Effects of nano-TiC and B on microstructure and tribological properties of laser cladding FeCoCrNiCu composite coatings
-
摘要: 为研究纳米TiC与B元素对FeCoCrNiCu高熵合金涂层的影响,采用激光熔覆技术在Q235基体制备FeCoCrNiCuBx (x = 1, 3, 5 at%) 和FeCoCrNiCu-xTiC (x = 5, 10, 15 wt%) 涂层,并选取性能最好的FeCoCrNiCuB0.5和FeCoCrNiCu-15wt%TiC进行分析。结果表明添加纳米TiC与B都会使晶粒细化,提高涂层的冶金结合性能。FeCoCrNiCu(HEA)、FeCoCrNiCuB0.5(B5)、FeCoCrNiCu-15wt%TiC(T15)涂层的显微硬度分别是217.95、343.98和531.65HV0.5。T15涂层室温下摩擦系数仅为0.549,且表面更加光整,磨损机制主要为磨粒磨损;600℃下T15涂层摩擦系数为0.279,磨损率为15.28×10−5 mm3/N·m,磨损机制为磨粒磨损、疲劳磨损和氧化磨损。B5涂层在室温下的摩擦系数最低,仅为0.425,磨损机制主要为磨粒磨损和疲劳磨损;在600℃下B5涂层摩擦系数为0.255,磨损率为6.96×10−5 mm3/N·m,磨损机制主要为氧化磨损和磨粒磨损。在B5涂层表面生成B2O3自润滑相,其在高温下熔化形成低粘度液体,形成润滑膜,隔离接触面,减少直接接触和粘附,是显著提高其摩擦学性能的主要原因。Abstract: To investigate the effects of adding nano-TiC and B elements on the FeCoCrNiCu high-entropy alloy coating, laser cladding technique was employed to prepare FeCoCrNiCuBx and FeCoCrNiCu-x wt%TiC high-entropy alloy coatings on Q235 substrate. The best-performing coatings, FeCoCrNiCuB0.5 and FeCoCrNiCu-15wt%TiC, were selected for discussion and analysis. The results show that the addition of nano-TiC and B both lead to grain refinement and improve metallurgical bonding properties of the coatings. The microhardness values of the FeCoCrNiCu (HEA), FeCoCrNiCuB0.5 (B5), and FeCoCrNiCu-15wt%TiC (T15) coatings are 217.95, 343.98 and 531.65 HV0.5, respectively. The T15 coating exhibits a low friction coefficient of only 0.549 at room temperature, with a smoother surface and wear mechanism mainly attributed to abrasive wear. At 600℃, the friction coefficient of the T15 coating is 0.279, with a wear rate of 15.28×10−5 mm3/N·m, and the wear mechanisms include abrasive wear, fatigue wear, and oxidation wear. The B5 coating exhibits the lowest friction coefficient of 0.425 at room temperature, primarily due to abrasive wear and fatigue wear. At 600℃, the friction coefficient of B5 coating is 0.255, the wear rate is 6.96×10−5 mm3/N·m, and the wear mechanism is mainly abrasive wear. The B2O3 self-lubricating phase is formed on the surface of the B5 coating, which melts at high temperature to form a low viscosity liquid, forming a lubricating film, isolating the contact surface, reducing direct contact and adhesion, which is the main reason for significantly improving its tribological properties.
