留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiB2/Al-Cu-Li复合材料时效析出及组织演变对力学性能的影响

张虎 刘福源 郭恩宇 陈宗宁 康慧君 王同敏

张虎, 刘福源, 郭恩宇, 等. TiB2/Al-Cu-Li复合材料时效析出及组织演变对力学性能的影响[J]. 复合材料学报, 2023, 40(12): 6819-6829. doi: 10.13801/j.cnki.fhclxb.20230327.001
引用本文: 张虎, 刘福源, 郭恩宇, 等. TiB2/Al-Cu-Li复合材料时效析出及组织演变对力学性能的影响[J]. 复合材料学报, 2023, 40(12): 6819-6829. doi: 10.13801/j.cnki.fhclxb.20230327.001
ZHANG Hu, LIU Fuyuan, GUO Enyu, et al. Effects of aging precipitation and microstructure evolution on mechanical properties of TiB2/Al-Cu-Li composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6819-6829. doi: 10.13801/j.cnki.fhclxb.20230327.001
Citation: ZHANG Hu, LIU Fuyuan, GUO Enyu, et al. Effects of aging precipitation and microstructure evolution on mechanical properties of TiB2/Al-Cu-Li composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6819-6829. doi: 10.13801/j.cnki.fhclxb.20230327.001

TiB2/Al-Cu-Li复合材料时效析出及组织演变对力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20230327.001
基金项目: 国家自然科学基金(52022017;U22A20174;51974058;51927801)
详细信息
    通讯作者:

    郭恩宇,博士,教授,博士生导师,研究方向为镁、铝合金及其复合材料、金属凝固、4D材料科学 E-mail: eyguo@dlut.edu.cn

  • 中图分类号: TB331

Effects of aging precipitation and microstructure evolution on mechanical properties of TiB2/Al-Cu-Li composites

Funds: National Natural Science Foundation of China (52022017; U22A20174; 51974058; 51927801)
  • 摘要: 研究了TiB2/Al-Cu-Li复合材料T6工艺的微观组织演变和时效析出对力学性能的影响。通过气氛保护熔炼法制备了TiB2/Al-Cu-Li复合材料。结果表明:在铸态合金的微观组织中,TiB2颗粒和共晶相主要分布在晶界周围。均匀化处理后,大部分共晶相回溶。轧制变形后,TiB2颗粒沿着轧制方向被拉长,产生了大量位错。固溶处理削弱了轧制产生的Brass织构和S织构,回溶了轧制产生的析出相。在175℃温度下进行时效,欠时效过程中,δ'(Al3Li)/β'(Al3Zr)为主要析出相。随着时效时间的增加,到22 h峰时效时,T1相为主要析出强化相。通过位错强化和析出强化的共同作用,随时效时间增加,屈服强度和抗拉强度先上升后下降,延伸率持续下降。复合材料峰时效的极限抗拉强度为562.7 MPa,屈服强度为475.9 MPa,延伸率为4.5%。

     

  • 图  1  TiB2/Al-Cu-Li复合材料微观组织及相分布:(a) 铸态组织背散射电子(BSE)图像;(b) 均匀态组织SEM图像;((c), (d)) 图1(a)和图1(b)中高倍BSE微观组织和相应的EDS元素分析

    Figure  1.  Microstructure and phase distribution of TiB2/Al-Cu-Li composites: (a) Backscattered electron (BSE) image of as-cast structure; (b) SEM image of homogeneous structure; ((c), (d)) High magnification BSE microstructure and corresponding EDS elements analysis in Fig.1(a) and Fig.1(b)

    图  2  TiB2/Al-Cu-Li复合材料微观组织及相分布:(a) 热轧态组织BSE图像;(b) 固溶态组织BSE图像;((c), (d)) 图2(a)和图2(b)中高倍BSE微观组织和EDS元素分析

    Figure  2.  Microstructure and phase distribution of TiB2/Al-Cu-Li composites: (a) BSE image of hot-rolled state; (b) BSE image of solid solution state; ((c), (d)) High magnification BSE microstructure and EDS elements analysis in Fig.2(a) and Fig.2(b)

    ND—Normal direction; RD—Rolling direction

    图  3  TiB2/Al-Cu-Li复合材料电子背向散射衍射(EBSD)晶粒取向分布反极图(IPF)和晶粒尺寸统计:((a), (c)) 热轧态;((b), (d)) 固溶态

