留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属有机框架材料对导电炭黑/水性聚氨酯紫外光固化涂层抗静电性能增强作用

张煜 张琢 崔锡文 丁驰程 蒋莉 袁妍

张煜, 张琢, 崔锡文, 等. 金属有机框架材料对导电炭黑/水性聚氨酯紫外光固化涂层抗静电性能增强作用[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 张煜, 张琢, 崔锡文, 等. 金属有机框架材料对导电炭黑/水性聚氨酯紫外光固化涂层抗静电性能增强作用[J]. 复合材料学报, 2024, 42(0): 1-11.
ZHANG Yu, ZHANG Zhuo, CUI Xiwen, et al. Enhancement of antistatic properties of conductive carbon black/waterborne polyurethane UV-curable coatings by metal-organic framework materials[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Yu, ZHANG Zhuo, CUI Xiwen, et al. Enhancement of antistatic properties of conductive carbon black/waterborne polyurethane UV-curable coatings by metal-organic framework materials[J]. Acta Materiae Compositae Sinica.

金属有机框架材料对导电炭黑/水性聚氨酯紫外光固化涂层抗静电性能增强作用

基金项目: 国家自然科学基金(22302139);国家自然科学基金(21905048);江苏省高等学校自然科学基金(22KJB530009),江苏省自然科学基金(青年项目)(BK20230653);国家自然科学基金青年项目(22202142);苏州市产业前瞻与关键核心技术项目(SYC2022150)
详细信息
    通讯作者:

    袁妍,博士,副教授,硕士生导师,研究方向为光固化功能涂层材料,导电材料,抗菌材料 E-mail: yuanyanustc@163.com

  • 中图分类号: TB332

Enhancement of antistatic properties of conductive carbon black/waterborne polyurethane UV-curable coatings by metal-organic framework materials

Funds: National Natural Science Foundation of China(22302139);National Natural Science Foundation of China (21905048); The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB530009); Natural Science Foundation of Jiangsu Province (Youth Program) (BK20230653); National Natural Science Foundation of China Youth Program (22202142); Industry outlook and key core technology project of Suzhou (SYC2022150)
  • 摘要: 紫外光固化水性聚氨酯(UV-WPUA)作为绿色环保高性能的高分子涂料,适用于塑料、金属、纸张、皮革等多种基材,但是水性聚氨酯本身绝缘,随着静电荷的累积,对设备及人体产生不良影响,严重的甚至会引发爆炸火灾等危险情况,所以赋予水性聚氨酯抗静电属性成为当下热点。本研究采用导电炭黑(CB)作为UV-WPUA的导电填料,制备具有抗静电性能的紫外光固化涂料。再加入不同含量的金属有机框架材料MOF-801,进一步降低涂层的表面电阻。采用傅立叶变换红外光谱(FT-IR)、核磁共振氢谱仪(1H NMR),确定UV-WPUA结构。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD),确定MOF-801结构和微观形貌,以及MOF-801-CB/UV-WPUA涂层的分散性。结果表明,成功合成UV-WPUA乳液和MOF-801材料。在实验室恒温25 ℃,恒湿67%下,当CB质量比为15 wt%时,复合涂层表面电阻率为2.3×106 Ω。当在此涂料中加入1 wt%的MOF-801,涂层表面电阻率下降至1.7×105 Ω,且涂层硬度、附着力较好,双键转化率为70%,满足抗静电涂料的要求,证明金属有机框架材料的加入可以进一步提升紫外光固化涂层的抗静电性能。

     

  • 图  1  紫外光固化水性聚氨酯的合成路线

    Figure  1.  Synthetic route of UV-curable waterborne polyurethane

    图  2  表面电阻率测量方法

    Figure  2.  Surface resistivity measurement method

    图  3  相对湿度标准瓶

    Figure  3.  Relative humidity standard bottles

    图  4  UV-WPUA乳液、UV-WPUA固化膜、MOF-801-CB/UV-WPUA固化膜、CB和MOF-801的红外光谱

    Figure  4.  FT-IR spectra of UV-WPUA emulsion、UV-WPUA film、MOF801-CB/UV-WPUAfilm、CB and MOF-801