-
Key words:
- laser cladding /
- high entropy alloy coating /
- nano-TiC /
- B element /
- tribological property
-
表 1 高熵合金涂层成分设计
Table 1. Elements composition of high-entropy alloy coatings
Coatings Element Fe Co Cr Ni Cu B TiC B5/at% 18.18 18.18 18.18 18.18 18.18 9.10 0 T15/wt% 17 17 17 17 17 0 15 表 2 高熵合金涂层激光熔覆工艺参数
Table 2. Parameters of laser cladding of high-entropy alloy coatings
Spot
Radius/mmLaser
wavelength/nmPower/W Scanning
speed/(mm·s−1)Powder feeding
rate/(g·min−1)Overlapping
rate/%Protective
gas1 514 1800 4 10.5 50 Ar gas Point Elements/at% O Fe Co Cr Ni Cu Ti C B 1 51.09 11.82 8.16 8.75 11.29 8.89 — — 2 45.41 13.45 10.42 10.94 9.92 9.86 — — 3 29.92 31.39 10.26 8.70 9.93 9.15 — — 0.65 4 51.61 13.31 7.44 7.18 7.13 7.02 — — 6.31 5 50.75 11.28 6.58 6.47 6.52 6.36 5.27 6.77 — 6 2.39 31.98 10.67 10.69 11.12 11.51 6.29 15.35 — 表 4 图12中各点EDS结果
Table 4. EDS results of each point in Figure.12
Point Elements/at% O Fe Co Cr Ni Cu Ti C B 1 51.38 12.52 8.75 8.53 9.56 9.26 — — — 2 54.93 11.95 8.20 7.94 8.46 8.52 — — — 3 49.82 22.81 4.06 4.17 4.28 4.19 5.22 5.45 — 4 33.18 30.70 5.60 5.12 6.00 4.63 4.74 9.86 — 5 55.63 18.67 5.73 5.47 5.43 4.83 — — 4.24 6 51.92 18.79 6.74 6.63 6.71 6.02 — — 3.19 -
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. doi: 10.1002/adem.200300567 [2] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375–377: 213–218. [3] 赵小凤, 崔洪芝, 姜迪, 等. 激光熔覆 (CrFeNiAl)100–xMox 高熵合金涂层的组织及耐磨耐蚀性能[J]. 复合材料学报, 2023, 40(11): 6311-6323.ZHAO Xiaofeng, CUI Hongzhi, JIANG Di, et al. Microstructure, wear and corrosion resistance of (CrFeNiAl)100 – xMox high-entropy alloy coatings by laser cladding[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6311-6323(in Chinese). [4] Li Z, Jing C, Feng Y, et al. Phase evolution and properties of AlxCoCrFeNi high-entropy alloys coatings by laser cladding[J]. Materials Today Communications, 2023, 35: 105800. doi: 10.1016/j.mtcomm.2023.105800 [5] Liu H, Gao W, Liu J, et al. Microstructure and properties of CoCrFeNiTi high-entropy alloy coating fabricated by laser cladding[J]. Journal of Materials Engineering and Performance, 2020, 29: 7170-7178. doi: 10.1007/s11665-020-05204-y [6] 谢晓明, 沈鹰, 刘秀波, 等. Mn 含量对激光熔覆 FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066Xie Xiaoming, Shen Ying, Liu Xiubo, et al. Effect of Mn Contents on High-temperature Tribological Properties of Laser Cladding FeCoCrNiMnx High-entropy Alloy Coatings, Materials reports, 2024, 38(23): 23120066. (in Chinese) [7] Zhu Z X, Liu X B, Liu Y F, et al. Effects of Cu/Si on the microstructure and tribological properties of FeCoCrNi high entropy alloy coating by laser cladding[J]. Wear, 2023, 512: 204533. [8] Derimow N, Abbaschian R. Liquid phase separation in high-entropy alloys—A review[J]. Entropy, 2018, 20(11): 890. doi: 10.3390/e20110890 [9] Jiang P F, Zhang C H, Zhang S, et al. Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying[J]. Materials Chemistry and Physics, 2020, 255: 123571. doi: 10.1016/j.matchemphys.2020.123571 [10] Wu H, Wang L, Zhang S, et al. Tribological properties and sulfuric acid corrosion resistance of laser clad CoCrFeNi high entropy alloy coatings with different types of TiC reinforcement[J]. Tribology International, 2023, 188: 108870. doi: 10.1016/j.triboint.2023.108870 [11] 刘奋军, 宁祥, 白艳霞, 等. AZ31 镁合金表面激光熔覆 Al-TiC 复合涂层微观组织与腐蚀性能[J]. 复合材料学报, 2023, 40(2): 959-969.LIU Fenjun, NING Xiang, BAI Yanxia, et al. Microstructure and corrosion properties of the laser cladding Al-TiC composite coating on AZ31 magnesium alloy[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 959-969(in Chinese). [12] Chen G D, Liu X B, Zhang F Z, et al. Fabrication and tribological properties of laser cladding WC-Cu/Co-based composite coatings[J]. Surface and Coatings Technology, 2023, 472: 129930. doi: 10.1016/j.surfcoat.2023.129930 [13] Mertgenç E, Kayalı Y, Yalçın M C, et al. Effect of Boron Coating on Rockwell-C Adhesion and Corrosion Resistance of High Entropy Alloys[J]. Journal of Materials Engineering and Performance, 2024, 33(3): 1194-1201. doi: 10.1007/s11665-023-08068-0 [14] 高峰, 徐红艳, 马尧. 超音速火焰喷涂Cr7C3-NiCr、Cr23C6-Ni涂层性能研究[J]. 粉末冶金技术, 2014, 32(5): 335-337.Gao Feng, Xu Hongyan, Ma Yao. Study on Properties of Cr7C3-NiCr and Cr23C6-Ni Coatings by Supersonic Flame Spraying[J]. Powder Metallurgy Technology, 2014, 32(5): 335-337. (in Chiinese [15] Marshall P V, Alptekin Z, Thiel S D, et al. High-Pressure Synthesis of Bulk Cobalt Cementite, Co3C[J]. Chemistry of Materials, 2021, 33(24): 9601-9607. doi: 10.1021/acs.chemmater.1c03092 [16] Smilgies D M. Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors[J]. Journal of Applied Crystallography, 2009, 42(Part 6): 1030–1034. [17] 臧振杰. AlCrFe2Ni2Bx高熵合金的组织结构和性能[D]. 天津理工大学, 2023.Zang Zhenjie. Microstructure and properties of AlCrFe2Ni2Bx high entropy alloy [D]. Tianjin University of Technology, 2023. (in Chinese) [18] 叶喜葱, 吴鑫, 王童, 等. CrFeNi2Bx高熵合金的微观组织及力学性能[J]. 材料热处理学报, 2022, 43(9): 68-77.Ye Xicong, Wu Xin, Wang Tong, et al. Microstruc ture and mechanical properties of CrFeNi2Bx high entropy alloy[J]. Journal of Materials Heat Treatment, 2022, 43(9): 68-77(in Chinese). [19] Song B, Yu T, Jiang X, et al. Development mechanism and solidification morphology of molten pool generated by laser cladding[J]. International Journal of Thermal Sciences, 2021, 159: 106579. doi: 10.1016/j.ijthermalsci.2020.106579 [20] Tregouet C, Saint-Jalmes A. Stability of a directional Marangoni flow[J]. Soft Matter, 2020, 16(38): 8933-8939. doi: 10.1039/D0SM01347A [21] 刘畅, 饶嘉威, 蒋凤琦, 等. 等离子弧熔覆Fe-C-B-V系耐磨堆焊层的组织及性能研究[J]. 热加工工艺, 2024, 53(2): 145-148.Liu Chang, Rao Jiawei, Jiang Fengqi, et al. Study on microstructure and properties of Fe-C-B-V Series wear-resistant surfacing layer by plasma arc cladding[J]. Hot Working Technology, 2024, 53(2): 145-148(in Chinese). [22] 古艳玲, 陈扬, 安金华, 等. 碳化物陶瓷颗粒对双相高熵合金基复合材料微观组织和力学性能的影响[J]. 