留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP-钢筋混合配筋混凝土板的抗爆性能

韩泽斌 屈文俊

韩泽斌, 屈文俊. GFRP-钢筋混合配筋混凝土板的抗爆性能[J]. 复合材料学报, 2023, 41(0): 1-11
引用本文: 韩泽斌, 屈文俊. GFRP-钢筋混合配筋混凝土板的抗爆性能[J]. 复合材料学报, 2023, 41(0): 1-11
Zebin HAN, Wenjun QU. Explosion resistance of hybrid GFRP-steel reinforced concrete slab[J]. Acta Materiae Compositae Sinica.
Citation: Zebin HAN, Wenjun QU. Explosion resistance of hybrid GFRP-steel reinforced concrete slab[J]. Acta Materiae Compositae Sinica.

GFRP-钢筋混合配筋混凝土板的抗爆性能

基金项目: 国家自然科学基金 (51678430)
详细信息
    通讯作者:

    屈文俊,博士,教授,博士生导师,研究方向为混凝土结构耐久性、混合配筋混凝土结构等 E-mail: quwenjun.tj@tongji.edu.cn

  • 中图分类号: O383

Explosion resistance of hybrid GFRP-steel reinforced concrete slab

Funds: National Natural Science Foundation of China(51678430)
  • 摘要: 纤维增强筋(FRP)由于耐腐蚀、高拉伸强度、轻质、非磁性、抗疲劳性能好等优异的性能,将FRP筋代替钢筋被认为是解决混凝土结构中钢筋腐蚀的有效方法。学者们提出了混合配筋混凝土结构,该结构在截面耐久性薄弱区域用FRP筋代替钢筋,已广泛应用于土木工程中。随着爆炸破坏事件的不断发生,建筑结构在爆炸荷载下的动态响应问题引起越来越多的关注。然而,学者们对混合配筋混凝土结构的研究主要集中在静态受力性能以及抗震、抗火方面,而对混合配筋混凝土结构的抗爆性能研究较少。本文对混合配筋混凝土板开展非接触爆炸试验,试验结果表明:GFRP筋弹性模量较低和高拉伸强度的特性,使得混合配筋混凝土板位移峰值较大(如图1)但残余变形小,混合配筋混凝土板耗能能力优于钢筋混凝土板。引入爆炸恢复指数来表征结构从最大位移响应恢复到静力状态的能力,爆炸恢复指数表示为:(位移峰值-残余变形)/位移峰值,混合配筋混凝土板有着出色的爆炸后恢复能力(如图2),其抗爆性能优于钢筋混凝土板。由于GFRP筋和钢筋力学性能的差异,混合配筋混凝土板破坏形态与钢筋混凝土板有着明显的差异,表现为多条竖向裂缝的整体弯曲破坏形态(如图3)。对混合配筋混凝土板进行损伤评估,提出了最大支座转角经验公式,确定了混合配筋混凝土板损伤发展过程(如图4)。不同加筋板位移时程曲线不同加筋板爆炸恢复指数背爆面破坏形态(左侧为混合配筋,右侧为钢筋配筋)混合配筋混凝土板损伤发展

     

  • 图  1  混合配筋混凝土板配筋示意图(单位:mm)

    Figure  1.  Reinforcement diagram of hybrid-RC slab (Unit: mm)

    图  2  GFRP筋受拉应力-应变曲线

    Figure  2.  Tensile stress-strain curve of GFRP reinforcement

    图  3  试验布置

    Figure  3.  Test arrangement

    图  4  位移传感器布置

    Figure  4.  Displacement sensor arrangement

    图  5  应变片位置(单位:mm)

    Figure  5.  Position of strain gauge (Unit: mm)

    图  6  入射超压时程曲线

    Figure  6.  Incident overpressure time history curves

    图  7  不同加筋混凝土板位移时程曲线

    Figure  7.  Displacement time history curves of concrete slabs with different reinforcements

    图  8  不同加筋混凝土板爆炸恢复指数

    Figure  8.  Explosion recovery index of concrete slabs with different reinforcements

