留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向分子筛分的MXene层状纳滤膜的研究进展

刘荣 徐泽海 张国亮

刘荣, 徐泽海, 张国亮. 面向分子筛分的MXene层状纳滤膜的研究进展[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 刘荣, 徐泽海, 张国亮. 面向分子筛分的MXene层状纳滤膜的研究进展[J]. 复合材料学报, 2024, 42(0): 1-13.
LIU Rong, XU Zehai, ZHANG Guoliang. Development of MXene layered nanofiltration membrane for molecular sieving[J]. Acta Materiae Compositae Sinica.
Citation: LIU Rong, XU Zehai, ZHANG Guoliang. Development of MXene layered nanofiltration membrane for molecular sieving[J]. Acta Materiae Compositae Sinica.

面向分子筛分的MXene层状纳滤膜的研究进展

基金项目: 浙江省重点研发项目(No.2021C0316);国家重点研发计划项目(No.2022YFB3804801)
详细信息
    通讯作者:

    徐泽海,副研究员,硕士生导师,研究方向为膜分离。 E-mail:xuzehai520@163.com

  • 中图分类号: TQ028;TB333

Development of MXene layered nanofiltration membrane for molecular sieving

Funds: Key research and development project of Zhejiang Province (No.2021C0316); National key research and development plan project of China (No.2022YFB3804801)
  • 摘要: MXene是一类新型的二维过渡金属碳/氮化物材料,具有特殊的二维结构和优异的物化性质,如亲水性、抗菌性等,已被研究者们应用于高性能分离膜的构建,在众多分离体系中表现出良好的应用前景。不同于以往对MXene基分离膜的综述,本文从层间复合材料类型和维度的视角出发,对MXene层状复合纳滤膜的研究进展进行总结,凝练出亟待解决的关键问题,为推动该领域的进一步发展提供指引。本文首先讨论了基于MXene的层状复合纳滤膜在实际分离应用中的基本要求,总结了不同类型和维度的纳米材料与MXene进行层间复合的研究进展,阐述了具有所需微观结构和多组分特性的MXene层状复合纳滤膜的设计策略。在此基础上,进一步介绍了MXene层状复合纳滤膜在海水淡化和废水处理等领域中的应用前景。最后,对MXene的层状复合纳滤膜所面临的挑战进行了分析,并概述了未来的研究和发展方向。

     

  • 图  1  MXene层状复合纳滤膜设计策略

    Figure  1.  Design strategy of MXene layered nanofiltration composite membrane

    图  2  (a)不同MXene的结构图和(b)用于合成MXene的元素周期表[19]

    Figure  2.  (a) Structural diagram of the different MXene and(b) periodic table of the elements used to synthesize the MXene[19]

    图  3  (a)不同氨基酸交联的MXene层状膜[27];(b) MXene-PEI层状膜的制备过程[29]

    Figure  3.  (a) MXene layered membrane crosslinked with different amino acids[27]; (b) Preparation process of MXene-PEI layered membrane[29]

    图  4  MXene层状复合纳滤膜:(a)零维颗粒[31];(b)一维纳米材料[33];(c)二维纳米材料[39]

    Figure  4.  Interlayer composite MXene nanofilter membrane: (a) Zero-dimensional particles[31]; (b) One-dimensional nanomaterial[33]; (c) Two-dimensional nanomaterial[39]

    图  5  MXene层状纳滤膜的分离机制:(a)孔径筛分;(b)静电排斥;(c)吸附作用

    Figure  5.  Separation mechanism of MXene layered nanofiltration membrane: (a) Pore size sieving; (b) Electrostatic exclusion; (c) Adsorption

    图  6  (a) MXene层状膜的制备[45];羧化纤维素纳米纤维交联的MXene层状膜的制备[46]

    Figure  6.  (a) Preparation of MXene layered membrane [45]; Preparation of MXene layered membrane crosslinked with carboxylated cellulose nanofibers[46]

    图  7  (a)表面带正电的MXene膜的分离机制[47];(b) MXene层状膜的分离机制[49]

