留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CNTs添加对Cu-Al2O3复合材料耐电弧侵蚀性能的影响

杨豫博 国秀花 宋克兴 李韶林 米绪军 李周

杨豫博, 国秀花, 宋克兴, 等. CNTs添加对Cu-Al2O3复合材料耐电弧侵蚀性能的影响[J]. 复合材料学报, 2022, 39(0): 1-10
引用本文: 杨豫博, 国秀花, 宋克兴, 等. CNTs添加对Cu-Al2O3复合材料耐电弧侵蚀性能的影响[J]. 复合材料学报, 2022, 39(0): 1-10
Yubo YANG, Xiuhua GUO, Kexing SONG, Shaolin LI, Xujun MI, Zhou LI. Arc erosion resistance of Cu-Al2O3 composite effected by CNTs[J]. Acta Materiae Compositae Sinica.
Citation: Yubo YANG, Xiuhua GUO, Kexing SONG, Shaolin LI, Xujun MI, Zhou LI. Arc erosion resistance of Cu-Al2O3 composite effected by CNTs[J]. Acta Materiae Compositae Sinica.

CNTs添加对Cu-Al2O3复合材料耐电弧侵蚀性能的影响

基金项目: 河南省重点研发与推广专项(212102210110);河南省高等学校青年骨干教师计划项目(2018GGJS045);中国工程发展战略河南研究院战略咨询研究项目(2021HENZDA02);中国博士后科学基金(2020T130172、2020M682288)
详细信息
    通讯作者:

    国秀花,高级工程师,研究方向为高性能铜基材料开发与应用 E-mail:guoxiuhuahua@haust.edu.cn

  • 中图分类号: TB331

Arc erosion resistance of Cu-Al2O3 composite effected by CNTs

  • 摘要: Cu-Al2O3复合材料具有优异的传导性能和力学性能,在耐磨材料领域具有广阔的应用前景。为进一步提升电摩擦条件下复合材料的耐电弧侵蚀性能,本文采用内氧化法与粉末冶金法相结合制备了不同碳纳米管 (CNTs) 含量的CNTs/Cu-Al2O3复合材料,观察了CNTs/Cu-Al2O3复合材料中增强相的分布以及其与基体界面结合情况,研究了添加不同含量CNTs对Cu-Al2O3复合材料传导性能和力学性能的影响,重点探究了CNTs/Cu-Al2O3复合材料的耐电弧侵蚀机制。结果表明:原位生成的纳米Al2O3颗粒钉扎位错以及对CNTs分布具有调控作用,使CNTs弥散分布在铜基体中。与Cu-Al2O3复合材料相比,CNTs/Cu-Al2O3复合材料燃弧时间和燃弧能量明显降低,波动更平稳。在电弧侵蚀过程中,熔池中的CNTs会上浮至表面分散电弧,减小集中侵蚀区域;纳米Al2O3颗粒可以稳定熔池,减小熔融液滴的喷溅,有效减小CNTs/Cu-Al2O3复合材料质量损失。其中添加1.2vol% CNTs的CNTs/Cu-3.5Al2O3复合材料的燃弧时间和燃弧能量最低、最稳定。这一研究结果对耐烧蚀材料的研究提供有利的理论依据。

     

  • 图  1  Cu-0.8%Al合金粉末 (a) 和Cu2O粉末 (b) 原始形貌

    Figure  1.  Morphologies of Cu-0.8%Al powder (a) and Cu2O powder (b)

    图  2  JF04C触点材料测试系统示意图

    Figure  2.  Schematic diagram of JF04C contact material testing system

    图  3  CNTs及混合粉末的微观结构. (a) 原始CNTs; (b) 酸洗后的CNTs; (c) 镀铜CNTs; (d) 球磨前混合粉末; (e) 球磨后混合粉末; (f) 粉末的XRD表征

    Figure  3.  Microstructure of CNTs and mixed powder. (a) SEM image of raw CNTs; (b) TEM image of pickled CNTs; (c) TEM image of copper-coated CNTs; (d) SEM image of mixed powder before ball milling; (e) SEM image of mixed powder after ball milling; (f) XRD of powder

    图  4  CNTs/Cu-Al2O3复合材料的微观组织. (a) 纳米级Al2O3颗粒及位错; (b) 纳米级Al2O3颗粒的HRTEM图像; (c) 图(b) 中A区域IFFT图像; (d) 图(b) 中B区域IFFT图像; (e) 图(b) 中纳米级Al2O3颗粒与铜基体界面处元素线扫描图像

    Figure  4.  Microstructure of CNTs/Cu-Al2O3 composite. (a) Nano-Al2O3 particles and dislocation; (b) HRTEM image of nano-Al2O3 particles; (c) IFFT image of A in Fig.4(b); (d) IFFT image of B in Fig.4(b); (e) EDS corresponding element line scanning of nano-Al2O3 particles and Cu in Fig.4(b)

