留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯功能化改性聚偏氟乙烯介电复合材料的制备及其性能

罗睿 黄娇 杨尚科 严磊 张兆鑫 张迅韬 蔺海兰 卞军 陈代强

罗睿, 黄娇, 杨尚科, 等. 石墨烯功能化改性聚偏氟乙烯介电复合材料的制备及其性能[J]. 复合材料学报, 2022, 39(8): 3815-3827. doi: 10.13801/j.cnki.fhclxb.20210916.001
引用本文: 罗睿, 黄娇, 杨尚科, 等. 石墨烯功能化改性聚偏氟乙烯介电复合材料的制备及其性能[J]. 复合材料学报, 2022, 39(8): 3815-3827. doi: 10.13801/j.cnki.fhclxb.20210916.001
LUO Rui, HUANG Jiao, YANG Shangke, et al. Preparation and properties of graphene functionalized polyvinylidene fluoride dielectric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3815-3827. doi: 10.13801/j.cnki.fhclxb.20210916.001
Citation: LUO Rui, HUANG Jiao, YANG Shangke, et al. Preparation and properties of graphene functionalized polyvinylidene fluoride dielectric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3815-3827. doi: 10.13801/j.cnki.fhclxb.20210916.001

石墨烯功能化改性聚偏氟乙烯介电复合材料的制备及其性能

doi: 10.13801/j.cnki.fhclxb.20210916.001
基金项目: 国家教育部春晖计划合作项目(Z2018088);国家级大学生创新创业训练计划项目(202110650004);西华大学Interface创新研究工作室重点建设项目(2019-07);西华大学研究生创新基金项目(SA2000002910);四川省级一流课程建设及西华大学思政课程建设项目
详细信息
    通讯作者:

    卞军,博士,教授,硕士生导师,研究方向为聚合物基结构与功能复合材料  E-mail:bianjun2003@163.com

  • 中图分类号: TQ332

Preparation and properties of graphene functionalized polyvinylidene fluoride dielectric composites

  • 摘要: 为获得高介电性能的复合材料,以聚偏氟乙烯(PVDF)为基体,首先以离子液体功能化改性的氧化石墨烯(GO-IL)为填料制备了不同GO-IL含量的GO-IL/PVDF二元介电复合材料,在此基础上引入羟基化钛酸钡(BT-OH)通过溶液共混制备了不同比例的BT-OH-GO-IL/PVDF三元介电复合材料。分别采用FTIR、FESEM、XRD、拉伸性能测试、电性能测试、DSC等方法系统研究了填料GO-IL和BT-OH的含量对所得复合材料的热性能、力学性能和电性能等的影响。FITR和XRD测试表明,IL成功接枝于GO上,GO-IL的加入促进了PVDF中β晶的生成。DSC测试进一步表明,GO-IL的加入提高了复合材料的结晶度,含2wt%GO和2wt%GO-IL的复合材料结晶度分别达到了35.3%和36.9%。电性能测试表明,GO-IL更容易在PVDF基中构成局部导电网络,促进电子位移极化,进而提高复合材料的介电常数。在GO-IL/PVDF复合材料中,当GO-IL填料含量为2wt%时,复合材料的介电常数达到了24.28,是纯PVDF的2.6倍。但当填料含量达8wt%时,复合材料的介电常数达到了78.46,同时介电损耗也大幅增大,达到了2.25。电阻相比于纯PVDF下降了1~2个数量级。三元复合材料中,当GO-IL含量为2wt%、BT-OH填料含量为20wt%时,复合材料的综合性能最好,介电常数达到了40.32,介电损耗为0.38。

     

  • 图  1  羟基化钛酸钡-离子液体功能化改性的氧化石墨烯/聚偏氟乙烯(BT-OH-GO-IL/PVDF)三元介电复合材料制备及反应原理图

    Figure  1.  Schematic diagram of hydroxylated barium titanate-graphene oxide modified by ionic liquid/polyvinylidene fluoride (BT-OH-GO-IL/PVDF) ternary dielectric material preparation and reaction

    图  2  IL、石墨烯、GO和GO-IL (a),PVDF和GO/PVDF复合材料(b),纯PVDF和BT-OH-GO-IL/PVDF复合材料 (c) 的FTIR图谱

    Figure  2.  FTIR spectra of IL, graphene, GO and GO-IL (a), PVDF and GO/PVDF (b), PVDF and BT-OH-GO-IL/PVDF (c)

    图  3  GO-IL-BT-OH杂化填料 ((a)、(b)) 及BT-OH-GO-IL/PVDF复合材料 ((c)、(d)) 的FESEM图像

    Figure  3.  FESEM images of GO-IL-BT-OH hybrids ((a), (b)) and BT-OH-GO-IL/PVDF composites ((c), (d))

