留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无定形CoxHyPO4复合NiCo2S4核壳结构设计及其电催化析氧性能

蔡晓燕 陈自豪 毛梁

蔡晓燕, 陈自豪, 毛梁. 无定形CoxHyPO4复合NiCo2S4核壳结构设计及其电催化析氧性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 蔡晓燕, 陈自豪, 毛梁. 无定形CoxHyPO4复合NiCo2S4核壳结构设计及其电催化析氧性能[J]. 复合材料学报, 2024, 42(0): 1-10.
CAI Xiaoyan, CHEN Zihao, MAO Liang. Core-shell structured CoxHyPO4/NiCo2S4 composites towards electrocatalytic oxygen evolution[J]. Acta Materiae Compositae Sinica.
Citation: CAI Xiaoyan, CHEN Zihao, MAO Liang. Core-shell structured CoxHyPO4/NiCo2S4 composites towards electrocatalytic oxygen evolution[J]. Acta Materiae Compositae Sinica.

无定形CoxHyPO4复合NiCo2S4核壳结构设计及其电催化析氧性能

基金项目: 国家自然科学基金 (22309204, 22209203);博士后科学基金(2023M733742);中国矿业大学材料科学与工程学科引导基金(CUMTMS202202, CUMTMS202207)
详细信息
    通讯作者:

    蔡晓燕,博士,副教授,硕士生导师,研究方向为光/电功能材料 E-mail: xycai@cumt.edu.cn

  • 中图分类号: TB332

Core-shell structured CoxHyPO4/NiCo2S4 composites towards electrocatalytic oxygen evolution

Funds: National Natural Science Foundation of China (No. 22309204 and 22209203); China Postdoctoral Science Foundation (No. 2023M733742); Material Science and Engineering Discipline Guidance Fund of China University of Mining and Technology (No. CUMTMS202202 and CUMTMS202207)
  • 摘要: 探索具有优异活性和稳定性的非贵金属析氧反应(OER)电催化剂是电解水制氢的关键。本文采用光还原沉积方法将无定形的非晶物质磷酸氢钴(CoxHyPO4,简称Co-Pi)沉积在多孔NiCo2S4(NCS)蛋黄-蛋壳微球表面,成功制备出具有核壳结构的Co-Pi/NCS复合材料。密度泛函理论(DFT)计算与实验研究相结合,探究Co-Pi的引入对NCS电子结构和电催化性能的影响。异质界面的形成以及化学键的重构,可以提升Co-Pi/NCS的电导率,调节催化剂与反应中间体之间的电荷转移,从而改变吸附强度和反应的吉布斯自由能,最终优化OER催化活性。因此,Co-Pi/NCS表现出良好的催化活性和耐久性,在10 mA·cm−2电流密度下的过电位仅为335 mV,并且在1 mol/L的KOH溶液中能保持14 h的长时稳定性。这项工作可以促进过渡金属硫化物在电化学制氧过程中的应用。

     

  • 图  1  NiCo2S4 (NCS)和CoxHyPO4/NiCo2S4 (Co-Pi/NCS)样品的XRD图谱 (a); NCS和1%Co-Pi/NCS的FTIR光谱 (b)

    Figure  1.  XRD patterns of NiCo2S4 (NCS) and CoxHyPO4/NiCo2S4 (Co-Pi/NCS) samples (a). FTIR spectra of NCS and 1%Co-Pi/NCS (b)

    图  2  NiCo-MOF (a) 和NCS (b) 的SEM图像; NCS的N2等温吸附曲线和孔径分布图 (c); 0.7%Co-Pi/NCS (d), 1%Co-Pi/NCS (e), 2%Co-Pi/NCS (f) 的SEM图像; NCS (g) 和1%Co-Pi/NCS (h) 的TEM图像; 1%Co-Pi/NCS的HRTEM图像 (i) 和EDS元素分布图 (图中标尺为200 nm) (j)

    Figure  2.  SEM images of NiCo-MOF (a) and NCS (b). N2 isothermal adsorption curve and pore size distribution of NCS (c). SEM images of 0.7%Co-Pi/NCS (d), 1%Co-Pi/NCS (e), and 2%Co-Pi/NCS (f). TEM image of NCS (g) and 1%Co-Pi/NCS (h). HRTEM image (i) and EDS elemental mapping (the scale bars are 200 nm) (j) of 1%Co-Pi/NCS

    图  3  NCS和1%Co-Pi/NCS样品的Ni 2p (a), Co 2p (b), P 2p (c), S 2p (d) 高分辨XPS谱图

    Figure  3.  High resolution XPS spectra of Ni 2p (a), Co 2p (b), P 2p (c), S 2p (d) of NCS and 1%Co-Pi/NCS