    Figure  7.  (a) Separation mechanism of positively charged MXene membrane on the surface[47]; (b) Separation mechanism of MXene layered membrane[49]

    图  8  (a)金属多酚MXene膜的分离机制和(b)纳滤性能[53]

    Figure  8.  (a) Separation mechanism of metal polyphenol MXene membrane and (b) nanofiltration properties [53]

    图  9  (a)狭缝式涂布法制造MXene膜的示意图[58];(b)Meyer棒状涂布法制造 MXene 膜的示意图[59]

    Figure  9.  (a) Schematic diagram of fabricating MXene membranes via slot-die coating .[58]; (b) Schematic diagram of fabricating MXene membranes via Meyer rod-coating.[59]

    表  1  MXene基纳滤膜的应用

    Table  1.   Application of MXene-based nanofiltration membrane

    Application Membrane Design strategy Permeance/
    (L·m−2·h−1·bar−1)
    Rejection/% Ref.
    Seawater
    desalination
    MXene-T400 Self-crosslinking 3.5 75.9% for Na2SO4 [25]
    Gly-3@MX-3 Glycine crosslinking 7.5 86.28 for Na2SO4 [27]
    PEI/MXene Polyethylenimine crosslinking 9 82% for MgCl2 [47]
    HPEI-AgNP@Ti3C2Tx Hyperbranched polyethylenimine crosslinking+ silver zero-dimensional
    particle composite
    24.55 84.15% for MgCl2 [48]
    MXene / ~59 ~70% for Na2SO4 [49]
    GO-MXene Graphene oxide composite+self-crosslinking ~0.2 ~95% for MgCl2 [50]
    Wastewater
    treatment
    MXene/CM-β-CD Carboxymethyl-β-cyclodextrin crosslinking 431.37 99.7% for
    Methylene blue
    [28]
    MXene-PEI polyethylenimine crosslinking 137.77 99% for Congo red [29]
    Ag@MXene silver zero-dimensional
    particle composite
    354.29 92.32% for
    Methyl green
    [30]
    MXene/Al2O3 Al2O3 zero-dimensional
    particle composite
    88.8 99.8% for
    Rhodamine B
    [31]
    CNTs-MXene Carbon nanotubes composite 1270 100% for
    Crystal violet
    [32]
    GO/MXene Graphene oxide composite 71.9 ~100% for Methylene blue [36]
    MoS2@LS-MXene sodium lignosulfonate modified
    +MoS2 composite
    77 93% for Congo red [38]
    GO/AA-Ti3C2Tx Ammonium acetate modification +
    graphene oxide composite
    115.5 99.1% for Congo red [39]
    PEI-MXene polyethylenimine crosslinking 441.3 99.82% for Congo red [54]
    MXene Fe(OH)3 zero-dimensional
    particle composite
    +HCl treatment
    1084 90% for Evans blue [55]
    Ti3C2Tx-EDA Ethylenediamine crosslinking 20 93.2~99.8% for
    Mn2+、Zn2+、Cd2+
    Cu2+、Ni2+、Pb2+
    [56]
    Notes:Gly-3@MX-3—Glycine-3@MXene-3; PEI/MXene—Polyethylenimine/MXene; HPEI-AgNP@Ti3C2Tx—Hyperbranched polyethylenimine-silver nanoparticle; GO-MXene—Graphene oxide-MXene; MXene/CM-β-CD—MXene/carboxymethyl-β-cyclodextrin; MXene-PEI—MXene-polyethylenimine; CNTs-MXene—Carbon nanotubes-MXene; GO/MXene—Graphene oxide/MXene; MoS2@LS-MXene—MoS2@sodium lignosulfonate-MXene; GO/AA-Ti3C2Tx—Graphene oxide/ammonium acetate-Ti3C2Tx; PEI-MXene—Polyethylenimine-MXene; Ti3C2Tx-EDA—Ti3C2Tx-thylenediamine.
    下载: 导出CSV
  • [1] NAEEM A, SAEED B, ALMOHAMADI H, et al. Sustainable and green membranes for chemical separations: A review[J]. Separation and Purification Technology, 2024, 336: 126271. doi: 10.1016/j.seppur.2024.126271
    [2] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. doi: 10.1126/science.aab0530
    [3] LIN Q Q, LIU Y C, YANG Z M, et al. Construction and application of two-dimensional MXene-based membranes for water treatment: A mini-review[J]. Results in Engineering, 2022, 15: 100494. doi: 10.1016/j.rineng.2022.100494
    [4] CHEN T, BUTT F S, ZHANG M, et al. Ultra-permeable zeolitic imidazolate frameworks-intercalated graphene oxide membranes for unprecedented ultrafast molecular separation[J]. Chemical Engineering Journal, 2021, 419: 129507. doi: 10.1016/j.cej.2021.129507
    [5] ZHANG Y F, XU Z H, ZHANG T T, et al. Self-assembly of robust graphene oxide membranes with chirality for highly stable and selective molecular separation[J]. Journal of Materials Chemistry A, 2020, 8: 16985-16993. doi: 10.1039/D0TA05449F
    [6] WANG Y J, LI L B, WEI Y Y, et al. Water transport with ultralow friction through partially exfoliated G-C3N4 nanosheet membranes with self-supporting spacers[J]. Angewandte Chemie International Edition, 2017, 56(31): 8974-8980. doi: 10.1002/anie.201701288
    [7] XU Z H, ZHANG Y F, XU Y J, et al. Construction of anti-swelling circuit board-like activated graphene oxide lamellar nanofilms with functionalized heterostructured 2D nanosheets[J]. Separation and Purification Technology, 2023, 313: 123431. doi: 10.1016/j.seppur.2023.123431
    [8] JIN X G, LIANG X K, LIU J H, et al. Development of high permeability nanofiltration membranes through porous 2D MOF nanosheets[J]. Chemical Engineering Journal, 2023, 471(1): 144566.
    [9] 李子祎, 潘恩泽, 王佳轩, 等. ZSM-5沸石分子筛膜的制备及脱盐性能研究[J]. 化工学报, 2021, 72(10): 5247-5256. doi: 10.11949/0438-1157.20210527

