留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层复合材料筒状结构在温度载荷作用下的层间应力建模与试验验证

李想 赵先航 钟华 谢宇 茹佳胜 刘鑫 李旭东 李悦芳

李想, 赵先航, 钟华, 等. 多层复合材料筒状结构在温度载荷作用下的层间应力建模与试验验证[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 李想, 赵先航, 钟华, 等. 多层复合材料筒状结构在温度载荷作用下的层间应力建模与试验验证[J]. 复合材料学报, 2024, 42(0): 1-10.
LI Xiang, ZHAO Xianhang, ZHONG Hua, et al. Inter-laminar stress modeling and validation on multi-layer composite cylinders under thermal loading[J]. Acta Materiae Compositae Sinica.
Citation: LI Xiang, ZHAO Xianhang, ZHONG Hua, et al. Inter-laminar stress modeling and validation on multi-layer composite cylinders under thermal loading[J]. Acta Materiae Compositae Sinica.

多层复合材料筒状结构在温度载荷作用下的层间应力建模与试验验证

基金项目: 国家自然科学基金青年科学基金项目(12205263)
详细信息
    通讯作者:

    李悦芳,博士,研究员,研究方向为高分子绝缘封装技术 E-mail: yuefangli_caep@163.com

  • 中图分类号: TB330.1

Inter-laminar stress modeling and validation on multi-layer composite cylinders under thermal loading

Funds: National Natural Science Foundation of China (NSFC) Young Scientists Fund Project(12205263)
  • 摘要: 多层复合材料筒状结构的残余应力可造成内部分层、结构失稳等,有必要结合理论和实验等研究其内部应力形成机制。基于各向异性线弹性本构和平面应力假设,建立了温度载荷作用下多层复合材料筒状结构内部应力的预测模型,并通过有限元仿真和热膨胀变形测试对模型有效性进行了校核和验证。结果表明,筒状结构环向的热膨胀变形从内层到外层逐渐增大,其中内层附近环向热膨胀系数低于面内热膨胀系数、外层附近环向热膨胀系数则高于面内热膨胀系数。在此基础上,结合模型理论分析揭示了层间应力对多层复合材料筒状结构的热膨胀变形行为的影响机制。在筒状结构形式下,温度加载引起的层间应力由一个涉及热膨胀系数和弹性参数的热力耦合项决定;由于多层复合材料面内与面外热膨胀系数存在差异,该应力耦合项不为零,从而在温度加载下形成了层间应力并影响了环向膨胀变形行为。基于上述认识,提出了调控多层复合材料筒状结构层间应力的有效措施。本研究对揭示多层复合材料筒状结构的层间开裂物理机制、优化其热力匹配设计等具有重要意义。

     

  • 图  1  N层复合材料组成的筒状结构及坐标系定义(r,θ)

    Figure  1.  Cylindrical coordinate system (r,θ) of an axisymmetric laminated composite cylinder containing N layers

    图  2  多层复合材料结构层间应力分析有限元模型

    Figure  2.  Finite element model for analyzing the inter-laminar a multi-layer composite cylinder

    图  3  解析模型校核

    Figure  3.  Verification of the analytical model

    图  4  多层复合材料筒状结构试样几何构型Fig.4 Geometry of a multi-layer composite cylinder sample

    图  5  哑铃型试样

    Figure  5.  Dumbbell shaped specimen

    图  6  环氧树脂浸渍聚酯纤维布复合材料CT形貌

    Figure  6.  CT image of polyester reinforced epoxy composite

    图  7  应变和温度传感器粘贴方式

    Figure  7.  Distributions of strain gages and thermocouple

    图  8  多层复合材料筒状结构不同位置膨胀变形量随温度变化曲线

    Figure  8.  Thermal expansion behavior of a multi-layer composite cylinder for different positions

    图  9  热膨胀系数与各向异性比对多层复合材料筒状结构层间应力的影响

    Figure  9.  Effect of coefficient of thermal expansion and orthotropic ratio on the stress in the radial direction of a multi-layer composite cylinder