    图  4  NCS和Co-Pi/NCS样品的LSV曲线 (a), Tafel斜率 (b), EIS曲线 (c) 和电化学双层电容 (Cdl) (d); NCS和1%Co-Pi/NCS样品在10 mA·cm−2电流密度下的计时电位曲线 (e) 以及800 min测试前后的LSV曲线 (f)

    Figure  4.  LSV curves (a), Tafel slopes (b), EIS plots (c), and Cdl (d) of NCS and Co-Pi/NCS samples. Chronopotential curve under current density of 10 mA·cm−2 (e), and LSV curve before and after 800 min testing (f) of NCS and 1%Co-Pi/NCS

    图  5  NCS(100) (a), CoPO4(010) (b) 和CoPO4/NCS (c) 的晶体结构模型; CoPO4/NCS的差分电荷密度 (d); NCS (e), CoPO4 (f) 和CoPO4/NCS (g) 的态密度; NCS (h), CoPO4 (i) 和CoPO4/NCS (j) 表面吸附中间体的稳定结构和自由能; NCS (k), CoPO4 (l) 和CoPO4/NCS (n) 表面吸附O原子的Bader电荷

    Figure  5.  Crystal structure of NCS(100) (a), CoPO4(010) (b) and CoPO4/NCS (c). Differential charge density of CoPO4/NCS (d); Density of state of NCS (e), CoPO4 (f) and CoPO4/NCS (g); Stable structure and adsorption free energy of intermediates on NCS (h), CoPO4 (i) and CoPO4/NCS (j); Bader charges of NCS (k), CoPO4 (l), and CoPO4/NCS (n) adsorbed O atom

    表  1  CoxHyPO4/NiCo2S4 (Co-Pi/NCS)与已报道的OER电催化剂在10 mA·cm−2电流密度下的过电位比较

    Table  1.   Comparison of the overpotentials to achieve the OER current density of 10 mA·cm−2 for CoxHyPO4/NiCo2S4 (Co-Pi/NCS) with reported electrocatalysts

    ElectrocatalystElectrolyteP/mVReference
    CoxHyPO4/NiCo2S41 mol/L KOH335This work
    NiCo2S4@double-layered carbon nanospheres1 mol/L KOH344[16]
    P-doped MnCo2O41 mol/L KOH364[28]
    CoO/CoxP1 mol/L KOH370[29]
    In-doped CoO/CoP1 mol/L KOH365[30]
    Co6Ni4P/nickel foam1 mol/L KOH373[31]
    Co9S8/MnS sulfur/nitrogen nitrogen co-doped carbon nanosheets1 mol/L KOH360[32]
    P-doped (Zn0.33Ni0.33Mn0.33)Co2O41 mol/L KOH349[33]
    NiO/NiCo2O41 mol/L KOH350[34]
    NiCo2S4/reduced graphene oxide1 mol/L KOH366[35]
    P-doped manganese-cobalt oxide1 mol/L KOH520[36]
    NiCo2O4/N-doped carbon nanotubes/NiCo1 mol/L KOH350[37]
    Notes: P is the overpotential at the OER current density of 10 mA·cm−2
    下载: 导出CSV
  • [1] ZANG Y, LU D Q, WANG K, et al. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting[J]. Nature Communications, 2023, 14: 1792. doi: 10.1038/s41467-023-37530-9
    [2] 赖嘉俊, 李潇潇, 曾传旺, 等. 富氧空位铁基复合材料的制备及其电催化析氢性能[J]. 复合材料学报, 2023, 40(5): 2827-2835.

    LAI J J, LI X X, ZENG C W, et al. Preparation of oxygen-rich vacancy iron-matrix composites and their electrocatalytic hydrogen evolution properties[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2827-2835 (in Chinese).
    [3] PONNADA S, KIAI M S, GORLD D B, et al. Recent status and challenges in multifunctional electrocatalysis based on 2D MXenes[J]. Catalysis Science & Technology, 2022, 12(14): 4413-4441.
    [4] DENG Y W, CAO Y F, XIA Y, et al. Self-Templated Synthesis of CoFeP@C Cage-In-Cage Superlattices for Enhanced Electrocatalytic Water Splitting[J]. Advanced Energy Materials, 2022, 12: 2202394. doi: 10.1002/aenm.202202394
    [5] 张海成, 杨邦志, 张娇, 等. 钴掺杂铜基复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2024, 41 (4): 1923-1933.

