Development of MXene layered nanofiltration membrane for molecular sieving
-
摘要: MXene是一类新型的二维过渡金属碳/氮化物材料,具有特殊的二维结构和优异的物化性质,如亲水性、抗菌性等,已被研究者们应用于高性能分离膜的构建,在众多分离体系中表现出良好的应用前景。不同于以往对MXene基分离膜的综述,本文从层间复合材料类型和维度的视角出发,对MXene层状复合纳滤膜的研究进展进行总结,凝练出亟待解决的关键问题,为推动该领域的进一步发展提供指引。本文首先讨论了基于MXene的层状复合纳滤膜在实际分离应用中的基本要求,总结了不同类型和维度的纳米材料与MXene进行层间复合的研究进展,阐述了具有所需微观结构和多组分特性的MXene层状复合纳滤膜的设计策略。在此基础上,进一步介绍了MXene层状复合纳滤膜在海水淡化和废水处理等领域中的应用前景。最后,对MXene的层状复合纳滤膜所面临的挑战进行了分析,并概述了未来的研究和发展方向。Abstract: MXene, as a new class of two-dimensional transition metal carbide/nitride materials, is rapidly emerging. Due to its unique two-dimensional structure and excellent physicochemical properties such as hydrophilicity, antibacterial properties, MXene materials are widely used in constructing high-performance separation membranes and show promising prospects in various separation systems. Unlike previous reviews on MXene-based separation membranes, this article summarizes the research progress on MXene layered composite nanofiltration membranes from the perspective of the types and dimensions of interlayer composite materials, highlighting key issues that need to be addressed to further advance the field. This article first discusses the challenges faced by MXene-based layered composite membranes in nanofiltration and the basic requirements for practical separation applications. By using different type and dimensional nanomaterials for interlayer composites with MXene, the design strategies for MXene layered nanofiltration composite membranes with desired microstructure and multicomponent characteristics are briefly summarized. On this basis, it further introduces the broad application prospects of MXene layered composite membranes in nanofiltration, including seawater desalination and wastewater treatment. Finally, the challenges faced by MXene layered composite nanofiltration membranes are analyzed, and the future research and development directions are outlined.
-
Key words:
- MXene /
- membranes /
- composites /
- nanofiltration /
- molecular sieving
-
表 1 MXene基纳滤膜的应用
Table 1. Application of MXene-based nanofiltration membrane
Application Membrane Design strategy Permeance/
(L·m−2·h−1·bar−1)Rejection/% Ref. Seawater
desalinationMXene-T400 Self-crosslinking 3.5 75.9% for Na2SO4 [25] Gly-3@MX-3 Glycine crosslinking 7.5 86.28 for Na2SO4 [27] PEI/MXene Polyethylenimine crosslinking 9 82% for MgCl2 [47] HPEI-AgNP@Ti3C2Tx Hyperbranched polyethylenimine crosslinking+ silver zero-dimensional
particle composite24.55 84.15% for MgCl2 [48] MXene / ~59 ~70% for Na2SO4 [49] GO-MXene Graphene oxide composite+self-crosslinking ~0.2 ~95% for MgCl2 [50] Wastewater
treatmentMXene/CM-β-CD Carboxymethyl-β-cyclodextrin crosslinking 431.37 99.7% for
Methylene blue[28] MXene-PEI polyethylenimine crosslinking 137.77 99% for Congo red [29] Ag@MXene silver zero-dimensional
particle composite354.29 92.32% for
Methyl green[30] MXene/Al2O3 Al2O3 zero-dimensional
particle composite88.8 99.8% for
Rhodamine B[31] CNTs-MXene Carbon nanotubes composite 1270 100% for
Crystal violet[32] GO/MXene Graphene oxide composite 71.9 ~100% for Methylene blue [36] MoS2@LS-MXene sodium lignosulfonate modified
+MoS2 composite77 93% for Congo red [38] GO/AA-Ti3C2Tx Ammonium acetate modification +
graphene oxide composite115.5 99.1% for Congo red [39] PEI-MXene polyethylenimine crosslinking 441.3 99.82% for Congo red [54] MXene Fe(OH)3 zero-dimensional
particle composite