    图  4  纯PVDF (a) 和不同填料PVDF基复合材料 (b) 的XRD图谱

    Figure  4.  XRD patterns of PVDF (a) and PVDF-based composites with different filler contents (b)

    图  5  不同填料含量下GO-IL/PVDF复合材料的力学性能:(a) 拉伸强度;(b) 断裂伸长率;(c) 弹性模量;(d) 拉伸应力-应变曲线

    Figure  5.  Mechanical properties of GO-IL/PVDF composites with different filler contents: (a) Tensile strength; (b) Elongation at break; (c) Elastic modulus; (d) Tensile stress-strain curves

    图  6  不同填料含量下BT-OH-GO-IL/PVDF复合材料的力学性能:(a) 拉伸强度;(b) 断裂伸长率;(c) 弹性模量;(d) BT-OH-GO-IL/PVDF复合材料的拉伸应力-应变曲线

    Figure  6.  Mechanical properties of BT-OH-GO-IL/PVDF composites with different filler contents: (a) Tensile strength; (b) Elongation at break; (c) Elastic modulus; (d) Stress-strain curves of BT-OH-GO-IL/PVDF

    图  7  GO-IL/PVDF复合材料的介电性能曲线:(a) 频率为100 Hz时不同填料含量的介电常数和介电损耗;(b) 不同填料含量下GO-IL/PVDF复合材料的介电常数与频率的关系

    Figure  7.  Dielectric properties curves of the GO-IL/PVDF composites: (a) Dielectric constant and dielectric loss with different filler contents at 100 Hz; (b) Relationship between dielectric constant and frequency of GO-IL/PVDF composites with different filler contents

    图  8  BT-OH-GO-IL/PVDF复合材料的介电性能曲线:(a) 频率为100 Hz时不同填料含量下复合材料的介电常数和介电损耗;(b) 不同填料含量下BT-OH-GO-IL/PVDF复合材料的介电常数与频率的关系

    Figure  8.  Dielectric properties curves of the BT-OH-GO-IL/PVDF composites: (a) Dielectric constant and dielectric loss with different filler contents at 100 Hz; (b) Relationship between dielectric constant and frequency of BT-OH-GO-IL/PVDF composites with different filler contents

    图  9  GO-IL/PVDF二元复合材料 (a) 和BT-OH-GO-IL/PVDF三元复合材料 (b) 的电阻

    Figure  9.  Resistance of GO-IL/PVDF (a) and BT-OH-GO-IL/PVDF (b)

    图  10  不同填料含量下PVDF基复合材料的DSC曲线:(a) 结晶曲线;(b) 熔融曲线

    Figure  10.  DSC curves of PVDF with different filler contents: (a) Crystallization curves; (b) Melting curves

    表  1  不同填料含量下PVDF基复合材料的DSC测试结果

    Table  1.   DSC test results of PVDF composites with different filler contents

    SampleTcp/℃ΔHc/(J·g−1)Tmp/℃ΔHm/(J·g−1)Xc/%
    PVDF123.9036.59159.629.7628.50
    2wt%GO/PVDF136.2641.92167.537.6435.30
    2wt%GO-IL/PVDF135.3641.29168.040.2736.90
    0.8wt%BT-OH-2wt%GO-IL/PVDF139.4537.22168.036.0433.10
    20wt%BT-OH-2wt%GO-IL/PVDF139.4633.63167.934.3524.95
    Notes: Tcp—Crystallizing point; ΔHc—Crystallization enthalpy; Tmp—Melting point; ΔHm—Melting enthalpy; Xc—Crystallinity.
    下载: 导出CSV
  • [1] 陈林, 刘虹财, 严磊, 等. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4):4126-4131.

    CHEN L, LIU H C, YAN L, et al. Structure and properties of polyvinylidene fluoride dielectric composites modified by carbon nanotubes[J]. Materials Reports,2020,34(4):4126-4131(in Chinese).
    [2] 张慧, 衡婷婷, 房正刚, 等. 高储能陶瓷/PVDF基复合电介质材料的研究进展[J]. 复合材料学报, 2021, 38(7):2110-2125.