    图  10  厚度/外径比对多层复合材料筒状结构层间应力的影响

    Figure  10.  Effect of thickness on the stress in the radial direction of a multi-layer composite cylinder

    表  1  材料参数

    Table  1.   Material properties

    Property Mat-a Mat-b
    In-plane Young modulus Er/MPa 2000 3000
    Out-of-plane Young modulus Eθ/MPa 2500 12000
    Poisson ratio${\mu _{r\theta }}$ 0.2 0.075
    In-plane coefficient of thermal expansion(CTE) ${\alpha _r}$/(10−6·℃−1) 50 50
    Out-of-plane coefficient of thermal expansion(CTE) ${\alpha _\theta }$/(10−6·℃−1) 50 5
    下载: 导出CSV

    表  2  多层缠绕复合材料结构材料性能

    Table  2.   Material properties of multi-layer composite laminate

    Property Value Standard
    In-plane Young modulus ${{{E_r}} \mathord{\left/ {\vphantom {{{E_r}} {\rm{MPa}}}} \right. } {\rm{MPa}}}$ 4623 ASTM D3039[18]
    Out-of-plane Young modulus ${{{E_\theta }} \mathord{\left/ {\vphantom {{{E_\theta }} {\rm{MPa}}}} \right. } {\rm{MPa}}}$ 3243 ASTM D3039[18]
    Poisson ratio ${\mu _{r\theta }}$ 0.36 ASTM D3039[18]
    In-plane coefficient of thermal expansion(CTE) ${\alpha _\theta }$/(10−6·℃−1) 38 ASTM E831[19]
    Out-of-plane coefficient of thermal expansion(CTE) ${\alpha _r}$/(10−6·℃−1) 97 ASTM E831[19]
    下载: 导出CSV

    表  3  多层复合材料筒状结构不同位置热膨胀系数模型校核结果

    Table  3.   Validation of the analytical model on coefficient of thermal expansion for different positions in a multi-layer composite cylinder

    Position Coefficient of thermal expansion
    α/(10−6·℃−1)
    Experiment Prediction Error
    Inner-most layer(#1) 18.54 20.58 11.1%
    Outer-most layer(#2) 49.95 50.44 1.0%
    下载: 导出CSV
  • [1] 王青于, 杨熙, 彭宗仁, 等. 应用三维电磁-热-流固耦合场分析方法计算换流变压器干式套管的温度场分布[J]. 中国电机工程学报, 2016, 36(22): 6269-6275.

    WANG Q Y, YANG X, PENG Z R, et al. 3D coupled electromagnetic-thermal-fluid method for computation of temperature field of converter transformer RIP bushings[J]. Proceedings of the CSEE, 2016, 36(22): 6269-6275(in Chinese).
    [2] KIM Y K, WHITE S R. Cure-dependent viscoelastic residual stress analysis of filament-wound composite cylinders[J]. Mechanics of Composite Materials and Structures, 1998, 5: 327-354. doi: 10.1080/10759419808945905
    [3] VOYIADJIS G Z, HARTLEY C S. Residual-stress determination of concentric layers of cylindrically orthotropic materials[J]. Experimental Mechanics, 1987: 290-297.
    [4] KANG C, LIU Z, SHIRINZADEH, B, et al. Multiparametric sensitivity analysis of multilayered filament-wound cylinder under internal pressure[J]. Mechanics of Advanced Materials and Structures, 2022, 29(8): 1172-1183. doi: 10.1080/15376494.2020.1811435
    [5] 郭凯特, 文利华, 校金友, 等. 多角度纤维缠绕复合材料圆筒张力设计[J]. 固体火箭技术, 2020, 43(4): 458-467.