    图  5  UV-WPUA的核磁氢谱

    Figure  5.  1H NMR spectra of UV-curing waterborne polyurethane

    图  6  MOF-801和模拟MOF-801的XRD图谱

    Figure  6.  XRD patterns of MOF-801 and simulated MOF-801

    图  7  MOF-801的SEM照片和EDS谱图

    Figure  7.  SEM image and EDS patterns of MOF-801

    图  8  CB含量对涂层表面电阻的影响

    Figure  8.  The effect of CB content on the surface resistance of coatings

    图  9  MOF-801含量对涂层表面电阻的影响

    Figure  9.  The effect of MOF-801 content on the surface resistance of coatings

    图  10  不同相对湿度下对复合涂层的表面电阻

    Figure  10.  Surface resistance of composite coatings at different relative humidities

    图  11  涂层脆断截面的SEM照片和EDS谱图

    Figure  11.  SEM image and EDS patterns of brittle fracture cross-section of coating

    图  12  CB 30wt% /UV-WPUA涂层脆断截面的SEM照片

    Figure  12.  SEM photographs of brittle cross section of CB 30wt%/UV-WPUA coating

    图  13  UV-WPUA、CB 15wt%/UV-WPUA和MOF-801 1wt%-CB 15wt%/UV-WPUA涂层的双键转化率

    Figure  13.  The double bond conversion of UV-WPUA、CB 15wt%/UV-WPUA and MOF-801 1wt%/CB 15wt%/UV-WPUA coatings

    图  14  UV-WPUA、CB/UV-WPUA和MOF-801-CB/UV-WPUA涂层的热重曲线

    Figure  14.  Thermogravimetric curves of UV-WPUA、CB/UV-WPUA and MOF-801-CB/UV-WPUA

    表  1  CB/UV-WPUA复合涂层配方

    Table  1.   CB/UV-WPUA Coating formula

    Sample CB/wt% MOF-801/wt% 2959/wt% 1173/wt% UV-WPUA/wt%
    CB/UV-WPUA-1 0 0 4 3 93
    CB/UV-WPUA-2 1 0 4 3 92
    CB/UV-WPUA-3 3 0 4 3 90
    CB/UV-WPUA-4 5 0 4 3 88
    CB/UV-WPUA-5 7 0 4 3 85
    CB/UV-WPUA-6 10 0 4 3 83
    CB/UV-WPUA-7 15 0 4 3 78
    CB/UV-WPUA-8 20 0 4 3 73
    CB/UV-WPUA-9 25 0 4 3 68
    CB/UV-WPUA-10 30 0 4 3 63
    Notes: CB is a conductive carbon black; MOF-801 is a metal-organic framework; 2959 is a photoinitiator with the full name of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone; 1173 is a photoinitiator with the full name of 2-hydroxy-2-methyl-1-phenyl-1-propanone; UV-WPUA is a UV-curing waterborne polyurethane acrylate.
    下载: 导出CSV

    表  2  MOF-801-CB/UV-WPUA复合涂层配方

    Table  2.   MOF-801-CB/UV-WPUA Coating formula

    SampleCB/wt%MOF-801/wt%2959/wt%1173/wt%UV-WPUA/wt%
    MOF-801-CB/UV-WPUA-1150.54377.5
    MOF-801-CB/UV-WPUA-21514377
    MOF-801-CB/UV-WPUA-3151.54376.5
    MOF-801-CB/UV-WPUA-41524376
    MOF-801-CB/UV-WPUA-5152.54375.5
    MOF-801-CB/UV-WPUA-61534375
    下载: 导出CSV