    ZHANG H C, YANG B Z, ZHANG J, et al. Synthesis and electrocatalytic oxygen evolution performance of cobalt doped copper-based composites, Acta Materiae Compositae Sinica, 2024, 41 (4): 1923-1933 (in Chinese).
    [6] 姜金池, 金彪, 孟龙月. 基于电催化析氧反应的非贵金属催化剂研究进展[J]. 复合材料学报, 2023, 40(3): 1365-1380.

    JIANG J C, JIN B, MENG L Y. Research progress on non-noble metal catalysts based on electrocatalytic oxygen evolution reactions[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380 (in Chinese).
    [7] CAI X Y, ZENG Z T, LIU Y D, et al. Visible-light-driven water splitting by yolk-shelled ZnIn2S4-based heterostructure without noble-metal co-catalyst and sacrificial agent[J]. Applied Catalysis B: Environmental, 2021, 297: 120391.
    [8] DAI W J, PAN Y, REN K, et al. Heteroatom Ni alloyed pyrite-phase FeS2 as a precatalyst for enhanced oxygen evolution reaction[J]. Electrochimica Acta, 2020, 355: 136821. doi: 10.1016/j.electacta.2020.136821
    [9] LAN M Q, XIE C Y, LI B, et al. Two-Dimensional Cobalt Sulfide/Iron-Nitrogen-Carb-on Holey Sheets with Improved Durability for Oxygen Electrocatalysis[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11538-11546.
    [10] LIN J H, WANG H H, CAO J, et al. Engineering Se vacancies to promote the intrinsic activities of P doped NiSe2 nanosheets for overall water splitting[J]. Journal of Colloid and Interface Science, 2020, 571: 260-266. doi: 10.1016/j.jcis.2020.03.053
    [11] EL-REFAEI S M, RUSSO P A, PINNA N. Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22077-22097.
    [12] MA G Y, YE J T, QIN M Y, et al. Mn-doped NiCoP nanopin arrays as high-performance bifunctional electrocatalysts for sustainable hydrogen production via overall water splitting[J]. Nano Energy, 2023, 115: 108679. doi: 10.1016/j.nanoen.2023.108679
    [13] LIN Y, CHEN X M, TUO Y X. et al. In-situ doping-induced lattice strain of NiCoP/S nanocrystals for robust wide pH hydrogen evolution electrocatalysis and supercapacitor[J]. Journal of Energy Chemistry, 2022, 70: 27-35. doi: 10.1016/j.jechem.2022.02.024
    [14] CHEN T, WEI S T, WANG Z H. NiCo2S4-Based Composite Materials for Supercapacitors[J]. ChemPlusChem, 2020, 85(1): 43-56. doi: 10.1002/cplu.201900288
    [15] 孙兴伟, 白杰, 李春萍, 等. 钴基电极材料的改性策略及其应用研究[J]. 复合材料学报, 2023, 40(5): 2550-2565.

    SUN X W, BAI J, LI C P, et al. Modification strategy and application of cobalt-based electrode materials[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2550-2565 (in Chinese).
    [16] CHEN Y T, WU H Y, TANG N, et al. A NiCo2S4 octahedral configuration doped by Mn, Zn and Cu for the oxygen evolution reaction[J]. Chemical Communiations, 2024, 60: 1751.
    [17] LIU C C, ZHANG X, HAO X Q, et al. NiCO2S4 nanotubes in situ anchored double-layered hollow carbon nanospheres towards enhanced overall water splitting[J]. Journal of Alloys and Compounds, 2024, 1002: 175110. doi: 10.1016/j.jallcom.2024.175110
    [18] BAI L, SONG A L, LEI X Y, et al. Hierarchical construction of hollow NiCo2S4 nanotube@NiCo2S4 nanosheet arrays on Ni foam as an efficient and durable electrocatalyst for hydrogen evolution reaction[J]. ScienceDirect, 2022, 47: 38524-385322.
    [19] SONG W J, XU M Z, TENG X, et al. Construction of self-supporting, hierarchically structured caterpillar-like NiCo2S4 arrays as an efficient trifunctional electrocatalyst for water and urea electrolysis[J]. Nanoscale, 2021, 13(3): 1680-1688.
    [20] 李群, 张阔, 李艳华, 等. 三维多级钴酸镍结构的形貌调控及其电化学性能[J]. 复合材料学报, 2024, 41(1): 281-292.

