留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP-钢筋混合配筋混凝土板的抗爆性能

韩泽斌 屈文俊

韩泽斌, 屈文俊. GFRP-钢筋混合配筋混凝土板的抗爆性能[J]. 复合材料学报, 2023, 40(12): 6718-6728. doi: 10.13801/j.cnki.fhclxb.20230404.001
引用本文: 韩泽斌, 屈文俊. GFRP-钢筋混合配筋混凝土板的抗爆性能[J]. 复合材料学报, 2023, 40(12): 6718-6728. doi: 10.13801/j.cnki.fhclxb.20230404.001
HAN Zebin, QU Wenjun. Explosion resistance of hybrid GFRP-steel reinforced concrete slab[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6718-6728. doi: 10.13801/j.cnki.fhclxb.20230404.001
Citation: HAN Zebin, QU Wenjun. Explosion resistance of hybrid GFRP-steel reinforced concrete slab[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6718-6728. doi: 10.13801/j.cnki.fhclxb.20230404.001

GFRP-钢筋混合配筋混凝土板的抗爆性能

doi: 10.13801/j.cnki.fhclxb.20230404.001
基金项目: 国家自然科学基金(51678430)
详细信息
    通讯作者:

    屈文俊,博士,教授,博士生导师,研究方向为混凝土结构耐久性、混合配筋混凝土结构等 E-mail: quwenjun.tj@tongji.edu.cn

  • 中图分类号: TB333;TU377;O383

Explosion resistance of hybrid GFRP-steel reinforced concrete slab

Funds: National Natural Science Foundation of China (51678430)
  • 摘要: 混合配筋混凝土结构将钢筋和纤维复合材料(FRP)筋混合配置于混凝土,可较好地解决钢筋混凝土(SRC)结构的耐久性问题和FRP筋混凝土结构脆性破坏的问题,已广泛应用于土木工程中。为了研究混合配筋混凝土板的抗爆性能,开展了不同比例距离下混合配筋混凝土板和钢筋混凝土板的非接触爆炸试验,对比分析两种板抗爆性能差异和确定混合配筋混凝土板的破坏模式。结果表明:比例距离为0.684 m/kg1/3时,混合配筋混凝土板位移峰值比钢筋混凝土板位移峰值大19.2%,但残余变形比钢筋混凝土板残余变形小27.3%。引入爆炸恢复指数评估混凝土板爆炸恢复能力,混合配筋混凝土板爆炸恢复指数大于钢筋混凝土板,混合配筋混凝土板有着出色的爆炸后恢复能力。混合配筋混凝土板背爆面破坏出现多条竖向裂缝和板对角线处斜裂缝,而钢筋混凝土板仅出现一条较宽的竖向主裂缝,多条斜裂缝向外辐射。混合配筋混凝土板随着比例距离的减小,破坏模式从整体弯曲破坏发展为整体弯曲破坏和局部混凝土破坏并存。结合试验数据提出混合配筋混凝土板最大支座转角θ的预测公式。为混合配筋混凝土板抗爆设计提供参考。

     

  • 图  1  混合配筋混凝土板配筋示意图

    Figure  1.  Reinforcement diagram of hybrid-RC slab

    Φ—Diameter

    图  2  GFRP筋受拉应力-应变曲线

    Figure  2.  Tensile stress-strain curve of GFRP reinforcement

    图  3  试验布置

    Figure  3.  Test arrangement

    PCB—Printed circuit board; TNT—Trinitrotoluene

    图  4  位移传感器布置

    Figure  4.  Displacement sensor arrangement

    图  5  应变片位置

    Figure  5.  Position of strain gauge

    图  6  入射超压时程曲线

    Figure  6.  Incident overpressure time history curves

    Z—Proportional distance

    图  7  不同加筋混凝土板位移时程曲线

    Figure  7.  Displacement time history curves of concrete slabs with different reinforcements

    图  8  不同加筋混凝土板爆炸恢复指数

    Figure  8.  Explosion recovery index of concrete slabs with different reinforcements