    图  9  不同加筋混凝土板板破坏模式 (Z=0.684 m/kg1/3)

    Figure  9.  Failure modes of concrete slabs with different reinforcements (Z=0.684 m/kg1/3)

    图  10  不同加筋混凝土板板破坏模式 (Z=0.522 m/kg1/3)

    Figure  10.  Failure modes of concrete slabs with different reinforcements (Z=0.522 m/kg1/3)

    图  11  不同比例距离下混合配筋混凝土板位移时程曲线

    Figure  11.  Displacement time history of hybrid-RC slab under different scale distances

    图  12  不同比例距离下混合配筋混凝土板跨中位移

    Figure  12.  Mid-span displacement of hybrid-RC slab under different scale distances

    图  13  混合配筋混凝土板最大支座转角拟合曲线Fig.13 Fitting curve of maximum support angle of hybrid-RC slab

    图  14  混合配筋混凝土板爆炸恢复指数

    Figure  14.  Explosion recovery index of hybrid-RC slab

    图  15  混合配筋混凝土板损伤发展

    Figure  15.  Damage development of hybrid-RC slabs

    图  16  不同配筋率混凝土板破坏模式

    Figure  16.  Failure modes of concrete slabs with different reinforcement ratios

    表  1  非接触爆炸板试件

    Table  1.   Non-contact explosion test specimen

    Specimen numberType of reinforcementReinforcement ratio ρ/%TNT/kgStandoff distance/mScale distance/(m·kg−1/3)
    H1-1GFRP-Steel0.5321.60.80.684
    H1-2GFRP-Steel0.5322.40.80.598
    H1-3GFRP-Steel0.5322.80.80.568
    H1-4GFRP-Steel0.5323.60.80.522
    H1-5GFRP-Steel0.5324.60.80.481
    H2-1GFRP-Steel1.0161.60.80.684
    H2-2GFRP-Steel1.0163.60.80.522
    S1-1Steel0.5321.60.80.684
    S1-2Steel0.5323.60.80.522
    Notes: H stands for hybrid-RC slab, S stands for SRC slab. The first numerical number represents different reinforcement ratios, and the second numerical number represents different scale distances.
    下载: 导出CSV

    表  2  钢筋力学性能

    Table  2.   Mechanical properties of steel reinforcement

    Type of steel barElastic modulus/
    GPa
    Yield strength/
    MPa
    Tensile strength/MPaYield strain /%Ultimate strain/%
    HRB400E2094586330.22>10
    下载: 导出CSV

    表  3  GFRP筋力学性能

    Table  3.   Mechanical properties of GFRP reinforcement

    FRP barElastic modulus/
    GPa
    Tensile strength/MPaUltimate strain/%
    GFRP49.410702.4
    下载: 导出CSV

    表  4  入射超压

    Table  4.   Incident overpressure

    Scale distance/
    (m·kg−1/3)
    Test value/
    MPa
    Empirical formula
    value /MPa
    Error /%
    1.2820.5020.45410.57
    1.1200.6780.61610.06
    1.0640.780.69312.55
    0.9790.9520.82615.25
    下载: 导出CSV

    表  5  不同加筋混凝土板应变峰值

    Table  5.   Peak strain of concrete slabs with different reinforcements

    Specimen numberScale distance/
    (m·kg−1/3)
    Peak value of point 1Peak value of point 2
    H1-10.6841.20×10−22.82×10−3
    S1-10.6841.06×10−22.44×10−3
    H1-40.5222.36×10−26.75×10−3
    S1-20.5222.19×10−26.09×10−3
    下载: 导出CSV

    表  6  不同加筋混凝土板跨中位移数据

    Table  6.   Mid-span displacement data of concrete slabs with different reinforcements

    Specimen numberScale distance/
    (m·kg−1/3)
    Maximum
    displacement/mm
    Residual
    deformation /mm
    H1-10.684318
    S1-10.6842611
    H1-40.5229739
    S1-20.5228253
    下载: 导出CSV

    表  7  单向板损伤准则

    Table  7.   Damage criteria for unidirectional slab

    Damage levelDamage criterion
    Lightθmax≤2°
    Moderate2°≤θmax≤5°
    Severe5°≤θmax≤10°
    Collapseθmax≥10°
    下载: 导出CSV