    ZHANG H, HENG T T, FANG Z G, et al. Research progress of high-energy-density ceramic/poly(vinylidene fluoride)composite dielectrics[J]. Acta Materiae Compo-sitae Sinica,2021,38(7):2110-2125(in Chinese).
    [3] DANG Z M, WANG H Y, XU H P. Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites[J]. Applied Physics Letters,2006,89(11):1902-1920.
    [4] HU P H, SHEN Y, GUAN Y H, et al. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density[J]. Advanced Functional Materials,2014,24(21):3172-3178. doi: 10.1002/adfm.201303684
    [5] ZHANG Z, LUO S, YU S H, et al. Significantly enhanced dielectric and energy storage performance of blend polymer-based composites containing inorganic 3D-network[J]. Materials & Design,2018,142:106-113.
    [6] LEVI N, CZERW R, XING S Y, et al. Properties of polyvinylidene fluoride-carbon nanotube blends[J]. Nano Letters,2004,4(7):1267-1271. doi: 10.1021/nl0494203
    [7] DANG Z M, ZHENG M S, ZHA J W. 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications[J]. Small,2016,12(13):1688-1701. doi: 10.1002/smll.201503193
    [8] ZHENG W, LU X F, WANG W, et al. Fabrication of novel Ag nanowires/poly(vinylidene fluoride) nanocomposite film with high dielectric constant[J]. Physica Status Solidi,2010,207(8):1870-1873. doi: 10.1002/pssa.200925520
    [9] YANG L, QIU J, JI H, et al. Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites[J]. Composites Part A: Applied Science and Manufacturing,2014,65:125-134. doi: 10.1016/j.compositesa.2014.06.006
    [10] LIN B, LI Z T, YANG Y, et al. Enhanced dielectric permitti-vity in surface-modified graphene/PVDF composites prepared by an electrospinning-hot pressing method[J]. Composites Science and Technology,2019,172:235-254.
    [11] HAN P, FAN J, ZHU L, et al. Structure, thermal stability and electrical properties of reduced graphene/poly(vinylidene fluoride) nanocomposite films[J]. Journal of Nanoscience and Nanotechnology,2012,12(9):7290-7295. doi: 10.1166/jnn.2012.6584
    [12] SONG Y, SHEN Y, LIU H Y, et al. Improving the dielectric constants and breakdown strength of polymer composites: Effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix[J]. Journal of Materials Chemistry,2012,22(32):16491-16498. doi: 10.1039/c2jm32579a
    [13] JIANG Y, ZHANG Z, ZHOU Z, et al. Enhanced dielectric performance of P(VDF-HFP) composites with satellite-core-structured Fe2O3@BaTiO3 nanofillers[J]. Polymers,2019,11(10):1541-1553. doi: 10.3390/polym11101541
    [14] DANG Z M, LIN Y H, NAN C W. Novel ferroelectric polymer composites with high dielectric constants[J]. Advanced Materials,2003,15:1625-1629. doi: 10.1002/adma.200304911
    [15] LI Y, HUANG X Y, HU Z W, et al. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites[J]. ACS Applied Materials & Interfaces,2011,3:4396-4403. doi: 10.1021/am2010459
    [16] SHEN Y, GUAN Y H, HU Y H, et al. Dielectric behavior of graphene/BaTiO3/polyvinylidene fluoride nanocomposite under high electric field[J]. Applied Physics Letters,2013,103:6162-6168.
    [17] HE H, KLINOWSKI J, FORSTER M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters,1998,287(1-2):53-56. doi: 10.1016/S0009-2614(98)00144-4
    [18] DREYER D R, PARK S, BIELAWSKI C W, et al. The che-mistry of graphene oxide[J]. Chemical Society Reviews,2010,39(1):228-240. doi: 10.1039/B917103G
    [19] GUO P, SONG H, CHEN X. Hollow graphene oxide spheres self-assembled by W/O emulsion[J]. Journal of Materials Chemistry,2010,20(23):4867-4874. doi: 10.1039/b927302f
    [20] PLAQUEVENT J, LEVILLAIN J, GUILLEN F, et al. Ionic liquids: New targets and media for α-amino acid and peptide chemisty[J]. Chemical Reviews,2008,108(12):5035-5060. doi: 10.1021/cr068218c
    [21] XU P, GUI H G, WANG X X, et al. Improved dielectric pro-perties of nanocomposites based on polyvinylidene fluoride and ionic liquid-functionalized graphene[J]. Compo-sites Science and Technology,2015,117:282-288. doi: 10.1016/j.compscitech.2015.06.023
    [22] 吴力, 马文石. 咪唑基离子液体非共价修饰的石墨烯结构与分散性[J]. 无机化学学报, 2014, 30(8):1875-1882.

    WU L, MA W S. Structure and property of imidazolium ionic liquids modified graphene[J]. Editorial Board of Chinese Journal of Inorganic Chemistry,2014,30(8):1875-1882(in Chinese).
    [23] 郑文建, 姚正军, 周金堂. 离子液体改性氧化石墨烯/双马来酰亚胺复合材料的介电性能[J]. 高分子材料科学与工程, 2014, 30(10):53-57.