    Figure  3.  Electron backscatter diffraction (EBSD) grain orientation distribution inverse pole figure (IPF) and grain size statistics of TiB2/Al-Cu-Li composites: ((a), (c)) Hot rolled state; ((b), (d)) Solid solution state

    d—Diameter

    图  4  TiB2/Al-Cu-Li复合材料EBSD变形组织分布图和取向分布函数(ODF)图:((a)~(c)) 热轧态;((d)~(f)) 固溶态

    Figure  4.  EBSD deformation microstructure distribution and orientation distribution function (ODF) maps of TiB2/Al-Cu-Li composites: ((a)-(c)) Hot rolled state; ((d)-(f)) Solid solution state

    φ1, φ, φ2—Euler angle

    图  5  TiB2/Al-Cu-Li复合材料不同时效时间的拉伸性能

    Figure  5.  Tensile properties of TiB2/Al-Cu-Li composites with different aging times

    UTS—Ultimate tensile strength; YS—Yield strength; EL—Elongation

    图  6  TiB2/Al-Cu-Li复合材料TEM图像:(a) 8 h欠时效;(b) 22 h峰时效;(c) 峰时效T1相的HRTEM图像(图6(c1)为图6(c)的快速傅里叶变化(FFT)图像);(d) 图6(c)中T1相附近的位错的反傅里叶变化

    Figure  6.  TEM images of TiB2/Al-Cu-Li composites: (a) Under-ageing at 8 h; (b) Peak-ageing at 22 h; (c) HRTEM image of the peak-aged T1 phase (Fig.6(c1) is fast Fourier transform (FFT) image of Fig.6(c)); (d) Inverse Fourier filtered of the dislocations near the T1 phase in Fig.6(c)

    图  7  TiB2/Al-Cu-Li复合材料不同时效析出时间段屈服强度增长分数

    Figure  7.  Yield strength increase fraction of TiB2/Al-Cu-Li composites at different aging precipitation times

    表  1  TiB2/Al-Cu-Li复合材料的化学成分

    Table  1.   Chemical composition of TiB2/Al-Cu-Li composites

    Element Content/wt%
    Li 1.32
    Cu 4.43
    Mg 0.39
    Mn 0.23
    Ag 0.39
    Zn 0.27
    Ti 1.35
    B 0.57
    Zr 0.02
    Al Bal
    下载: 导出CSV
  • [1] ZHANG X S, CHEN Y J, HU J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences,2018,97:22-34. doi: 10.1016/j.paerosci.2018.01.001
    [2] 杨守杰, 陆政, 苏彬, 等. 铝锂合金研究进展[J]. 材料工程, 2001, 29(5):44-47. doi: 10.3969/j.issn.1001-4381.2001.05.012

    YANG Shoujie, LU Zheng, SU Bin, et al. Development of aluminum-lithium alloys[J]. Journal of Materials Engi-neering,2001,29(5):44-47(in Chinese). doi: 10.3969/j.issn.1001-4381.2001.05.012
    [3] ABD EL-ATY A, XU Y, GUO X Z, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review[J]. Journal of Advanced Research,2018,10:49-67. doi: 10.1016/j.jare.2017.12.004
    [4] NEIBECKER P, LEITNER M, KUSHAIM M, et al. L12 ordering and δ′ precipitation in Al-Cu-Li[J]. Scientific Reports,2017,7(1):3254. doi: 10.1038/s41598-017-03203-z
    [5] ARAULLO-PETERS V, GAULT B, DE GEUSER F, et al. Microstructural evolution during ageing of Al-Cu-Li-x alloys[J]. Acta Materialia,2014,66:199-208. doi: 10.1016/j.actamat.2013.12.001
    [6] TSIVOULAS D, ROBSON J D. Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al-Cu-Li alloys[J]. Acta Materialia,2015,93:73-86. doi: 10.1016/j.actamat.2015.03.057
    [7] DWYER C, WEYLAND M, CHANG L Y, et al. Combined electron beam imaging and ab initio modeling of T1 precipitates in Al-Li-Cu alloys[J]. Applied Physics Letters,2011,98(20):201909. doi: 10.1063/1.3590171
    [8] HIROSAWA S, SATO T, KAMIO A. Effects of Mg addition on the kinetics of low-temperature precipitation in Al-Li-Cu-Ag-Zr alloys[J]. Materials Science and Engineering: A,1998,242(1):195-201.
    [9] CHEN X X, MA X W, XI H K, et al. Effects of heat treatment on the microstructure and mechanical properties of extruded 2196 Al-Cu-Li alloy[J]. Materials & Design,2020,192:108746.
    [10] KIM N J, LEE E W. Effect of T1 precipitate on the anisotropy of Al-Li alloy 2090[J]. Acta Metallurgica et Materialia,1993,41(3):941-948. doi: 10.1016/0956-7151(93)90028-Q
    [11] YE F, YU Y X, ZHANG B S, et al. Influence of pre-stretching at ambient and cryogenic temperatures on dislocation configuration, precipitation behaviour, and mechanical properties of 2195 Al-Cu-Li alloy[J]. Journal of Materials Research and Technology,2023,22:2983-2995. doi: 10.1016/j.jmrt.2022.12.126
    [12] APPS P J, BERTA M, PRANGNELL P B. The effect of dispersoids on the grain refinement mechanisms during deformation of aluminium alloys to ultra-high strains[J]. Acta Materialia,2005,53(2):499-511. doi: 10.1016/j.actamat.2004.09.042
    [13] 马宗义, 毕敬, 吕毓雄, 等. SiCp/Al-Li复合材料的微观结构性能及断裂特征[J]. 复合材料学报, 1994, 11(1):43-47.