    表  8  不同配筋率混凝土板跨中位移数据

    Table  8.   Mid-span displacement data of concrete slabs with different reinforcement ratios

    Specimen numberReinforcement
    Ratio ρ/%
    Scale distance/
    (m·kg−1/3)
    Maximum
    displacement/mm
    Residual
    deformation/mm
    Explosion recovery
    index
    H1-10.5320.6843180.74
    H2-11.0160.6842001
    H1-40.5320.52297380.61
    H2-21.0160.52264160.75
    下载: 导出CSV
  • [1] 董恒磊, 李东风, 王代玉. 螺旋缠绕挤压肋FRP筋与混凝土间的黏结性能[J]. 复合材料学报: 2022, 39(11): 5239-5250.

    DONG HENGLEI, LI DONGFENG, WANG DDIYU. Bond behavior between helically and tightly wound FRP bars and concrete[J]. Acta Materiae Compositae Sinica: 2022, 39(11): 5239-5250. (in Chinese).
    [2] BINBIN ZHOU, RUOYANG WU, SIQI LU, et al. A general numerical model for predicting the flexural behavior of hybrid FRP-steel reinforced concrete beams[J]. Engineering Structures,2021,239:112293. doi: 10.1016/j.engstruct.2021.112293
    [3] LAU D, PAM HJ. Experimental study of hybrid FRP reinforced concrete beams[J]. Engineering Structures,2010,32:3857-3865. doi: 10.1016/j.engstruct.2010.08.028
    [4] QU WJ, ZHANGXL, HUANG HQ. Flexural Behavior of Concrete Beams Reinforced with Hybrid (GFRP and Steel) Bars[J]. Journal of Composites for Construction,2009,13(5):350-359. doi: 10.1061/(ASCE)CC.1943-5614.0000035
    [5] KARA IF, AHOUR AF, KOROGLU MA. Flexural behavior of hybrid FRP/steel reinforced concrete beams[J]. Composite Structures,2015,129:111-121. doi: 10.1016/j.compstruct.2015.03.073
    [6] ALMAHDI MOHAMED ARABA, ASHRAF F. Ashour. Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams[J]. Composites Part B:Engineering,2018,154:321-336. doi: 10.1016/j.compositesb.2018.08.077
    [7] XIANGJIE RUAN, CHUNHUA LU, KE XU, et al. Flexural behavior and serviceability of concrete beams hybrid-reinforced with GFRP bars and steel bars[J]. Composite Structures,2020,235:111772. doi: 10.1016/j.compstruct.2019.111772
    [8] BINBIN ZHOU, RUOYANG WU, YANGQING LIU, et al. Flexural Strength Design of Hybrid FRP-Steel Reinforced Concrete Beams[J]. Materials,2021,14:6400. doi: 10.3390/ma14216400
    [9] 庞蕾, 屈文俊, 李昂. 混合配筋混凝土梁抗弯计算理论[J]. 中国公路学报, 2016, 29(7):81-88. doi: 10.3969/j.issn.1001-7372.2016.07.010

    PANG LEI, QU WENJUN, LI ANG. Calcuation of flexural strength for concrete beams reinforced with hybrid (FRP and steel) bars[J]. China Journal of Highway and Transport,2016,29(7):81-88(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.07.010
    [10] 戚岩. 加筋混凝土构件抗弯统一计算理论[D]. 上海: 同济大学, 2018.

    QI YAN. Study on unified flexural calculation theory of reinforced concrete members[D]. Shanghai: Shanghai Tongji University, 2018(in Chinese).
    [11] 刘文博. 加筋混凝土构件抗剪统一计算理论[D]. 上海: 同济大学, 2018.

    LIU WENBO. Study on uniform shear calculation theory for reinforced concrete members[D]. Shanghai: Shanghai Tongji University, 2018(in Chinese).
    [12] 屈俊楠. 加筋混凝土构件抗压弯统一计算理论[D]. 上海: 同济大学, 2018.