    LI Ziyi, PAN Enze, WANG Jiaxuan, et al. Preparation of ZSM-5 zeolite membrane and its application in desalination[J]. CIESC Journal, 2021, 72(10): 5247-5256(in Chinese). doi: 10.11949/0438-1157.20210527
    [10] LI W F, YANG Y M, WEBER J K, et al. Tunable, strain-controlled nanoporous MoS2 filter for water desalination[J]. ACS Nano, 2016, 10(2): 1829-1835. doi: 10.1021/acsnano.5b05250
    [11] CHEN C, WANG J M, LIU D, et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation[J]. Nature Communications, 2018, 9(1): 1902. doi: 10.1038/s41467-018-04294-6
    [12] 汪波, 孙阔, 张岗, 等. 二维MXene纳米通道膜的制备及分离性能[J]. 膜科学与技术, 2023, 43(5): 20-27.

    WANG Bo, SUN Kuo, ZHANG Gang, et al. Fabrication and separation performance of two-dimensional MXene nanochannel membranes[J]. Membrane Science and Technology, 2023, 43(5): 20-27(in Chinese).
    [13] SUN Y, YI F, LI R H, et al. Inorganic-organic hybrid membrane based on pillararene-intercalated MXene nanosheets for efficient water purification[J]. Angewandte Chemie International Edition, 2022, 61: e202200482. doi: 10.1002/anie.202200482
    [14] ZHANG J, LI Z S, ZHANG Q, et al. Nanoconfined MXene-MOF nanolaminate film for molecular removal/collection and multiple sieving[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 17222-17232.
    [15] YANG H L, HAN M Q, ZHANG W T, et al. High performance mixed-dimensional assembled MXene composite membranes for molecular sieving[J]. Journal of Membrane Science, 2024, 698: 122606. doi: 10.1016/j.memsci.2024.122606
    [16] YI M, WANG M, WANG Y, et al. Poly(ionic liquid)-armored MXene membrane: interlayer engineering for facilitated water transport[J]. Angewandte Chemie International Edition, 2022, 61: e202202515. doi: 10.1002/anie.202202515
    [17] LIU H K, MU M, GRAHAM N J D, et al. Alkaline-oxidized MXene composite membrane of ultra high flux and advanced rejection performance for water purification[J]. Journal of Membrane Science, 2024, 698: 122604. doi: 10.1016/j.memsci.2024.122604
    [18] FENG C, OU K Q, ZHANG Z P, et al. Dual-layered covalent organic framework/MXene membranes with short paths for fast water treatment[J]. Journal of Membrane Science, 2022, 658: 120761. doi: 10.1016/j.memsci.2022.120761
    [19] WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis of 2D MXenes[J]. Advance Materials, 2021, 33: 2103148. doi: 10.1002/adma.202103148
    [20] KARAHAN H E, GOH K, ZHANG C F, et al. MXene materials for designing advanced separation membranes[J]. Advance Materials, 2020, 32(29): 1906697. doi: 10.1002/adma.201906697
    [21] 李亚男, 年佩, 徐楠, 等. 面向精密流体分离的MXene基膜材料研究进展[J]. 化工进展, 2023, 42(10): 5249-5258.

    LI Yanan, NIAN Pei, XU Nan, et al. Research progress of MXene-based membrane materials for precision fluid separation[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5249-5258(in Chinese).