    ZHENG W J, YAO Z J, ZHOU J T. Dielectric properties of ionic modified graphene oxide/BMI composites[J]. Polymer Materials Science Engineering,2014,30(10):53-57(in Chinese).
    [24] KHALILI D A, KOWSARI E, RAMEZANZADEH B, et al. Screening the effect of graphene oxide nanosheets functionalization with ionic liquid on the mechanical properties of an epoxy coating[J]. Progress in Organic Coatings,2018,122:255-262. doi: 10.1016/j.porgcoat.2018.06.003
    [25] BIAN J, WEI X W, LIN H L, et al. Preparation and characterization of modified graphite oxide/poly(propylene carbonate) composites by solution intercalation[J]. Polymer Degradation and Stability,2011,96(10):1833-1840. doi: 10.1016/j.polymdegradstab.2011.07.013
    [26] RATH S K, DUBEY S, KUMAR G S, et al. Multi-walled CNT-induced phase behaviour of poly(vinylidene fluoride) and its electrome-chanical properties[J]. Journal of Materials Science,2014,49(1):103-113. doi: 10.1007/s10853-013-7681-2
    [27] 国家技术监督局. 塑料薄膜拉伸性能试验方法: GBT13022—1991[S]. 北京: 中国标准出版社, 1991.

    State Bureau of Quality and Technical Supervision. Plastics-Determination of tensile properties of films: GBT13022—1991[S]. Beijing: China Standards Press, 1991(in Chinese).
    [28] 穆阳, 李皓. Al2O3填料对SiCf/BN/SiC复合材料弯曲强度和高温吸波性能的影响[J]. 材料研究学报, 2019, 33(11):865-873.

    MU Y, LI H. Effects of micron Al2O3 filler on flexural strength and high-temperature microwave absorbing pro-perties of SiCf/BN/Si Ccomposites[J]. Chinese Journal of Materials Research,2019,33(11):865-873(in Chinese).
    [29] ACHABY M E, ARRAKHIZ F Z, VAUDREUI S, et al. Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDF nanocomposite films[J]. Applied Surface Science,2012,258(19):7668-7677. doi: 10.1016/j.apsusc.2012.04.118
    [30] MAITY N, MANDAL A, NANDI A K. Interface engineering of ionic liquid integrated graphene in poly(vinylidene fluoride) matrix yielding magnificent improvement in mechanical, electrical and dielectric properties[J]. Polymer,2015,65:154-167. doi: 10.1016/j.polymer.2015.03.066
    [31] HE L, XU Q, HUA C, et al. Effect of multi-walled carbon nanotubes on crystallization, thermal, and mechanical properties of poly(vinylidene fluoride)[J]. Polymer Composites,2010,31:921-927.
    [32] KAR E, BOSE N, DUTTA B, et al. Poly(vinylidene fluoride)/submicron graphite platelet composite: A smart, lightweight flexible material with significantly enhanced β polymorphism, dielectric and microwave shielding properties[J]. European Polymer Journal,2017,90:442-455. doi: 10.1016/j.eurpolymj.2017.03.030
    [33] PEDRO M, CARLOS M, MARIA B, et al. On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions[J]. CrystEngComm,2012,14(8):2807. doi: 10.1039/c2ce06654h
    [34] JIN L, ZHENG Y, LIU Z K, et al. Enhancement of β-phase crystal content of poly(vinylidene fluoride) nanofiber web by graphene and electrospinning parameters[J]. Chinese Journal of Polymer Science,2020,38(11):1239-1247. doi: 10.1007/s10118-020-2428-4
    [35] GUO M L, FANG J, XU H K, et al. Synthesis and characteri-zation of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells[J]. Jour-nal of Membrane Science,2010,362(1):97-104.
    [36] WANG T, ZHANG X H, CHEN D, et al. Preparation of a hybrid core-shell structured BaTiO3@PEDOT nanocompo-site and its applications in dielectric and electrode mater-ials[J]. Applied Surface Science,2015,356:232-239. doi: 10.1016/j.apsusc.2015.08.077
    [37] FREDIN L A, LI Z, LANAGAN M T, et al. Sustainable high capacitance at high frequencies: Metallic aluminum-polypropylene nanocomposites[J]. ACS Nano,2013,7(1):396-407. doi: 10.1021/nn3044148
    [38] YU K, WANG H, ZHOU Y C, et al. Enhanced dielectric pro-perties of BaTiO3/poly(vinylidene fluoride) nanocompo-sites for energy storage applications[J]. Journal of Applied Physics,2013,113(3):034105. doi: 10.1063/1.4776740
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1038
  • HTML全文浏览量:  520
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-08-20
  • 录用日期:  2021-09-05
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回