    QU JUNNAN. Study on unified calculation theory of reinforced concrete members under eccentric compression[D]. Shanghai: Shanghai Tongji University, 2018(in Chinese).
    [13] 许家婧, 朱鹏, 屈文俊. 钢筋-GFRP筋增强混凝土梁的疲劳力学性能[J]. 复合材料学报, 2022, 39(5):2318-2328. doi: 10.13801/j.cnki.fhclxb.20210809.001

    XU JIAJING, ZHU PENG, QU WENJUN. Fatigue behaviors of steel bars-GFRP bars reinforced concrete beams[J]. Acta Materiae Compositae Sinica,2022,39(5):2318-2328(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210809.001
    [14] ZEYANG SUN, GANG WU, JIAN ZHANG, et al. Experimental study on concrete columns reinforced by hybrid steel-fiber reinforced polymer (FRP) bars under horizontal cyclic loading[J]. Construction and Building Materials,2017,130:202-211. doi: 10.1016/j.conbuildmat.2016.10.001
    [15] ADAM I. lBRAHIM, GANG WU. ZE-YANG SUN. Experimental study of cyclic behavior of concrete brige columns reinforced by steel basalt-fiber composite bars and hybrid stirrups[J]. Journal of Composites for Construction, 2016: 04016091.
    [16] 杜修力, 王作虎, 詹界东. 预应力FRP筋混凝土梁的抗震性能试验研究[J]. 土木工程学报, 2012, 45(2):43-50. doi: 10.15951/j.tmgcxb.2012.02.016

    DU XIULI, WANG ZUOHU, ZHAN JIEDONG. Experimental studies on the seismic performance of concrete beams prestressed with FRP tendons[J]. China civil engineering journal,2012,45(2):43-50(in Chinese). doi: 10.15951/j.tmgcxb.2012.02.016
    [17] 王晖, 查晓雄. 火灾下FRP筋混凝土柱性能[J]. 哈尔滨工业大学学报, 2009, 41(12):36-40. doi: 10.3321/j.issn:0367-6234.2009.12.007

    WANG HUI, ZHA XIAOXIONG. Performances of FRP rebar reinforced concrete columns under fire condition[J]. Journal of harbin institute of technology,2009,41(12):36-40(in Chinese). doi: 10.3321/j.issn:0367-6234.2009.12.007
    [18] JINBO TIAN, PENG ZHU, WENJUN QU. Study on fire resistance time of hybrid reinforced concrete beams[J]. Structural Concrete,2019,20(6):1941-1954. doi: 10.1002/suco.201800320
    [19] 中华人民共和国国家标准. 金属材料拉伸试验第1部分: 室温试验方法(GB/T 228.1-2010)[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People’s Republic of China. Metallic materials-tensile testing at ambient temperature: GB/T 228.1-2010 [S]. Beijing: China Standards Press, 2010(in Chinese).
    [20] 中华人民共和国国家标准. 纤维增强复合材料筋基本力学性能试验方法(GB/T 30022-2013)[S]. 北京: 中国标准出版社. 2013.

    Standardization Administration of the People’s Republic of China. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022-2013 [S]. Beijing: China Standards Press, 2013(in Chinese).
    [21] HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier 1979.
    [22] 中华人民共和国石油化工行业标准. 石油化工控制室抗爆设计规范(SH/T 3160-2009) [S]. 北京: 中国标准出版社. 2009.

    Petrochemical Industry Standard of the People's Republic of China. Specification for design of blast resistant control building in petrochemical industry: SH/T 3160-2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [23] WEI WANG, DUO ZHANG, FANGYUN LU, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering,2012,49:158-164. doi: 10.1016/j.ijimpeng.2012.03.010
    [24] CEDAW(Component Explosive Damage Assessment Workbook) Final Report[R]. U. S. Army Corps of Engineers, Protective Design Center, 2005, 6
  • 加载中
计量
  • 文章访问数:  66
  • HTML全文浏览量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-03-20
  • 录用日期:  2023-03-30
  • 网络出版日期:  2023-04-10

目录

    /

    返回文章
    返回