+HCl treatment1084 90% for Evans blue [55] Ti3C2Tx-EDA Ethylenediamine crosslinking 20 93.2~99.8% for
Mn2+、Zn2+、Cd2+
Cu2+、Ni2+、Pb2+[56] Notes:Gly-3@MX-3—Glycine-3@MXene-3; PEI/MXene—Polyethylenimine/MXene; HPEI-AgNP@Ti3C2Tx—Hyperbranched polyethylenimine-silver nanoparticle; GO-MXene—Graphene oxide-MXene; MXene/CM-β-CD—MXene/carboxymethyl-β-cyclodextrin; MXene-PEI—MXene-polyethylenimine; CNTs-MXene—Carbon nanotubes-MXene; GO/MXene—Graphene oxide/MXene; MoS2@LS-MXene—MoS2@sodium lignosulfonate-MXene; GO/AA-Ti3C2Tx—Graphene oxide/ammonium acetate-Ti3C2Tx; PEI-MXene—Polyethylenimine-MXene; Ti3C2Tx-EDA—Ti3C2Tx-thylenediamine. -
[1] NAEEM A, SAEED B, ALMOHAMADI H, et al. Sustainable and green membranes for chemical separations: A review[J]. Separation and Purification Technology, 2024, 336: 126271. doi: 10.1016/j.seppur.2024.126271 [2] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. doi: 10.1126/science.aab0530 [3] LIN Q Q, LIU Y C, YANG Z M, et al. Construction and application of two-dimensional MXene-based membranes for water treatment: A mini-review[J]. Results in Engineering, 2022, 15: 100494. doi: 10.1016/j.rineng.2022.100494 [4] CHEN T, BUTT F S, ZHANG M, et al. Ultra-permeable zeolitic imidazolate frameworks-intercalated graphene oxide membranes for unprecedented ultrafast molecular separation[J]. Chemical Engineering Journal, 2021, 419: 129507. doi: 10.1016/j.cej.2021.129507 [5] ZHANG Y F, XU Z H, ZHANG T T, et al. Self-assembly of robust graphene oxide membranes with chirality for highly stable and selective molecular separation[J]. Journal of Materials Chemistry A, 2020, 8: 16985-16993. doi: 10.1039/D0TA05449F [6] WANG Y J, LI L B, WEI Y Y, et al. Water transport with ultralow friction through partially exfoliated G-C3N4 nanosheet membranes with self-supporting spacers[J]. Angewandte Chemie International Edition, 2017, 56(31): 8974-8980. doi: 10.1002/anie.201701288 [7] XU Z H, ZHANG Y F, XU Y J, et al. Construction of anti-swelling circuit board-like activated graphene oxide lamellar nanofilms with functionalized heterostructured 2D nanosheets[J]. Separation and Purification Technology, 2023, 313: 123431. doi: 10.1016/j.seppur.2023.123431 [8] JIN X G, LIANG X K, LIU J H, et al. Development of high permeability nanofiltration membranes through porous 2D MOF nanosheets[J]. Chemical Engineering Journal, 2023, 471(1): 144566. [9] 李子祎, 潘恩泽, 王佳轩, 等. ZSM-5沸石分子筛膜的制备及脱盐性能研究[J]. 化工学报, 2021, 72(10): 5247-5256. doi: 10.11949/0438-1157.20210527LI Ziyi, PAN Enze, WANG Jiaxuan, et al. Preparation of ZSM-5 zeolite membrane and its application in desalination[J]. CIESC Journal, 2021, 72(10): 5247-5256(in Chinese). doi: 10.11949/0438-1157.20210527 [10] LI W F, YANG Y M, WEBER J K, et al. Tunable, strain-controlled nanoporous MoS2 filter for water desalination[J]. ACS Nano, 2016, 10(2): 1829-1835. doi: 10.1021/acsnano.5b05250 [11] CHEN C, WANG J M, LIU D, et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation[J]. Nature Communications, 2018, 9(1): 1902. doi: 10.1038/s41467-018-04294-6 [12] 汪波, 孙阔, 张岗, 等. 二维MXene纳米通道膜的制备及分离性能[J]. 