    GUO K T, WEN L H, XIAO J Y, et al. Tension design for composite cylinder with multi-angle layers[J]. Journal of Solid Rocket Technology, 2020, 43(4): 458-467(in Chinese).
    [6] EDULJEE R F, GILLESPIE JR J W. Elastic response of post- and in situ consolidated laminated cylinders[J]. Composites:Part A, 1996, 27A: 437-446.
    [7] VEDELD K, SOLLUND H A. Stresses in heated pressurized multi-layer cylinders in generalized plane strain conditions[J]. International Journal of Pressure Vessels and Piping, 2014, 120-121: 27-35. doi: 10.1016/j.ijpvp.2014.04.002
    [8] SOLLUNDH A, VEDELD K, HELLESLAND J. Efficient analytical solutions for heated and pressurized multi-layer cylinders[J]. Ocean Engineering, 2014, 92: 285-295. doi: 10.1016/j.oceaneng.2014.10.003
    [9] YEO W H, PURBOLAKSONO J, ALIABADI M H, et al. Exact solution for stress/displacements in a multilayered hollow cylinder under thermo-mechanical loading[J]. International Journal of Pressure Vessels and Piping, 2017, 151: 45-53. doi: 10.1016/j.ijpvp.2017.01.003
    [10] KANG C, SHI Y, DENG B, et al. Determination of residual stress and design of process parameters for composite cylinder in filament winding[J]. Advances in Materials Science and Engineering, 2018: 1-11.
    [11] 李博, 熊超, 殷军辉, 等. 多角度交替缠绕复合圆筒的剩余应力算法及水压试验[J]. 复合材料学报, 2018, 35(6): 1452-1463.

    LI B, XIONG C, YIN J H, et al. Residual stress algorithm for composite cylinder with alternate multi-angle winding layers and water-pressure test[J]. Acta MateriaeCompositaeSinica, 2018, 35(6): 1452-1463 (in Chinese).
    [12] 郭章新, 韩小平, 李金强, 等. 纤维缠绕复合材料固化过程残余应力/应变的三维数值模拟[J]. 复合材料学报, 2014, 31(4): 1006-1012.

    GUO Z X, HAN X P, LI J Q, et al. Three-dimensional numerical simulation of residual stress/strain for filament-wound composites during process[J]. Acta MateriaeCompositaeSinica, 2014, 31(4): 1006-1012(in Chinese).
    [13] TZENG, CHIEN L S. Viscoelastic analysis of thick-walled filament-wound composite cylinders with elevated temperatures[J]. AIAA Journal, 1996, 34(7): 1526-1529. doi: 10.2514/3.13264
    [14] CALIUS E P, LEE S Y, SPRINGER G S. Filament winding cylinders: I. Process Model[J]. Journal of Composite Materials, 1990, 24: 1270-1298. doi: 10.1177/002199839002401202
    [15] CALIUS E P, LEE S Y, SPRINGER G S. Filament winding cylinders: II. Validation of the Process Model[J]. Journal of Composite Materials, 1990, 24: 1299-1343. doi: 10.1177/002199839002401203
    [16] KRYSIAK P, BLACHUT A, KALETA J. Theoretical and experimental analysis of inter-layer stresses in filament-wound cylindrical composite structures[J]. Materials, 2021, 14,7037: 1-25.
    [17] BOWER A F. Applied mechanics of solids[M]. Taylor & Francis: CRC Press, 2009.
    [18] ASTM International. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039[S]. West Conshohocken: ASTM International, , 2014.
    [19] ASTM International. Standard test method for linear thermal expansion of solid materials by thermomechanical analysis: ASTM E831 [S]. West Conshohocken: ASTM International, 2019.
    [20] TANG K, SHA L, LI Y J, et al. Measurement of thermal expansion at low temperatures using the strain gage method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(5): 323-330.
  • 加载中
计量
  • 文章访问数:  92
  • HTML全文浏览量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2023-12-27
  • 录用日期:  2023-12-29
  • 网络出版日期:  2024-02-01

目录

    /

    返回文章
    返回