    [22] HAN R L, MA X F, XIE Y L, et al. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux[J]. RSC Advance, 2017, 7: 56204-56210. doi: 10.1039/C7RA10318B
    [23] LI Z K, WEI Y Y, GAO X, et al. Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets[J]. Angewandte Chemie International Edition, 2020, 59(24): 9751-9756. doi: 10.1002/anie.202002935
    [24] XIANG J, WANG X M, DING M M, et al. The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: Membrane characteristic and performance[J]. Chemosphere, 2022, 294: 133728. doi: 10.1016/j.chemosphere.2022.133728
    [25] SUN Y Q, LI S L, ZHUANG Y X, et al. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection[J]. Journal of Membrane Science, 2019, 591: 117350. doi: 10.1016/j.memsci.2019.117350
    [26] SUN Y Q, LU J, LI S L, et al. MXene-based membranes in water treatment: Current status and future prospects[J]. Separation and Purification Technology, 2024, 331: 125640. doi: 10.1016/j.seppur.2023.125640
    [27] LUO H Y, XU N, LI Y N, et al. Amino acid-bonded Ti3C2Tx MXene nanofiltration membranes with superior antifouling property for enhanced water purification[J]. Journal of Membrane Science, 2024, 693: 122384. doi: 10.1016/j.memsci.2023.122384
    [28] TAO M J, CHENG S Q, HAN X L, et al. Alignment of MXene based membranes to enhance water purification[J]. Journal of Membrane Science, 2022, 662: 120965. doi: 10.1016/j.memsci.2022.120965
    [29] ZHANG Y W, CHEN D Y, LI N J, et al. High-performance and stable two-dimensional MXene-polyethyleneimine composite lamellar membranes for molecular separation[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10237-10245.
    [30] PANDEY R P, RASOOL K, MADHAVAN V E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets[J]. Journal of Materials Chemistry A, 2018, 6: 3522-3533. doi: 10.1039/C7TA10888E
    [31] LONG Q W, ZHAO S F, CHEN J X, et al. Self-assembly enabled nano-intercalation for stable high-performance MXene membranes[J]. Journal of Membrane Science, 2021, 635: 119464. doi: 10.1016/j.memsci.2021.119464
    [32] DING M M, XU H, CHEN W, et al. Construction of a hierarchical carbon nanotube/MXene membrane with distinct fusiform channels for efficient molecular separation[J]. Journal of Materials Chemistry A, 2020, 8: 22666-22673. doi: 10.1039/D0TA07354G
    [33] SUN Y Q, XU D, LI S L, et al. Assembly of multidimensional MXene-carbon nanotube ultrathin membranes with an enhanced anti-swelling property for water purification[J]. Journal of Membrane Science, 2021, 623: 119075. doi: 10.1016/j.memsci.2021.119075
    [34] ZHANG S Y, WANG Z, CAI M W, et al. Attapulgite nanorods incorporated MXene lamellar membranes for enhanced decontamination of dye wastewater[J]. Nanomaterials, 2022, 12(18): 3094. doi: 10.3390/nano12183094
    [35] 谭晓宇, 杨少延, 李辉杰. 基于二维材料的Ⅲ族氮化物外延[J]. 化学学报, 2017, 75(3): 271-279. doi: 10.6023/A16100552