    表  3  CB含量对涂层表面电阻的影响

    Table  3.   The effect of CB content on the surface resistance of coatings

    Sample CB wt/% surface resistance /Ω
    CB/UV-WPUA-1 5 5.3×1010
    CB/UV-WPUA-2 10 2.5×109
    CB/UV-WPUA-3 15 2.3×106
    CB/UV-WPUA-4 20 3.4×104
    CB/UV-WPUA-5 25 2.3×103
    CB/UV-WPUA-6 30 4.3×102
    下载: 导出CSV

    表  4  涂层的基本性能

    Table  4.   Basic properties of coatings

    Sample CBwt/% MOF-801/wt/% Pencil Hardness Pendulum Hardness/s Adhesion
    CB/UV-WPUA-1 0 0 2 H 324 0
    CB/UV-WPUA-2 1 0 3 H 347 0
    CB/UV-WPUA-3 3 0 3 H 359 0
    CB/UV-WPUA-4 5 0 3 H 371 0
    CB/UV-WPUA-5 7 0 HB 312 0
    CB/UV-WPUA-6 10 0 B 247 0
    CB/UV-WPUA-7 15 0 B 269 0
    CB/UV-WPUA-8 20 0 B 224 2
    CB/UV-WPUA-9 25 0 B 165 4
    CB/UV-WPUA-10 30 0 B 169 4
    下载: 导出CSV

    表  5  MOF-801-CB/UV-WPUA复合涂层的基本性能

    Table  5.   Basic properties of MOF-801-CB/UV-WPUA composite coatings

    Sample CBwt/% MOF-801 wt/% Pencil Hardness Pendulum Hardness/s Adhesion
    MOF-801-CB/UV-WPUA-1 15 0.5 B 237 0
    MOF-801-CB/UV-WPUA-2 15 1 B 233 0
    MOF-801-CB/UV-WPUA-3 15 1.5 B 238 0
    MOF-801-CB/UV-WPUA-4 15 2 B 244 0
    MOF-801-CB/UV-WPUA-5 15 2.5 B 248 2
    MOF-801-CB/UV-WPUA-6 15 3 B 256 2
    下载: 导出CSV

    表  6  MOF-801 1wt%-CB 15wt%/UV-WPUA复合涂层在不同相对湿度下的基本性能

    Table  6.   Basic properties of MOF-801 1wt%-CB 15wt%/UV-WPUA composite coatings at different relative humidity

    SampleRelative Humidity/%Pencil HardnessPendulum Hardness/sAdhesion
    MOF-801 1wt%-CB 15wt%/UV-WPUA-111%B2380
    MOF-801 1wt%-CB 15wt%/UV-WPUA-233%B2290
    MOF-801 1wt%-CB 15wt%/UV-WPUA-343%B2250
    MOF-801 1wt%-CB 15wt%/UV-WPUA-467%B2330
    MOF-801 1wt%-CB 15wt%/UV-WPUA-575%B2410
    MOF-801 1wt%-CB 15wt%/UV-WPUA-698%B2190
    下载: 导出CSV
  • [1] DELPECH M C, COUTINHO F M B. Waterborne anionic polyurethanes and poly(urethane-urea)s: influence of the chain extender on mechanical and adhesive properties[J]. Polymer Testing, 2000, 19(8): 939-952. doi: 10.1016/S0142-9418(99)00066-5
    [2] SHAO C H, HUANG J J, CHEN G N, et al. Thermal and combustion behaviors of aqueous-based polyurethane system with phosphorus and nitrogen containing curing agent[J]. Polymer Degradation and Stability, 1999, 65(3): 359-371. doi: 10.1016/S0141-3910(99)00025-7
    [3] VAN DEN BERG K J, VAN DER VEN L G J, VAN DEN HAAK H J W. Development of waterborne UV-A curable clear coat for car refinishes[J]. Progress in Organic Coatings, 2008, 61(2-4): 110-118. doi: 10.1016/j.porgcoat.2007.09.037
    [4] LIN X, ZHANG S, QIAN J. Synthesis and properties of a novel UV-curable waterborne hyperbranched polyurethane[J]. Journal of Coatings Technology and Research, 2013, 11(3): 319-328.
    [5] ATES S, AYDOGAN B, TORUN L, et al. Synthesis and characterization of triptycene type cross-linker and its use in photoinduced curing applications[J]. Polymer, 2010, 51(4): 825-831. doi: 10.1016/j.polymer.2010.01.005
    [6] NIU Z, BIAN F. Synthesis and characterization of multiple cross-linking UV-curable waterborne polyurethane dispersions[J]. Iranian Polymer Journal, 2012, 21(4): 221-228. doi: 10.1007/s13726-012-0021-6
    [7] SAEED A, SHABIR G. Synthesis of thermally stable high gloss water dispersible polyurethane/polyacrylate resins[J]. Progress in Organic Coatings, 2013, 76(9): 1135-1143. doi: 10.1016/j.porgcoat.2013.03.009
    [8] ANJU C, PALATTY S. Ternary doped polyaniline-metal nanocomposite as high performance supercapacitive material[J]. Electrochimica Acta, 2019, 299: 626-635. doi: 10.1016/j.electacta.2019.01.030
    [9] YOUSEFI E, DOLATI A, NAJAFKHANI H. Preparation of robust antistatic waterborne polyurethane coating[J]. Progress in Organic Coatings, 2020, 139: 105450. doi: 10.1016/j.porgcoat.2019.105450
    [10] LI X, XU X, ZHANG F. Antistatic and antibacterial two-component waterborne polyurethane coating[J]. Journal of Coatings Technology and Research, 2022, 20(3): 869-881.
    [11] 李占齐, 周萌, 陈帅, et al. 水性抗静电涂料的研究进展[J]. 涂料工业, 2022, 52(11): 61-7+76. doi: 10.12020/j.issn.0253-4312.2022.11.61