膜科学与技术, 2023, 43(5): 20-27.WANG Bo, SUN Kuo, ZHANG Gang, et al. Fabrication and separation performance of two-dimensional MXene nanochannel membranes[J]. Membrane Science and Technology, 2023, 43(5): 20-27(in Chinese). [13] SUN Y, YI F, LI R H, et al. Inorganic-organic hybrid membrane based on pillararene-intercalated MXene nanosheets for efficient water purification[J]. Angewandte Chemie International Edition, 2022, 61: e202200482. doi: 10.1002/anie.202200482 [14] ZHANG J, LI Z S, ZHANG Q, et al. Nanoconfined MXene-MOF nanolaminate film for molecular removal/collection and multiple sieving[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 17222-17232. [15] YANG H L, HAN M Q, ZHANG W T, et al. High performance mixed-dimensional assembled MXene composite membranes for molecular sieving[J]. Journal of Membrane Science, 2024, 698: 122606. doi: 10.1016/j.memsci.2024.122606 [16] YI M, WANG M, WANG Y, et al. Poly(ionic liquid)-armored MXene membrane: interlayer engineering for facilitated water transport[J]. Angewandte Chemie International Edition, 2022, 61: e202202515. doi: 10.1002/anie.202202515 [17] LIU H K, MU M, GRAHAM N J D, et al. Alkaline-oxidized MXene composite membrane of ultra high flux and advanced rejection performance for water purification[J]. Journal of Membrane Science, 2024, 698: 122604. doi: 10.1016/j.memsci.2024.122604 [18] FENG C, OU K Q, ZHANG Z P, et al. Dual-layered covalent organic framework/MXene membranes with short paths for fast water treatment[J]. Journal of Membrane Science, 2022, 658: 120761. doi: 10.1016/j.memsci.2022.120761 [19] WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis of 2D MXenes[J]. Advance Materials, 2021, 33: 2103148. doi: 10.1002/adma.202103148 [20] KARAHAN H E, GOH K, ZHANG C F, et al. MXene materials for designing advanced separation membranes[J]. Advance Materials, 2020, 32(29): 1906697. doi: 10.1002/adma.201906697 [21] 李亚男, 年佩, 徐楠, 等. 面向精密流体分离的MXene基膜材料研究进展[J]. 化工进展, 2023, 42(10): 5249-5258.LI Yanan, NIAN Pei, XU Nan, et al. Research progress of MXene-based membrane materials for precision fluid separation[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5249-5258(in Chinese). [22] HAN R L, MA X F, XIE Y L, et al. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux[J]. RSC Advance, 2017, 7: 56204-56210. doi: 10.1039/C7RA10318B [23] LI Z K, WEI Y Y, GAO X, et al. Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets[J]. Angewandte Chemie International Edition, 2020, 59(24): 9751-9756. doi: 10.1002/anie.202002935 [24] XIANG J, WANG X M, DING M M, et al. The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: Membrane characteristic and performance[J]. Chemosphere, 2022, 294: 133728. doi: 10.1016/j.chemosphere.2022.133728 [25] SUN Y Q, LI S L, ZHUANG Y X, et al. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection[J]. Journal of Membrane Science, 2019, 591: 117350. doi: 10.1016/j.memsci.2019.117350 [26] SUN Y Q, LU J, LI S L, et al. MXene-based membranes in water treatment: Current status and future prospects[J]. Separation and Purification Technology, 2024, 331: 125640. doi: 10.1016/j.seppur.2023.125640 [27] LUO H Y, XU N, LI Y N, et al. Amino acid-bonded Ti3C2Tx MXene nanofiltration membranes with superior antifouling property for enhanced water purification[J]. Journal of Membrane Science, 2024, 693: 122384. doi: 10.1016/j.memsci.2023.122384 [28] TAO M J, CHENG S Q, HAN X L, et al. Alignment of MXene based membranes to enhance water purification[J]. Journal of Membrane Science, 2022, 662: 120965. doi: 10.1016/j.memsci.2022.120965 [29] ZHANG Y W, CHEN D Y, LI N J, et al. High-performance and stable two-dimensional MXene-polyethyleneimine composite lamellar membranes for molecular separation[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10237-10245. [30] PANDEY R P, RASOOL K, MADHAVAN V E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets[J]. Journal of Materials