion behavior of pure- magnesium: Based on generation/collection and feedback modesof scanning electrochemical microscopy [D]. Zhejiang Univ-ersity, 2015. (in Chinese)
    [26] 杨汉章, 聂慧慧, 刘群峰, 等. 应力三轴度对AZ31镁合金断裂应变的影响[J]. 热加工工艺, 2024, 53(10): 133-136.

    YANG H Z, NIE H H, LIU QF, et al. Effect of stress triaxiality on fracture strain of AZ31 magnesium alloy[J]. Hot Working Technology, 2024, 53(10): 133-136.
    [27] 李淑波, 吴海荣, 王朝辉, 等. Mg-Zn-Gd准晶增强AZ31镁基复合材料的摩擦磨损性能[J]. 中国有色金属学报, 2016, 26(4): 732-738.

    LI S B, WU H R, WANG Z H, et al. Friction and wear p-roperties of Mg-Zn-Gd quasicrystal reinforced AZ31 magne-sium matrix composites[J]. The Chinese Journalof Nonferrous Metals, 2016, 26(4): 732-738.
    [28] 杨钊. 固相合成SCFs/AZ31镁基复合材料的组织演变及强化机制[D]. 哈尔滨理工大学, 2022.

    YANG Z. Microstructure evolution and strengthening mecha-nism of SCFs/AZ31 magnesium matrix composites synthesized by solid-state method [D]. Harbin University of Science and Technology, 2022.
  • 加载中
计量
  • 文章访问数:  27
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-31
  • 修回日期:  2024-09-11
  • 录用日期:  2024-09-22
  • 网络出版日期:  2024-10-19

目录

    /

    返回文章
    返回