Explosion resistance of hybrid GFRP-steel reinforced concrete slab
-
摘要:
纤维增强筋(FRP)由于耐腐蚀、高拉伸强度、轻质、非磁性、抗疲劳性能好等优异的性能,将FRP筋代替钢筋被认为是解决混凝土结构中钢筋腐蚀的有效方法。学者们提出了混合配筋混凝土结构,该结构在截面耐久性薄弱区域用FRP筋代替钢筋,已广泛应用于土木工程中。随着爆炸破坏事件的不断发生,建筑结构在爆炸荷载下的动态响应问题引起越来越多的关注。然而,学者们对混合配筋混凝土结构的研究主要集中在静态受力性能以及抗震、抗火方面,而对混合配筋混凝土结构的抗爆性能研究较少。本文对混合配筋混凝土板开展非接触爆炸试验,试验结果表明:GFRP筋弹性模量较低和高拉伸强度的特性,使得混合配筋混凝土板位移峰值较大(如 图1 )但残余变形小,混合配筋混凝土板耗能能力优于钢筋混凝土板。引入爆炸恢复指数来表征结构从最大位移响应恢复到静力状态的能力,爆炸恢复指数表示为:(位移峰值-残余变形)/位移峰值,混合配筋混凝土板有着出色的爆炸后恢复能力(如图2 ),其抗爆性能优于钢筋混凝土板。由于GFRP筋和钢筋力学性能的差异,混合配筋混凝土板破坏形态与钢筋混凝土板有着明显的差异,表现为多条竖向裂缝的整体弯曲破坏形态(如图3 )。对混合配筋混凝土板进行损伤评估,提出了最大支座转角经验公式,确定了混合配筋混凝土板损伤发展过程(如图4 )。不同加筋板位移时程曲线 不同加筋板爆炸恢复指数 背爆面破坏形态(左侧为混合配筋,右侧为钢筋配筋) 混合配筋混凝土板损伤发展 Abstract: Concrete structures reinforced with a combination of steel and fiber-reinforced polymer (FRP) bars can effectively solve the durability problem of steel-reinforced concrete (SRC) structures and the brittle failure problem of FRP-reinforced concrete structures. It has been widely used in civil engineering. In order to study the explosion resistance of hybrid FRP–steel-reinforced concrete (hybrid-RC) slab, the close-in explosion tests of hybrid-RC slabs and SRC slabs at different scale distances were carried out to compare and analyze the difference of explosion resistance between the two slabs and determine the failure mode of hybrid-RC slab. When the scale distance is 0.684 m/kg1/3, The maximum displacement of hybrid-RC slab is 19.2% larger than that of SRC slab, but the residual deformation is 27.3% smaller than that of SRC slab. The explosion recovery index is introduced to evaluate the explosion recovery capacity of concrete slabs. The explosion recovery index of hybrid-RC slabs is larger than that of SRC slabs. Hybrid-RC slabs have excellent explosion recovery capacity. The cracks on the back of the hybrid-RC slab depicts multiple vertical cracks and diagonal cracks, while the cracks on the back of the SRC slab depicts one vertical main crack and multiple diagonal cracks radiating outward. With the decrease of the scale distance, the failure mode of the hybrid-RC slab develops from the whole bending failure to the coexistence of the bending failure and the local concrete failure. According to the test data, the prediction formula of the maximum support angle is proposed. It provides a reference for the explosion design of hybrid-RC slab.-
Key words:
- hybrid FRP–steel reinforcement /
- concrete slab /
- blast load /
- failure mode /
- explosion resistance
-
表 1 非接触爆炸板试件
Table 1. Non-contact explosion test specimen
Specimen number Type of reinforcement Reinforcement ratio ρ/% TNT/kg Standoff distance/m Scale distance/(m·kg−1/3) H1-1 GFRP-Steel 0.532 1.6 0.8 0.684 H1-2 GFRP-Steel 0.532 2.4 0.8 0.598 H1-3 GFRP-Steel 0.532 2.8 0.8 0.568 H1-4 GFRP-Steel 0.532 3.6 0.8 0.522 H1-5 GFRP-Steel 0.532 4.6 0.8 0.481 H2-1 GFRP-Steel 1.016 1.6 0.8 0.684 H2-2 GFRP-Steel 1.016 3.6 0.8 0.522 S1-1 Steel 0.532 1.6 0.8 0.684 S1-2 Steel 0.532 3.6 0.8 0.522 Notes: H stands for hybrid-RC slab, S stands for SRC slab. The first numerical number represents different reinforcement ratios, and the second numerical number represents different scale distances. 表 2 钢筋力学性能
Table 2. Mechanical properties of steel reinforcement
Type of steel bar Elastic modulus/
GPaYield strength/
MPaTensile strength/MPa Yield strain /% Ultimate strain/% HRB400E 209 458 633 0.22 >10 表 3 GFRP筋力学性能
Table 3. Mechanical properties of GFRP reinforcement