    图  9  不同加筋混凝土板板破坏模式 (Z=0.684 m/kg1/3)

    Figure  9.  Failure modes of concrete slabs with different reinforcements (Z=0.684 m/kg1/3)

    图  10  不同加筋混凝土板板破坏模式 (Z=0.522 m/kg1/3)

    Figure  10.  Failure modes of concrete slabs with different reinforcements (Z=0.522 m/kg1/3)

    图  11  不同比例距离下混合配筋混凝土板位移时程曲线

    Figure  11.  Displacement time history of hybrid-RC slab under different scale distances

    图  12  不同比例距离下混合配筋混凝土板跨中位移

    Figure  12.  Mid-span displacement of hybrid-RC slab under different scale distances

    图  13  混合配筋混凝土板最大支座转角拟合曲线

    Figure  13.  Fitting curve of maximum support angle of hybrid-RC slab

    图  14  混合配筋混凝土板爆炸恢复指数

    Figure  14.  Explosion recovery index of hybrid-RC slab

    图  15  混合配筋混凝土板损伤发展

    Figure  15.  Damage development of hybrid-RC slabs

    图  16  不同配筋率混凝土板破坏模式

    Figure  16.  Failure modes of concrete slabs with different reinforcement ratios

    表  1  非接触爆炸板试件

    Table  1.   Non-contact explosion test specimen

    Specimen numberType of
    reinforcement
    Reinforcement
    ratio ρ/%
    TNT
    /kg
    Standoff distance
    /m
    Scale
    distance
    /(m·kg−1/3)
    H1-1GFRP-Steel0.5321.60.80.684
    H1-2GFRP-Steel0.5322.40.80.598
    H1-3GFRP-Steel0.5322.80.80.568
    H1-4GFRP-Steel0.5323.60.80.522
    H1-5GFRP-Steel0.5324.60.80.481
    H2-1GFRP-Steel1.0161.60.80.684
    H2-2GFRP-Steel1.0163.60.80.522
    S1-1Steel0.5321.60.80.684
    S1-2Steel0.5323.60.80.522
    Notes: GFRP—Glass fiber reinforced polymer; TNT—Trinitrotoluene; H stands for hybrid GFRP-steel-reinforced concrete (hybrid-RC) slab; S stands for steel-reinforced concrete (SRC) slab; The first numerical number represents different reinforcement ratios, and the second numerical number represents different scale distances.
    下载: 导出CSV

    表  2  钢筋力学性能

    Table  2.   Mechanical properties of steel reinforcement

    Type of steel barElastic modulus/
    GPa
    Yield strength/
    MPa
    Tensile strength
    /MPa
    Yield strain/%Ultimate strain
    /%
    HRB400 E2094586330.22>10
    下载: 导出CSV

    表  3  GFRP筋力学性能

    Table  3.   Mechanical properties of GFRP reinforcement

    FRP barElastic modulus/
    GPa
    Tensile
    strength/MPa
    Ultimate
    strain/%
    GFRP49.410702.4
    Note: FRP—Fiber reinforced polymer.
    下载: 导出CSV

    表  4  入射超压

    Table  4.   Incident overpressure

    Scale distance/
    (m·kg−1/3)
    Test value/
    MPa
    Empirical formula
    value/MPa
    Error/%
    1.2820.5020.45410.57
    1.1200.6780.61610.06
    1.0640.780.69312.55
    0.9790.9520.82615.25
    下载: 导出CSV

    表  5  不同加筋混凝土板应变峰值

    Table  5.   Peak strain of concrete slabs with different reinforcements

    Specimen numberScale distance/
    (m·kg−1/3)
    Peak value of point 1Peak value of point 2
    H1-10.6841.20×10−22.82×10−3
    S1-10.6841.06×10−22.44×10−3
    H1-40.5222.36×10−26.75×10−3
    S1-20.5222.19×10−26.09×10−3
    下载: 导出CSV

    表  6  不同加筋混凝土板跨中位移数据

    Table  6.   Mid-span displacement data of concrete slabswith different reinforcements