复合材料学报, 2023, 40(5): 3047-3059.GU Yanling, CHEN Yang, AN Jinhua, et al. Effect of carbide ceramic particles on the microstructure and mechanical properties of dual-phase high-entropy alloy matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3047-3059(in Chinese). [23] Zhang D, He X, Liu Y, et al. The effect of in situ nano-sized particle content on the properties of TiCx/Cu composites[J]. journal of materials research and technology, 2021, 10: 453-459. doi: 10.1016/j.jmrt.2020.12.037 [24] Chen H, Kosiba K, Lu T, et al. Hierarchical microstructures and strengthening mechanisms of nano-TiC reinforced CoCrFeMnNi high-entropy alloy composites prepared by laser powder bed fusion[J]. Journal of Materials Science & Technology, 2023, 136: 245-259. [25] 黄云, 黄建超, 肖贵坚, 等. 超疏水表面加工技术及耐磨性能研究进展[J]. 中国机械工程, 2024, 35(1): 2-26.Huang Yun, Huang Jianchao, XIAO Guijian, et al. Research progress of Superhydrophobic Surface Processing Technology and Wear Resistance[J]. China Mechanical Engineering, 2024, 35(1): 2-26(in Chinese). [26] 高殿荣, 王子朋, 梁瑛娜, 等. 表面润湿性与粗糙度对配流副摩擦特性的影响[J]. 机床与液压, 2023, 51(17): 57-63. doi: 10.3969/j.issn.1001-3881.2023.17.010Gao Dianrong, WANG Zipeng, LIANG Yingna, et al. Influence of Surface Wettability and Roughness on Frictional Characteristics of Valve Plate[J]. Machine Tool & Hydraulics, 2023, 51(17): 57-63(in Chinese). doi: 10.3969/j.issn.1001-3881.2023.17.010 [27] 王旭, 贺定勇, 邵蔚, 等. 硼含量对NiCrB堆焊合金高温氧化性能的影响[J]. 表面技术, 2023, 52(8): 247-254+300.Wang Xu, He Dingyong, Shao Wei, et al. Effect of Boron content on high temperature oxidation performance of NiCrB surfacing alloy[J]. Surface Technology, 2023, 52(8): 247-254+300(in Chinese). [28] Zhao Z, Zheng K, Yu X, et al. Effect of particles size of TiC on oxidation resistance of in-situ TiC/Ni composite[J]. Heliyon, 2023, 9(7): e18220. doi: 10.1016/j.heliyon.2023.e18220 [29] Maros M B, Németh A K. Wear maps of HIP sintered Si3N4/MLG nanocomposites for unlike paired tribosystems under ball-on-disc dry sliding conditions[J]. Journal of the European Ceramic Society, 2017, 37(14): 4357-4369. doi: 10.1016/j.jeurceramsoc.2017.05.005 [30] Song Z, Sun S, Du H, et al. A TiC reinforced Co-free Fe50Mn25Ni10Cr15 medium-entropy alloy with multiple strengthening mechanisms[J]. Materials Letters, 2023, 343: 134375. doi: 10.1016/j.matlet.2023.134375 [31] Yang C M, Liu X B, Liu Y F, et al. Effect of Cu-doping on tribological properties of laser-cladded FeCoCrNiCux high-entropy alloy coatings[J]. Tribology International, 2023, 188: 108868. doi: 10.1016/j.triboint.2023.108868 [32] Li B, Gao Y, Hou X, et al. Microstructure, mechanical and tribological properties of NiAl matrix composites with addition of BaO/TiO2 binary oxides[J]. Tribology International, 2020, 144: 106108. doi: 10.1016/j.triboint.2019.106108 [33] Aréna H, Coulibaly M, Soum-Glaude A, et al. Effect of TiC incorporation on the optical properties and oxidation resistance of SiC ceramics[J]. Solar Energy Materials and Solar Cells, 2020, 213: 110536 doi: 10.1016/j.solmat.2020.110536 [34] Park J Y, Kim G H, Kim J B, et al. Thermo-Physical Properties of B2O3-Containing Mold Flux for High Carbon Steels in Thin Slab Continuous Casters: Structure, Viscosity, Crystallization, and Wettability[J]. Metallurgical and Materials Transactions B, 2016, 47(4): 2582-2594. doi: 10.1007/s11663-016-0720-z
计量
- 文章访问数: 49
- HTML全文浏览量: 15
- 被引次数: 0