    TAN Xiaoyu, YANG Shaoyu, LI Huijie. Epitaxy of Ⅲ-nitride based on two-dimensional materials[J]. Acta Chimica Sinica, 2017, 75(3): 271-279(in Chinese). doi: 10.6023/A16100552
    [36] LIU T, LIU X Y, GRAHAM N, et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance[J]. Journal of Membrane Science, 2020, 593: 117431. doi: 10.1016/j.memsci.2019.117431
    [37] GONG X W, ZHANG G M, DONG H F, et al. Self-assembled hierarchical heterogeneous MXene/COF membranes for efficient dye separations[J]. Journal of Membrane Science, 2022, 657: 120667. doi: 10.1016/j.memsci.2022.120667
    [38] WANG H S, HE Z Z, YANG Q B, et al. Fabrication of 2D/2D composite membrane via combining functionalized MXene and MoS2 nanosheets for dye/salt separation[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108365. doi: 10.1016/j.jece.2022.108365
    [39] LIAO F Q, XU Z H, FAN Z X, et al. Confined assembly of ultrathin dual-functionalized Z-MXene nanosheet intercalated GO nanofilms with controlled structure for size-selective permeation[J]. Journal of Materials Chemistry A, 2021, 9: 12236-12243. doi: 10.1039/D1TA01514A
    [40] 徐颜军, 徐泽海, 孟琴, 等. 新型还原氧化石墨烯/氮化碳复合纳滤膜制备及其性能[J]. 化工学报, 2019, 70(9): 3565-3572+3621.

    XU Yanjun, XU Zehai, MENG Qin, et al. Preparation of performance of novel rGO/uCN composite nanofiltration membrane[J]. CIESC Journal, 2019, 70(9): 3565-3572+3621(in Chinese).
    [41] LI Y, ZHANG X, Yang A, et al. Polyphenol etched ZIF-8 modified graphene oxide nanofiltration membrane for efficient removal of salts and organic molecules[J]. Journal of Membrane Science, 2021, 635: 119521. doi: 10.1016/j.memsci.2021.119521
    [42] ZHANG Y, LI S H, HUANG R, et al. Stabilizing MXene-based nanofiltration membrane by forming analogous semi-interpenetrating network architecture using flexible poly(acrylic acid) for effective wastewater treatment[J]. Journal of Membrane Science, 2022, 648: 120360. doi: 10.1016/j.memsci.2022.120360
    [43] 曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7): 2078-2091.

    ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2078-2091(in Chinese).
    [44] QU K, HUANG K, XU Z. Recent progress in the design and fabrication of MXene-based membranes[J]. Frontiers of Chemical Science and Engineering, 2021, 15: 820-836. doi: 10.1007/s11705-020-1997-7
    [45] ZHANG P C, ZHANG Y J, WANG L, et al. Bioinspired macrocyclic molecule supported two-dimensional lamellar membrane with robust interlayer structure for high-efficiency nanofiltration[J]. Advance Science, 2023, 10: 2206516.
    [46] ZHANG H L, ZHENG Y L, ZHOU H W, et al. Nanocellulose-intercalated MXene NF membrane with enhanced swelling resistance for highly efficient antibiotics separation[J]. Separation and Purification Technology, 2023, 305: 122425. doi: 10.1016/j.seppur.2022.122425
    [47] MENG B C, LIU G Z, MAO Y Y, et al. Fabrication of surface-charged MXene membrane and its application for water desalination[J]. Journal of Membrane Science, 2021, 623: 119076. doi: 10.1016/j.memsci.2021.119076
    [48] LI Y N, LIU Z H, LI S M, et al. Highly permeable and stable hyperbranched polyethyleneimine crosslinked AgNP@Ti3C2Tx MXene membranes for nanofiltration[J]. Journal of Membrane Science, 2023, 670: 121376. doi: 10.1016/j.memsci.2023.121376
    [49] LIU G Z, GUO Y N, MENG B C, et al. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water[J]. Chinese Journal of Chemical Engineering, 2022, 41: 260-266. doi: 10.1016/j.cjche.2021.09.022
    [50] TIWARY S K, SINGH M, LIKHI F H, et al. Self-cross-linking of MXene-intercalated graphene oxide membranes with antiswelling properties for dye and salt rejection[J]. ACS Environmental Au, 2024, 4(2): 69-79. doi: 10.1021/acsenvironau.3c00059
    [51] XING C, LIU L F, GUO X, et al. Efficient water purification using stabilized MXene nanofiltration membrane with controlled interlayer spacings[J]. Separation and Purification Technology, 2023, 317: 123774. doi: 10.1016/j.seppur.2023.123774
    [52] 刘婷, 蔡微翼, 李瑶, 等. 微氧化MXene/MoS2复合膜分离净化效能及稳定性增强机制研究[J]. 北京理工大学学报, 2024, 44(2): 210-218.

    LIU Ting, CAI Weiyi, LI Yao, et al. Micro-oxidized MXene/MoS2 composite membrane with superior stability for efficient water purification[J]. Journal of Beijing Institute of Technology, 2024, 44(2): 210-218(in Chinese).
    [53] QIU M, SHEN Z F, XIA Q N, et al. Metal-polyphenol cross-linked titanium carbide membranes with stable interlayer spacing for efficient wastewater treatment[J]. Journal of Colloid and Interface Science, 2022, 628: 649-659. doi: 10.1016/j.jcis.2022.08.092
    [54] XING C, ZHANG Y T, HUANG R, et al. Anti-swelling polyethyleneimine-modified MXene nanofiltration membranes for efficient and selective molecular separation[J]. EcoMat, 2023, 5(3): e12300. doi: 10.1002/eom2.12300
    [55] DING L, WEI Y Y, WANG Y J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition, 2017, 56(7): 1825-1829. doi: 10.1002/anie.201609306
    [56] JANG J, KANG Y, JANG K, et al. Ti3C2Tx-Ethylenediamine nanofiltration membrane for high rejection of heavy metals[J]. Chemical Engineering Journal, 2022, 437: 135297. doi: 10.1016/j.cej.2022.135297
    [57] 王赛娣, 范议议, 孟秀霞, 等. 羟基化MXene二维层状膜对重金属离子的脱除[J]. 膜科学与技术, 2022, 42(1): 57-64+71.

    WANG Saidi, FAN Yiyi, MENG Xiuxia, et al. Removal of heavy metal ions by hydroxylated MXene membranes[J]. Membrane Science and Technology, 2022, 42(1): 57-64+71(in Chinese).
    [58] KIM J H, PARK G S, KIM Y J, et al. Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation[J]. ACS Nano, 2021, 15(5): 8860-8869. doi: 10.1021/acsnano.1c01448
    [59] LI H, LIU H Q, Shi C R, et al. Roll-to-roll fabricating MXene membranes with ordered interlayer distances for molecule and ion separation[J]. Advanced Materials Interfaces, 2023, 10(21): 2300301. doi: 10.1002/admi.202300301
    [60] DENG J J, LU Z, DING L, et al. Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving[J]. Chemical Engineering Journal, 2021, 408: 127806. doi: 10.1016/j.cej.2020.127806
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-07-10
  • 录用日期:  2024-08-03
  • 网络出版日期:  2024-08-24

目录

    /

    返回文章
    返回