    LI Q, ZHANG K, LI Y, et al. Morphology control and electrochemical properties of three-dimensional hierarchical NiCo2O4 structure[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 281-292 (in Chinese).
    [21] JIANG R Q, MAO L, ZHAO Y L, et al. Spatial carrier separation in cobalt phosphate deposited ZnIn2S4 nanosheets for efficient photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science, 2022, 606: 317-327. doi: 10.1016/j.jcis.2021.08.008
    [22] RADHIKA M G, SRILAKSHMI R, TEJASHREE V, et al. A new strategy for the morphology-controlled synthesis of Ni/Co MOFs for high-performance asymmetric supercapacitors[J]. Journal of Energy Storage, 2023, 61: 106766. doi: 10.1016/j.est.2023.106766
    [23] Blochl P E. Projector augmented-wave method[J]. Phys Rev B Condens Matter 1994, 50: 17953-17979.
    [24] 龙升, 刘依, 邹攀, 等. 球状NiCo2S4的制备及其在KOH溶液中的电化学行为[J]. 复合材料学报, 2024, 42: 1-9.

    LONG S, LIU Y, ZOU P, et al. Preparation of spherical NiCo2S4 and the electrochemical behavior in KOH solution[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-9 (in Chinese).
    [25] 朱彬, 刘盼, 吕东风. NiCo2O4纳米线/SiC复合纤维制备及其电化学性能[J]. 复合材料学报, 2020, 37(7): 1684-1694.

    ZHU B, LIU P, LV D F, et al. Preparation and electrochemistry properties of NiCo2O4 nanowire/SiC composite fiber[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1684-1694 (in Chinese).
    [26] CHEN J, MAO L, XU J C, et al. Synergetic effect of phosphorus-dopant and graphene-covering layer on hydrogen evolution activity and durability of NiCo2S4 electrocatalysts[J]. Science China Materials, 2023, 66(10): 3875-3886. doi: 10.1007/s40843-023-2546-3
    [27] LU X F, ZHANG S L, SIM W L, et al. Phosphorized CoNi2S4 Yolk-Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis[J]. Angewandte Chemie International Edition, 2021, 60(42): 22885-22891. doi: 10.1002/anie.202108563
    [28] YAO L L, YANG W X, NIU Y J, et al. Comparison of the effects of cation and phosphorus doping in cobalt-based spinel oxides towards the oxygen evolution reaction[J]. CrystEngComm, 2021, 23: 1849-1858. doi: 10.1039/D0CE01771J
    [29] NIU Y, XIAO M L, ZHU J B, et al. A "trimurti" heterostructured hybrid with an intimate CoO/CoxP interface as a robust bifunctional air electrode for rechargeable Zn-air batteries[J]. Journal of Materials Chemistry A, 2020, 8: 9177-9184. doi: 10.1039/D0TA01145B
    [30] JIN W, CHEN J P, LIU B, et al. Oxygen V acancy-Rich In-Doped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn-Air Batteries[J]. Small, 2019, 15: 1904210. doi: 10.1002/smll.201904210
    [31] JIA F H, ZOU X Y, WEI X Y, et al. Synergistic Effect of P Doping and Mo-Ni-Based Heterostructure Electrocatalyst for Overall Water Splitting[J]. Materials, 2023, 16(9): 3411. doi: 10.3390/ma16093411
    [32] LI J C, LI W Q, MI H W, et al. Bifunctional oxy gen electrocatalysis on ultra-thin Co9S8/MnS carbon nanosheets for all-solid-state zinc–air batteries[J]. Journal of Materials Chemistry A, 2021, 9: 22635-22642. doi: 10.1039/D1TA07019C
    [33] GUO Z, PANG Y Y, XIE H, et al. Phosphorus-Doped CuCo2O4 Oxide with Partial Amorphous Phase as a Robust Electrocatalyst for the Oxygen Evolution Reaction[J]. ChemElectroChem, 2021, 8: 135-141. doi: 10.1002/celc.202001312
    [34] ZHANG L G, PANG D, CAO X L, et al. Phosphorus modified hollow, porous Nickel-Cobalt oxides nanocubes with heterostructure for oxygen evolution reaction in alkaline[J]. Journal of Alloys and Compounds, 2022, 925: 166338. doi: 10.1016/j.jallcom.2022.166338
    [35] ZHAO S, MO Z L, NIU X H, et al. Hierarchical NiCo2S4 nanosheets grown on graphene to catalyze the oxygen evolution reaction[J]. Energy Materials, 2020, 55: 1627-1636.
    [36] PENG X F, WANG Z. Facile Route of P-doped Defect-rich Manganese-cobalt Oxide Spinel with Enhanced Oxygen Evolution Reaction Performance[J]. ChemNanoMat, 2020, 6(12): 1812-1818. doi: 10.1002/cnma.202000475
    [37] CHEN C, SU H, LU L N, et al. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis[J]. Chemical Engineering Journal, 2021, 408: 127814-127823. doi: 10.1016/j.cej.2020.127814
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 修回日期:  2024-07-03
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-07-24

目录

    /

    返回文章
    返回