    LI Z Q, ZHOU M, CHEN S, et al. Research Progress of Waterborne Antistatic Coatings[J]. Coatings Industry, 2022, 52(11): 61-7+76(in Chinese). doi: 10.12020/j.issn.0253-4312.2022.11.61
    [12] PANTEA D, DARMSTADT H, KALIAGUINE S, et al. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology[J]. Applied Surface Science, 2003, 217(1-4): 181-193. doi: 10.1016/S0169-4332(03)00550-6
    [13] FENG Y, LI D, LIU J, et al. Carbon-Based Materials in Microbial Fuel Cells [M]. Microbial Electrochemical Technology. 2019: 49-74.
    [14] PANTEA D, DARMSTADT H, KALIAGUINE S, et al. Electrical conductivity of thermal carbon blacks -: Influence of surface chemistry[J]. Carbon, 2001, 39(8): 1147-1158. doi: 10.1016/S0008-6223(00)00239-6
    [15] SOUSA E A, CASTRO LIMA T H, SILVA ARLINDO E P, et al. Multicomponent polyurethane-carbon black composite as piezoresistive sensor[J]. Polymer Bulletin, 2020, 77(6): 3017-3031. doi: 10.1007/s00289-019-02888-8
    [16] GOEL S, GARG A, BASKEY H B, et al. Microwave absorption study of low-density composites of barium hexaferrite and carbon black in X-band[J]. Journal of Sol-Gel Science and Technology, 2021, 98(2): 351-363. doi: 10.1007/s10971-021-05492-3
    [17] GAO Q, YE X, LUO A, et al. 3D printing of carbon black/polylactic acid/polyurethane composites for efficient microwave absorption[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(23): 1672. doi: 10.1007/s10854-023-11036-y
    [18] CHUEH C-C, CHEN C-I, SU Y-A, et al. Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives[J]. Journal of Materials Chemistry A, 2019, 7(29): 17079-17095. doi: 10.1039/C9TA03595H
    [19] 王紫阳. 羧酸基MOFs的合成、表征及性能研究 [D], 2023.