    MA Zongyi, BI Jing, LYU Yuxiong, et al. Microstructural properties and fracture characteristics of SiCp/Al-Li composites[J]. Acta Materiae Compositae Sinica,1994,11(1):43-47(in Chinese).
    [14] LI J Y, LYU S L, WU S S, et al. Effects of nanoparticles on the solution treatment and mechanical properties of nano-SiCp/Al-Cu composites[J]. Journal of Materials Processing Technology,2021,296:117195. doi: 10.1016/j.jmatprotec.2021.117195
    [15] 赵敏, 姜龙涛, 武高辉. 挤压铸造TiB2P/Al复合材料室温力学性能[J]. 复合材料学报, 2007, 24(5):1-5. doi: 10.3321/j.issn:1000-3851.2007.05.001

    ZHAO Min, JIANG Longtao, WU Gaohui. Ambient mechanical properties of TiB2P/Al composites by squeeze casting[J]. Acta Materiae Compositae Sinica,2007,24(5):1-5(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.05.001
    [16] SHEN Y W, LI X F, HONG T R, et al. Effects of TiB2 particles on microstructure and mechanical properties of an in-situ TiB2-Al-Cu-Li matrix composite[J]. Materials Science and Engineering: A,2016,655:265-268. doi: 10.1016/j.msea.2015.12.104
    [17] WU L, ZHOU C, LI X F, et al. Effects of TiB2 particles on artificial aging response of high-Li-content TiB2/Al-Li-Cu composite[J]. Journal of Alloys and Compounds,2018,749:189-196. doi: 10.1016/j.jallcom.2018.03.299
    [18] WU L, LI X F, HAN G Y, et al. Precipitation behavior of the high-Li-content in-situ TiB2/Al-Li-Cu composite[J]. Materials Characterization,2017,132:215-222. doi: 10.1016/j.matchar.2017.08.015
    [19] ZHAO B W, YANG Q, WU L, et al. Effects of nanosized particles on microstructure and mechanical properties of an aged in-situ TiB2/Al-Cu-Li composite[J]. Materials Science and Engineering: A,2019,742:573-583. doi: 10.1016/j.msea.2018.11.032
    [20] ZHAO K, LIU M M, KANG H J, et al. Formation mechanism of TiB2 nanoparticles and development of TiB2P/6201 nanocomposites as a neoteric conducting material[J]. Journal of Alloys and Compounds,2022,916:165461. doi: 10.1016/j.jallcom.2022.165461
    [21] DUAN S W, LIU Z L, GUO F Q, et al. Precipitates evolution during artificial aging and their influence on mechanical properties of a cast Al-Cu-Li alloy[J]. Journal of Materials Research and Technology,2023,22:2502-2517. doi: 10.1016/j.jmrt.2022.12.123
    [22] CHEN A T, PENG Y, ZHANG L, et al. Microstructural evolution and mechanical properties of cast Al-3Li-1.5Cu-0.2Zr alloy during heat treatment[J]. Materials Characterization,2016,114:234-242. doi: 10.1016/j.matchar.2016.03.007
    [23] DECREUS B, DESCHAMPS A, DE GEUSER F, et al. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys[J]. Acta Materialia,2013,61(6):2207-2218. doi: 10.1016/j.actamat.2012.12.041
    [24] 马晓光, 李韶颖, 韩宝帅, 等. 时效前的预变形对喷射成形2195铝锂合金组织与性能的影响[J]. 中国有色金属学报, 2022, 32(1):15-26.