Chemistry A, 2018, 6: 3522-3533. doi: 10.1039/C7TA10888E [31] LONG Q W, ZHAO S F, CHEN J X, et al. Self-assembly enabled nano-intercalation for stable high-performance MXene membranes[J]. Journal of Membrane Science, 2021, 635: 119464. doi: 10.1016/j.memsci.2021.119464 [32] DING M M, XU H, CHEN W, et al. Construction of a hierarchical carbon nanotube/MXene membrane with distinct fusiform channels for efficient molecular separation[J]. Journal of Materials Chemistry A, 2020, 8: 22666-22673. doi: 10.1039/D0TA07354G [33] SUN Y Q, XU D, LI S L, et al. Assembly of multidimensional MXene-carbon nanotube ultrathin membranes with an enhanced anti-swelling property for water purification[J]. Journal of Membrane Science, 2021, 623: 119075. doi: 10.1016/j.memsci.2021.119075 [34] ZHANG S Y, WANG Z, CAI M W, et al. Attapulgite nanorods incorporated MXene lamellar membranes for enhanced decontamination of dye wastewater[J]. Nanomaterials, 2022, 12(18): 3094. doi: 10.3390/nano12183094 [35] 谭晓宇, 杨少延, 李辉杰. 基于二维材料的Ⅲ族氮化物外延[J]. 化学学报, 2017, 75(3): 271-279. doi: 10.6023/A16100552TAN Xiaoyu, YANG Shaoyu, LI Huijie. Epitaxy of Ⅲ-nitride based on two-dimensional materials[J]. Acta Chimica Sinica, 2017, 75(3): 271-279(in Chinese). doi: 10.6023/A16100552 [36] LIU T, LIU X Y, GRAHAM N, et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance[J]. Journal of Membrane Science, 2020, 593: 117431. doi: 10.1016/j.memsci.2019.117431 [37] GONG X W, ZHANG G M, DONG H F, et al. Self-assembled hierarchical heterogeneous MXene/COF membranes for efficient dye separations[J]. Journal of Membrane Science, 2022, 657: 120667. doi: 10.1016/j.memsci.2022.120667 [38] WANG H S, HE Z Z, YANG Q B, et al. Fabrication of 2D/2D composite membrane via combining functionalized MXene and MoS2 nanosheets for dye/salt separation[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108365. doi: 10.1016/j.jece.2022.108365 [39] LIAO F Q, XU Z H, FAN Z X, et al. Confined assembly of ultrathin dual-functionalized Z-MXene nanosheet intercalated GO nanofilms with controlled structure for size-selective permeation[J]. Journal of Materials Chemistry A, 2021, 9: 12236-12243. doi: 10.1039/D1TA01514A [40] 徐颜军, 徐泽海, 孟琴, 等. 新型还原氧化石墨烯/氮化碳复合纳滤膜制备及其性能[J]. 化工学报, 2019, 70(9): 3565-3572+3621.XU Yanjun, XU Zehai, MENG Qin, et al. Preparation of performance of novel rGO/uCN composite nanofiltration membrane[J]. CIESC Journal, 2019, 70(9): 3565-3572+3621(in Chinese). [41] LI Y, ZHANG X, Yang A, et al. Polyphenol etched ZIF-8 modified graphene oxide nanofiltration membrane for efficient removal of salts and organic molecules[J]. Journal of Membrane Science, 2021, 635: 119521. doi: 10.1016/j.memsci.2021.119521 [42] ZHANG Y, LI S H, HUANG R, et al. Stabilizing MXene-based nanofiltration membrane by forming analogous semi-interpenetrating network architecture using flexible poly(acrylic acid) for effective wastewater treatment[J]. Journal of Membrane Science, 2022, 648: 120360. doi: 10.1016/j.memsci.2022.120360 [43] 曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7): 2078-2091.ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2078-2091(in Chinese). [44] QU K, HUANG K, XU Z. Recent progress in the design and fabrication of MXene-based membranes[J]. Frontiers of Chemical Science and Engineering, 2021, 15: 820-836. doi: 10.1007/s11705-020-1997-7 [45] ZHANG P C, ZHANG Y J, WANG L, et al. Bioinspired macrocyclic molecule supported two-dimensional lamellar membrane with robust interlayer structure for high-efficiency nanofiltration[J]. Advance Science, 2023, 10: 2206516. [46] ZHANG H L, ZHENG Y L, ZHOU H W, et al. Nanocellulose-intercalated MXene NF membrane with enhanced swelling resistance for highly efficient antibiotics separation[J]. Separation and Purification Technology, 2023, 305: 122425. doi: 10.1016/j.seppur.2022.122425 [47] MENG B C, LIU G Z, MAO Y Y, et al. Fabrication of surface-charged MXene membrane and its application for water desalination[J]. Journal of Membrane Science, 2021, 623: 119076. doi: 10.1016/j.memsci.2021.119076 [48] LI Y N, LIU Z H, LI S M, et al. Highly permeable and stable hyperbranched polyethyleneimine crosslinked AgNP@Ti3C2Tx MXene membranes for nanofiltration[J]. Journal of Membrane Science, 2023, 670: 121376. doi: 10.1016/j.memsci.2023.121376 [49] LIU G Z, GUO Y N, MENG B C, et al. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water[J]. Chinese Journal of Chemical Engineering, 2022, 41: 260-266. doi: 10.1016/j.cjche.2021.09.022 [50] TIWARY S K, SINGH M, LIKHI F H, et al. Self-cross-linking of MXene-intercalated graphene oxide membranes with antiswelling properties for dye and salt rejection[J]. ACS Environmental Au, 2024, 4(2): 69-79. doi: 10.1021/acsenvironau.3c00059 [51] XING C, LIU L F, GUO X, et al. Efficient water purification using stabilized MXene nanofiltration membrane with controlled interlayer spacings[J]. Separation and Purification Technology, 2023, 317: 123774. doi: 10.1016/j.seppur.2023.123774 [52] 刘婷, 蔡微翼, 李瑶, 等. 微氧化MXene/MoS2复合膜分离净化效能及稳定性增强机制研究[J]. 北京理工大学学报, 2024, 44(2): 210-218.LIU Ting, CAI Weiyi, LI Yao, et al. Micro-oxidized MXene/MoS2 composite membrane with superior stability for efficient water purification[J]. Journal of Beijing Institute of Technology, 2024, 44(2): 210-218(in Chinese). [53] QIU M, SHEN Z F, XIA Q N, et al. Metal-polyphenol cross-linked titanium carbide membranes with stable interlayer spacing for efficient wastewater treatment[J]. Journal of Colloid and Interface Science, 2022, 628: 649-659. doi: 10.1016/j.jcis.2022.08.092 [54] XING C, ZHANG Y T, HUANG R, et al. Anti-swelling polyethyleneimine-modified MXene nanofiltration membranes for efficient and selective molecular separation[J]. EcoMat, 2023, 5(3): e12300. doi: 10.1002/eom2.12300 [55] DING L, WEI Y Y, WANG Y J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition, 2017, 56(7): 1825-1829. doi: 10.1002/anie.201609306 [56] JANG J, KANG Y, JANG K, et al. Ti3C2Tx-Ethylenediamine nanofiltration membrane for high rejection of heavy metals[J]. Chemical Engineering Journal, 2022, 437: 135297. doi: 10.1016/j.cej.2022.135297 [57] 王赛娣, 范议议, 孟秀霞, 等. 羟基化MXene二维层状膜对重金属离子的脱除[J]. 膜科学与技术, 2022, 42(1): 57-64+71.WANG Saidi, FAN Yiyi, MENG Xiuxia, et al. Removal of heavy metal ions by hydroxylated MXene membranes[J]. Membrane Science and Technology, 2022, 42(1): 57-64+71(in Chinese). [58] KIM J H, PARK G S, KIM Y J, et al. Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation[J]. ACS Nano, 2021, 15(5): 8860-8869. doi: 10.1021/acsnano.1c01448 [59] LI H, LIU H Q, Shi C R, et al. Roll-to-roll fabricating MXene membranes with ordered interlayer distances for molecule and ion separation[J]. Advanced Materials Interfaces, 2023, 10(21): 2300301. doi: 10.1002/admi.202300301 [60] DENG J J, LU Z, DING L, et al. Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving[J]. Chemical Engineering Journal, 2021, 408: 127806. doi: 10.1016/j.cej.2020.127806
点击查看大图
计量
- 文章访问数: 62
- HTML全文浏览量: 28
- 被引次数: 0