    WANG Z Y. Synthesis, characterization and properties of carboxylic acid MOFs [D], 2023(in Chinese).
    [20] LI Y, FENG J, WANG L, et al. High proton conduction in two highly stable phenyl imidazole dicarboxylate-based Cd(II)-MOFs[J]. Journal of Solid State Chemistry, 2023, 319: 121129.
    [21] TAO J, XU L, JIN H, et al. Selective coding dielectric genes based on proton tailoring to improve microwave absorption of MOFs[J]. Advanced Powder Materials, 2023, 2(1): 100091. doi: 10.1016/j.apmate.2022.100091
    [22] SU J, HE W, LI X-M, et al. High Electrical Conductivity in a 2D MOF with Intrinsic Superprotonic Conduction and Interfacial Pseudo-capacitance[J]. Matter, 2020, 2(3): 711-722. doi: 10.1016/j.matt.2019.12.018
    [23] QU J X, FU Y M, MENG X, et al. A porous Ti-based metal-organic framework for CO(2) photoreduction and imidazole-dependent anhydrous proton conduction[J]. Chem Commun (Camb), 2023, 59(8): 1070-1073. doi: 10.1039/D2CC06214C
    [24] TOMINAKA S, COUDERT F X, DAO T D, et al. Insulator-to-Proton-Conductor Transition in a Dense Metal-Organic Framework[J]. J Am Chem Soc, 2015, 137(20): 6428-6431. doi: 10.1021/jacs.5b02777
    [25] ZHANG J, BAI H J, REN Q, et al. Extra Water- and Acid-Stable MOF-801 with High Proton Conductivity and Its Composite Membrane for Proton-Exchange Membrane[J]. ACS Appl Mater Interfaces, 2018, 10(34): 28656-28663. doi: 10.1021/acsami.8b09070
    [26] 全国涂料和颜料标准化技术委员会. 漆膜硬度测定法摆杆阻尼试验: GB/T 1730—2007 [S]. 北京: 中国标准出版社, 2007.

    National Technical Committee on Paints & Pigments of Standardization Adminstration of China. Determination of hardness of the paint films—Pendulum damping test: GB/T 1730—2007 [S]. Beijing: China Standards Press, 2007(in Chinese).
    [27] 国家市场监督管理总局, 中国国家标准化管理委员会. 涂膜硬度铅笔测定法: GB/T 6739—2006 [S]. 北京: 中国标准出版社, 2006.

    State Adminstration for Market Regulation, Standardization Administration of China. Pencil Test Method for Determining the Hardness of Coatings: GB/T 6739—2006 [S]. Beijing: China Standards Press, 2006(in Chinese).
    [28] 常州涂料化工研究院, 色漆和清漆漆膜的划格试验: GB/T 9286—1998 [S]. 北京: 国家质量技术监督局, 1998.

    Changzhou Institute of Coatings and Chemical Engineering, Grid test of paints and varnishes: GB/T 9286—1998 [S]. Beijing: State Administration of Quality and Technology Supervision, 1998(in Chinese).
    [29] 中国石油化工总公司, 石油罐导静电涂料电阻率测定方法: GB/T 16906—1997 [S]. 北京: 中国标准出版社, 1997.

    China Petroleum and Chemical Corporation, Method for determination of resistivity of electrostatic conductive coatings for oil tanks: GB/T 16906—1997 [S]. Beijing: China Standards Press, 1997(in Chinese).
    [30] CHAI C, HOU J, YANG X, et al. Two-component waterborne polyurethane: Curing process study using dynamic in situ IR spectroscopy[J]. Polymer Testing, 2018, 69: 259-265. doi: 10.1016/j.polymertesting.2018.05.021
    [31] YIN W, ZENG X, LI H, et al. Synthesis, photopolymerization kinetics, and thermal properties of UV-curable waterborne hyperbranched polyurethane acrylate dispersions[J]. Journal of Coatings Technology and Research, 2011, 8(5): 577-584. doi: 10.1007/s11998-011-9338-x
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-22
  • 修回日期:  2024-04-26
  • 录用日期:  2024-05-08
  • 网络出版日期:  2024-06-15

目录

    /

    返回文章
    返回