FRP bar Elastic modulus/
GPaTensile strength/MPa Ultimate strain/% GFRP 49.4 1070 2.4 表 4 入射超压
Table 4. Incident overpressure
Scale distance/
(m·kg−1/3)Test value/
MPaEmpirical formula
value /MPaError /% 1.282 0.502 0.454 10.57 1.120 0.678 0.616 10.06 1.064 0.78 0.693 12.55 0.979 0.952 0.826 15.25 表 5 不同加筋混凝土板应变峰值
Table 5. Peak strain of concrete slabs with different reinforcements
Specimen number Scale distance/
(m·kg−1/3)Peak value of point 1 Peak value of point 2 H1-1 0.684 1.20×10−2 2.82×10−3 S1-1 0.684 1.06×10−2 2.44×10−3 H1-4 0.522 2.36×10−2 6.75×10−3 S1-2 0.522 2.19×10−2 6.09×10−3 表 6 不同加筋混凝土板跨中位移数据
Table 6. Mid-span displacement data of concrete slabs with different reinforcements
Specimen number Scale distance/
(m·kg−1/3)Maximum
displacement/mmResidual
deformation /mmH1-1 0.684 31 8 S1-1 0.684 26 11 H1-4 0.522 97 39 S1-2 0.522 82 53 表 7 单向板损伤准则
Table 7. Damage criteria for unidirectional slab
Damage level Damage criterion Light θmax≤2° Moderate 2°≤θmax≤5° Severe 5°≤θmax≤10° Collapse θmax≥10° 表 8 不同配筋率混凝土板跨中位移数据
Table 8. Mid-span displacement data of concrete slabs with different reinforcement ratios
Specimen number Reinforcement
Ratio ρ/%Scale distance/
(m·kg−1/3)Maximum
displacement/mmResidual
deformation/mmExplosion recovery
indexH1-1 0.532 0.684 31 8 0.74 H2-1 1.016 0.684 20 0 1 H1-4 0.532 0.522 97 38 0.61 H2-2 1.016 0.522 64 16 0.75 -
[1] 董恒磊, 李东风, 王代玉. 螺旋缠绕挤压肋FRP筋与混凝土间的黏结性能[J]. 复合材料学报: 2022, 39(11): 5239-5250.DONG HENGLEI, LI DONGFENG, WANG DDIYU. Bond behavior between helically and tightly wound FRP bars and concrete[J]. Acta Materiae Compositae Sinica: 2022, 39(11): 5239-5250. (in Chinese). [2] BINBIN ZHOU, RUOYANG WU, SIQI LU, et al. A general numerical model for predicting the flexural behavior of hybrid FRP-steel reinforced concrete beams[J]. Engineering Structures,2021,239:112293. doi: 10.1016/j.engstruct.2021.112293 [3] LAU D, PAM HJ. Experimental study of hybrid FRP reinforced concrete beams[J]. Engineering Structures,2010,32:3857-3865. doi: 10.1016/j.engstruct.2010.08.028 [4] QU WJ, ZHANGXL, HUANG HQ. Flexural Behavior of Concrete Beams Reinforced with Hybrid (GFRP and Steel) Bars[J]. Journal of Composites for Construction,2009,13(5):350-359. doi: 10.1061/(ASCE)CC.1943-5614.0000035 [5] KARA IF, AHOUR AF, KOROGLU MA. Flexural behavior of hybrid FRP/steel reinforced concrete beams[J]. Composite Structures,2015,129:111-121. doi: 10.1016/j.compstruct.2015.03.073 [6] ALMAHDI MOHAMED ARABA, ASHRAF F. Ashour. Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams[J]. Composites Part B:Engineering,2018,154:321-336. doi: 10.1016/j.compositesb.2018.08.077 [7] XIANGJIE RUAN, CHUNHUA LU, KE XU, et al. Flexural behavior and serviceability of concrete beams hybrid-reinforced with GFRP bars and steel bars[J]. Composite Structures,2020,235:111772. doi: 10.1016/j.compstruct.2019.111772 [8] BINBIN ZHOU, RUOYANG WU, YANGQING LIU, et al. Flexural Strength Design of Hybrid FRP-Steel Reinforced Concrete Beams[J]. Materials,2021,14:6400. doi: 10.3390/ma14216400 [9] 庞蕾, 屈文俊, 李昂. 混合配筋混凝土梁抗弯计算理论[J]. 中国公路学报, 2016, 29(7):81-88. doi: 10.3969/j.issn.1001-7372.2016.07.010PANG LEI, QU WENJUN, LI ANG. Calcuation of flexural strength for concrete beams reinforced with hybrid (FRP and steel) bars[J]. China Journal of Highway and Transport,2016,29(7):81-88(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.07.010 [10] 戚岩. 加筋混凝土构件抗弯统一计算理论[D]. 