    MA Xiaoguang, LI Shaoying, HAN Baoshuai, et al. Effect of pre-stretch on microstructure and properties of 2195 Al-Li alloy prepared by spray forming[J]. The Chinese Journal of Nonferrous Metals,2022,32(1):15-26(in Chinese).
    [25] LI L W, HAN Z H, GAO M Q, et al. Microstructures, mechanical properties, and aging behavior of hybrid-sized TiB2 particulate-reinforced 2219 aluminum matrix composites[J]. Materials Science and Engineering: A,2022,829:142180. doi: 10.1016/j.msea.2021.142180
    [26] WU Y H, LIU B X, KANG H J, et al. Ultrasound-assisted dispersion of TiB2 nanoparticles in 7075 matrix hybrid composites[J]. Materials Science and Engineering: A,2022,840:142958. doi: 10.1016/j.msea.2022.142958
    [27] CUI S, ZHANG C S, LIU M F, et al. Precipitation behavior of an Al-Cu-Li-X alloy and competing relationships among precipitates at different aging temperatures[J]. Materials Science and Engineering: A,2021,814:141125. doi: 10.1016/j.msea.2021.141125
    [28] ZHAO Y X, LI H, LIU Y, et al. The microstructures and mechanical properties of a highly alloyed Al-Zn-Mg-Cu alloy: The role of Cu concentration[J]. Journal of Materials Research and Technology,2022,18:122-137. doi: 10.1016/j.jmrt.2022.02.071
    [29] LU B, LI Y, YU W, et al. Strength and ductility enhancement of twin-roll cast Al-Zn-Mg-Cu alloys with high solidification intervals through a synergistic segregation-controlling strategy[J]. Journal of Materials Science & Technology,2023,142:225-239.
    [30] DUMITRASCHKEWITZ P, TUNES M A, QUICK C R, et al. MEMS-based in situ electron-microscopy investigation of rapid solidification and heat treatment on eutectic Al-Cu[J]. Acta Materialia,2022,239:118225.
    [31] 林波, 王明辉, 张文馨, 等. 仿贝壳TiB2/Al-Cu层状复合材料的组织及其力学性能[J]. 复合材料学报, 2022, 39(7):3554-3563.

    LIN Bo, WANG Minghui, ZHANG Wenxin, et al. Microstructure and mechanical properties of nacre-inspired TiB2/Al-Cu composites[J]. Acta Materiae Compositae Sinica,2022,39(7):3554-3563(in Chinese).
    [32] GUO F, HUANG W J, YANG X S, et al. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process[J]. Journal of Materials Science & Technology,2022,110:198-209.
    [33] CHEN Z W, ZHAO K, FAN L. Combinative hardening effects of precipitation in a commercial aged Al-Cu-Li-X alloy[J]. Materials Science and Engineering: A,2013,588:59-64. doi: 10.1016/j.msea.2013.09.016
    [34] GILMORE D L, STARKE E A. Trace element effects on precipitation processes and mechanical properties in an Al-Cu-Li alloy[J]. Metallurgical and Materials Transactions A,1997,28(7):1399-1415. doi: 10.1007/s11661-997-0203-6
    [35] DAN C Y, CHEN Z, JI G, et al. Microstructure study of cold rolling nanosized in-situ TiB2 particle reinforced Al composites[J]. Materials & Design,2017,130:357-365.
    [36] YE F, MAO L, RONG J, et al. Influence of different rolling processes on microstructure and strength of the Al-Cu-Li alloy AA2195[J]. Progress in Natural Science: Materials International,2022,32(1):87-95. doi: 10.1016/j.pnsc.2021.10.009
    [37] TANG Y, XIAO D H, HUANG L P, et al. Dynamic microstructural evolution of Al-Cu-Li alloys during hot deformation[J]. Materials Characterization,2022,191:112135. doi: 10.1016/j.matchar.2022.112135
    [38] 马晓光, 杨玉艳, 罗锐, 等. 航空航天2050 Al-Cu-Li合金的热变形行为[J]. 航空材料学报, 2021, 41(5):44-50. doi: 10.11868/j.issn.1005-5053.2021.000014