    Specimen numberScale distance/
    (m·kg−1/3)
    Maximum
    displacement/
    mm
    Residual
    deformation/
    mm
    H1-10.68431 8
    S1-10.6842611
    H1-40.5229739
    S1-20.5228253
    下载: 导出CSV

    表  7  单向板损伤准则

    Table  7.   Damage criteria for unidirectional slab

    Damage levelDamage criterion
    Lightθmax≤2°
    Moderate2°≤θmax≤5°
    Severe5°≤θmax≤12°
    Collapseθmax≥12°
    Note: θmax—Maximum support angle of the plate.
    下载: 导出CSV

    表  8  不同配筋率混凝土板跨中位移数据

    Table  8.   Mid-span displacement data of concrete slabs with different reinforcement ratios

    Specimen numberReinforcement
    ratio ρ/%
    Scale distance/
    (m·kg−1/3)
    Maximum
    displacement/mm
    Residual
    deformation/mm
    Explosion recovery
    index
    H1-10.5320.68431 80.74
    H2-11.0160.68420 01
    H1-40.5320.52297380.61
    H2-21.0160.52264160.75
    下载: 导出CSV
  • [1] 董恒磊, 李东风, 王代玉. 螺旋缠绕挤压肋FRP筋与混凝土间的粘结性能[J]. 复合材料学报, 2022, 39(11): 5239-5250.

    DONG Henglei, LI Dongfeng, WANG Daiyu. Bond behavior between helically and tightly wound FRP bars and concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5239-5250(in Chinese).
    [2] ZHOU B B, WU R Y, LU S Q, et al. A general numerical model for predicting the flexural behavior of hybrid FRP-steel reinforced concrete beams[J]. Engineering Structures,2021,239:112293. doi: 10.1016/j.engstruct.2021.112293
    [3] LAU D, PAM H J. Experimental study of hybrid FRP reinforced concrete beams[J]. Engineering Structures,2010,32(12):3857-3865. doi: 10.1016/j.engstruct.2010.08.028
    [4] QU W J, ZHANG X L, HUANG H Q. Flexural behavior of concrete beams reinforced with hybrid (GFRP and steel) bars[J]. Journal of Composites for Construction,2009,13(5):350-359. doi: 10.1061/(ASCE)CC.1943-5614.0000035
    [5] KARA I F, AHOUR A F, KÖROĞLU M A. Flexural behavior of hybrid FRP/steel reinforced concrete beams[J]. Compo-site Structures,2015,129:111-121. doi: 10.1016/j.compstruct.2015.03.073
    [6] ARABA A M, ASHOUR A F. Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams[J]. Composites Part B: Engineering,2018,154:321-336. doi: 10.1016/j.compositesb.2018.08.077
    [7] RUAN X J, LU C H, XU K, et al. Flexural behavior and serviceability of concrete beams hybrid-reinforced with GFRP bars and steel bars[J]. Composite Structures,2020,235:111772. doi: 10.1016/j.compstruct.2019.111772
    [8] ZHOU B B, WU R Y, LIU Y Q, et al. Flexural strength design of hybrid FRP-steel reinforced concrete beams[J]. Materials,2021,14(21):6400. doi: 10.3390/ma14216400
    [9] 庞蕾, 屈文俊, 李昂. 混合配筋混凝土梁抗弯计算理论[J]. 中国公路学报, 2016, 29(7):81-88. doi: 10.3969/j.issn.1001-7372.2016.07.010

    PANG Lei, QU Wenjun, LI Ang. Calculation of flexural strength for concrete beams reinforced with hybrid (FRP and steel) bars[J]. China Journal of Highway and Transport,2016,29(7):81-88(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.07.010
    [10] 戚岩. 加筋混凝土构件抗弯统一计算理论研究[D]. 上海: 同济大学, 2018.

    QI Yan. Study on unified flexural calculation theory of reinforced concrete members[D]. Shanghai: Shanghai Tongji University, 2018(in Chinese).
    [11] 刘文博. 加筋混凝土构件抗剪统一计算理论研究[D]. 上海: 同济大学, 2018.