上海: 同济大学, 2018.QI YAN. Study on unified flexural calculation theory of reinforced concrete members[D]. Shanghai: Shanghai Tongji University, 2018(in Chinese). [11] 刘文博. 加筋混凝土构件抗剪统一计算理论[D]. 上海: 同济大学, 2018.LIU WENBO. Study on uniform shear calculation theory for reinforced concrete members[D]. Shanghai: Shanghai Tongji University, 2018(in Chinese). [12] 屈俊楠. 加筋混凝土构件抗压弯统一计算理论[D]. 上海: 同济大学, 2018.QU JUNNAN. Study on unified calculation theory of reinforced concrete members under eccentric compression[D]. Shanghai: Shanghai Tongji University, 2018(in Chinese). [13] 许家婧, 朱鹏, 屈文俊. 钢筋-GFRP筋增强混凝土梁的疲劳力学性能[J]. 复合材料学报, 2022, 39(5):2318-2328. doi: 10.13801/j.cnki.fhclxb.20210809.001XU JIAJING, ZHU PENG, QU WENJUN. Fatigue behaviors of steel bars-GFRP bars reinforced concrete beams[J]. Acta Materiae Compositae Sinica,2022,39(5):2318-2328(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210809.001 [14] ZEYANG SUN, GANG WU, JIAN ZHANG, et al. Experimental study on concrete columns reinforced by hybrid steel-fiber reinforced polymer (FRP) bars under horizontal cyclic loading[J]. Construction and Building Materials,2017,130:202-211. doi: 10.1016/j.conbuildmat.2016.10.001 [15] ADAM I. lBRAHIM, GANG WU. ZE-YANG SUN. Experimental study of cyclic behavior of concrete brige columns reinforced by steel basalt-fiber composite bars and hybrid stirrups[J]. Journal of Composites for Construction, 2016: 04016091. [16] 杜修力, 王作虎, 詹界东. 预应力FRP筋混凝土梁的抗震性能试验研究[J]. 土木工程学报, 2012, 45(2):43-50. doi: 10.15951/j.tmgcxb.2012.02.016DU XIULI, WANG ZUOHU, ZHAN JIEDONG. Experimental studies on the seismic performance of concrete beams prestressed with FRP tendons[J]. China civil engineering journal,2012,45(2):43-50(in Chinese). doi: 10.15951/j.tmgcxb.2012.02.016 [17] 王晖, 查晓雄. 火灾下FRP筋混凝土柱性能[J]. 哈尔滨工业大学学报, 2009, 41(12):36-40. doi: 10.3321/j.issn:0367-6234.2009.12.007WANG HUI, ZHA XIAOXIONG. Performances of FRP rebar reinforced concrete columns under fire condition[J]. Journal of harbin institute of technology,2009,41(12):36-40(in Chinese). doi: 10.3321/j.issn:0367-6234.2009.12.007 [18] JINBO TIAN, PENG ZHU, WENJUN QU. Study on fire resistance time of hybrid reinforced concrete beams[J]. Structural Concrete,2019,20(6):1941-1954. doi: 10.1002/suco.201800320 [19] 中华人民共和国国家标准. 金属材料拉伸试验第1部分: 室温试验方法(GB/T 228.1-2010)[S]. 北京: 中国标准出版社, 2010.Standardization Administration of the People’s Republic of China. Metallic materials-tensile testing at ambient temperature: GB/T 228.1-2010 [S]. Beijing: China Standards Press, 2010(in Chinese). [20] 中华人民共和国国家标准. 纤维增强复合材料筋基本力学性能试验方法(GB/T 30022-2013)[S]. 北京: 中国标准出版社. 2013.Standardization Administration of the People’s Republic of China. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022-2013 [S]. Beijing: China Standards Press, 2013(in Chinese). [21] HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier 1979. [22] 中华人民共和国石油化工行业标准. 石油化工控制室抗爆设计规范(SH/T 3160-2009) [S]. 北京: 中国标准出版社. 2009.Petrochemical Industry Standard of the People's Republic of China. Specification for design of blast resistant control building in petrochemical industry: SH/T 3160-2009[S]. Beijing: China Standards Press, 2009(in Chinese). [23] WEI WANG, DUO ZHANG, FANGYUN LU, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering,2012,49:158-164. doi: 10.1016/j.ijimpeng.2012.03.010 [24] CEDAW(Component Explosive Damage Assessment Workbook) Final Report[R]. U. S. Army Corps of Engineers, Protective Design Center, 2005, 6 -

计量
- 文章访问数: 66
- HTML全文浏览量: 47
- 被引次数: 0