    MA Xiaoguang, YANG Yuyan, LUO Rui, et al. Investigation on hot deformation behavior of 2050 Al-Cu-Li alloy[J]. Journal of Aeronautical Materials,2021,41(5):44-50(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000014
    [39] DENG Y L, XU J J, CHEN J Q, et al. Effect of double-step homogenization treatments on the microstructure and mechanical properties of Al-Cu-Li-Zr alloy[J]. Materials Science and Engineering: A,2020,795:139975. doi: 10.1016/j.msea.2020.139975
    [40] LIU Q B, FAN G L, TAN Z Q, et al. Precipitation of Al3Zr by two-step homogenization and its effect on the recrystallization and mechanical property in 2195 Al-Cu-Li alloys[J]. Materials Science and Engineering: A,2021,821:141637. doi: 10.1016/j.msea.2021.141637
    [41] MAURICE C, DRIVER J H. Hot rolling textures of f.c.c. metals—Part I. Experimental results on Al single and polycrystals[J]. Acta Materialia,1997,45(11):4627-4638. doi: 10.1016/S1359-6454(97)00115-8
    [42] ZHAO Q, LIU Z Y, ABDEL WAHAB M. Enhanced brass texture of hot-rolled Al-4Cu-1.6Mg alloy by 0.1% Zr addition[J]. Materials Characterization,2020,169:110643. doi: 10.1016/j.matchar.2020.110643
    [43] BOWEN A W. Texture development in high strength aluminium alloys[J]. Materials Science and Technology,1990,6(11):1058-1071.
    [44] CONTREPOIS Q, MAURICE C, DRIVER J H. Hot rolling textures of Al-Cu-Li and Al-Zn-Mg-Cu aeronautical alloys: Experiments and simulations to high strains[J]. Materials Science and Engineering: A,2010,527(27):7305-7312.
    [45] JO H H, HIRANO K I. Precipitation processes in Al-Cu-Li alloy studied by DSC [J]. Materials Science Forum, 1987, 13-14: 377-382.
    [46] JIANG B, CAO F H, WANG H S, et al. Effect of aging time on the microstructure evolution and mechanical property in an Al-Cu-Li alloy sheet[J]. Materials Science and Engineering: A, 2019, 740-741: 157-164.
    [47] DUAN S W, GUO F Q, WU D T, et al. Influences of pre-rolling deformation on aging precipitates and mechanical properties for a novel Al-Cu-Li alloy[J]. Journal of Materials Research and Technology,2021,15:2379-2392. doi: 10.1016/j.jmrt.2021.09.063
    [48] WU H, WEN S P, HUANG H, et al. Effects of homogenization on precipitation of Al3(Er, Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy[J]. Materials Science and Engineering: A,2017,689:313-322. doi: 10.1016/j.msea.2017.02.071
    [49] GAO Z, CHEN J H, DUAN S Y, et al. Complex precipitation sequences of Al-Cu-Li-(Mg) alloys characterized in relation to thermal ageing processes[J]. Acta Metallurgica Sinica (English Letters),2016,29(1):94-103. doi: 10.1007/s40195-016-0366-5
    [50] MA J, LIU X C, YAN D S, et al. A novel GP-Li precursor and the correlated precipitation behaviors in Al-Cu-Li alloys with different Cu/Li ratio[J]. Acta Materialia,2023,243:118442. doi: 10.1016/j.actamat.2022.118442
    [51] ZENG G J, LI H R, DENG S X, et al. Detailed investigation on microstructure and strengthening contribution of Al-xCu-1.3Li-X alloy sheets[J]. Materials Characterization,2023,205:113278. doi: 10.1016/j.matchar.2023.113278
    [52] DONNADIEU P, SHAO Y, DE GEUSER F, et al. Atomic structure of T1 precipitates in Al-Li-Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering[J]. Acta Materialia,2011,59(2):462-472. doi: 10.1016/j.actamat.2010.09.044
    [53] KUMAR K S, BROWN S A, PICKENS J R. Microstructural evolution during aging of an AlCuLiAgMgZr alloy[J]. Acta Materialia,1996,44(5):1899-1915. doi: 10.1016/1359-6454(95)00319-3
    [54] GABLE B M, ZHU A W, CSONTOS A A, et al. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy[J]. Journal of Light Metals,2001,1(1):1-14. doi: 10.1016/S1471-5317(00)00002-X
    [55] DUAN S Y, WU C L, GAO Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys[J]. Acta Materialia,2017,129:352-360. doi: 10.1016/j.actamat.2017.03.018
    [56] LIN C, WU S S, LYU S L, et al. Effects of ultrasonic vibration and manganese on microstructure and mechanical properties of hypereutectic Al-Si alloys with 2% Fe[J]. Intermetallics,2013,32:176-183. doi: 10.1016/j.intermet.2012.09.001
    [57] DU R, GAO Q, WU S S, et al. Influence of TiB2 particles on aging behavior of in situ TiB2/Al-4.5Cu composites[J]. Materials Science and Engineering: A,2018,721:244-250. doi: 10.1016/j.msea.2018.02.099
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  287
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-02
  • 修回日期:  2023-03-07
  • 录用日期:  2023-03-19
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回