    LIU Wenbo. Study on uniform shear calculation theory for reinforced concrete members[D]. Shanghai: Shanghai Tongji University, 2018(in Chinese).
    [12] 屈俊楠. 加筋混凝土构件抗压弯统一计算理论研究[D]. 上海: 同济大学, 2018.

    QU Junnan. Study on unified calculation theory of reinforced concrete members under eccentric compression[D]. Shanghai: Shanghai Tongji University, 2018(in Chinese).
    [13] 许家婧, 朱鹏, 屈文俊. 钢筋-GFRP筋增强混凝土梁的疲劳力学性能[J]. 复合材料学报, 2022, 39(5):2318-2328. doi: 10.13801/j.cnki.fhclxb.20210809.001

    XU Jiajing, ZHU Peng, QU Wenjun. Fatigue behaviors of steel bars-GFRP bars reinforced concrete beams[J]. Acta Materiae Compositae Sinica,2022,39(5):2318-2328(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210809.001
    [14] SUN Z Y, WU G, ZHANG J, et al. Experimental study on concrete columns reinforced by hybrid steel-fiber reinforced polymer (FRP) bars under horizontal cyclic loading[J]. Construction and Building Materials,2017,130:202-211. doi: 10.1016/j.conbuildmat.2016.10.001
    [15] IBRAHIM A I, WU G, SUN Z Y. Experimental study of cyclic behavior of concrete bridge columns reinforced by steel basalt-fiber composite bars and hybrid stirrups[J]. Journal of Composites for Construction, 2017, 21(2): 04016091.
    [16] 杜修力, 王作虎, 詹界东. 预应力FRP筋混凝土梁的抗震性能试验研究[J]. 土木工程学报, 2012, 45(2):43-50. doi: 10.15951/j.tmgcxb.2012.02.016

    DU Xiuli, WANG Zuohu, ZHAN Jiedong. Experimental studies on the seismic performance of concrete beams prestressed with FRP tendons[J]. China Civil Engineering Journal,2012,45(2):43-50(in Chinese). doi: 10.15951/j.tmgcxb.2012.02.016
    [17] 王晖, 查晓雄. 火灾下FRP筋混凝土柱性能[J]. 哈尔滨工业大学学报, 2009, 41(12):36-40. doi: 10.3321/j.issn:0367-6234.2009.12.007

    WANG Hui, ZHA Xiaoxiong. Performances of FRP rebar reinforced concrete columns under fire condition[J]. Jour-nal of Harbin Institute of Technology,2009,41(12):36-40(in Chinese). doi: 10.3321/j.issn:0367-6234.2009.12.007
    [18] TIAN J B, ZHU P, QU W J. Study on fire resistance time of hybrid reinforced concrete beams[J]. Structural Concrete,2019,20(6):1941-1954. doi: 10.1002/suco.201800320
    [19] 中国国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of China. Metallic materials-tensile testing at ambient temperature: GB/T 228.1—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [20] 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of China. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022—2013[S]. Beijing: China Standards Press, 2013(in Chinese).
    [21] HENRYCH J. The dynamics of explosion and its use[M]. Amsterdam: Elsevier, 1979.
    [22] 中华人民共和国工业和信息化部. 石油化工控制室抗爆设计规范: SH/T 3160—2009[S]. 北京: 中国标准出版社, 2009.

    Ministry of Industry and Information Technology of People's Republic of China. Specification for design of blast resistant control building in petrochemical industry: SH/T 3160—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [23] WANG W, ZHANG D, LU F Y, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering,2012,49:158-164. doi: 10.1016/j.ijimpeng.2012.03.010
    [24] JAMES C. Structures to resist the effects of accidental explosions: UFC3-340-02 (TM5-1300)[R]. US Department of the Army, 2008.
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  237
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-03-20
  • 录用日期:  2023-03-30
  • 网络出版日期:  2023-04-04
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回