    图  5  CNTs/Cu-Al2O3复合材料的平均燃弧时间(a)和平均燃弧能量(b)

    Figure  5.  Average arc duration (a) and arc energy (b) of CNTs/Cu-Al2O3 composite

    图  6  不同电流条件下CNTs/Cu-Al2O3复合材料燃弧时间和燃弧能量分布曲线. (a, b) 10 A; (c, d) 15 A; (e, f) 20 A

    Figure  6.  Instant arc duration and arc energy of CNTs/Cu-Al2O3 composite at different current. (a, b) 10 A; (c, d) 15 A; (e, f) 20 A

    图  7  CNTs/Cu-Al2O3复合材料电弧侵蚀阳极形貌. (a) Cu-3.5Al2O3; (b) 0.6CNTs/Cu-3.5Al2O3; (c) 1.2CNTs/Cu-3.5Al2O3; (d) 2.4CNTs/Cu-3.5Al2O3

    Figure  7.  Arc erosion morphologies of the anode of CNTs/Cu-Al2O3 composite. (a) Cu-3.5Al2O3; (b) 0.6CNTs/Cu-3.5Al2O3; (c) 1.2CNTs/Cu-3.5Al2O3; (d) 2.4CNTs/Cu-3.5Al2O3

    图  8  1.2CNTs/Cu-3.5Al2O3复合材料电弧侵蚀典型形貌. (a) 气泡区; (b) 图(a) 面扫描; (c) 凸起、融滴区; (d) 珊瑚区; (d) 熔池区; (d) 典型区域元素分析

    Figure  8.  Typical morphologies of the anode of 1.2CNTs/Cu-3.5Al2O3 composite (a) Stoma; (b) Surface scanning of Fig.8(a); (c) Bulge and droplet; (d) Coral; (d) Molten; (d) Element analysis of typical regional

    表  1  碳纳米管(CNTs)/Cu-Al2O3复合材料的成分配比

    Table  1.   Composition ratio of carbon nanotubes (CNTs)/Cu-Al2O3 composite

    CompositeAl2O3/vol%CNTs/vol%Cu/vol%
    Cu-3.5Al2O3 3.5 0 96.5
    0.6CNTs/Cu-3.5Al2O3 3.5 0.6 95.9
    1.2CNTs/Cu-3.5Al2O3 3.5 1.2 95.3
    2.4CNTs/Cu-3.5Al2O3 3.5 2.4 94.1
    下载: 导出CSV

    表  2  CNTs/Cu-Al2O3复合材料的综合性能

    Table  2.   The comprehensive performance of CNTs/Cu-Al2O3 composite

    CompositeRelative density/%Electrical conductivity/%IACSHardness/HBWStrength/MPa
    Cu-3.5Al2O398.872(±0.8)120.8(±1.2)358.2(±7)
    0.6CNTs/Cu-3.5Al2O39869.5(±0.6)130.7(±2.1)434.7(±5)
    1.2CNTs/Cu-3.5Al2O397.965.4(±0.4)151.5(±0.9)504.9(±6)
    2.4CNTs/Cu-3.5Al2O397.560.5(±0.6)106.7(±1.1)315.3(±6)
    下载: 导出CSV
  • [1] RAJKOVIC V, BOZIC D, DEVECERSKI A, et al. Characteristic of copper matrix simultaneously reinforced with nano- and micro-sized Al2O3 particles[J]. Materials Characterization,2012,67:129-137. doi: 10.1016/j.matchar.2012.02.022
    [2] GUO Xiuhua, SONG Kexing, LIANG Shuhua, et al. Effect of Al2O3 Particle Size on Electrical Wear Performance of Al2O3/Cu Composites[J]. Tribology Transactions,2016,59(1):170-177. doi: 10.1080/10402004.2015.1061079
    [3] 张雪辉, 魏星, 刘美霞, 等. Al2O3/Cu复合材料的高温变形行为[J]. 复合材料学报, 2017, 34(8):1825-1832.

    ZHANG Xuehui, WEI Xing, WANG Yong, et al. High temperature deformation behavior of Al2O3/Cu composite[J]. Acta Materiae Compositae Sinica,2017,34(8):1825-1832(in Chinese).
    [4] 刘贵民, 杨忠须, 闫涛, 等. 电磁轨道炮导轨失效研究现状及展望[J]. 材料导报, 2015, 29(7):63-70.

    LIU Guimin, YANG Zhongxu, YAN Tao, et al. Current Status and Prospect on Rail Failures of Electromagnetic Railgun[J]. Materials Reports,2015,29(7):63-70(in Chinese).
    [5] 毛保全, 张天意, 白向华, 等. 电磁轨道炮抗烧蚀枢轨结构设计[J]. 兵器装备工程学报, 2020, 41(3):67-71. doi: 10.11809/bqzbgcxb2020.03.013

    MAO Baoquan, ZHANG Tianyi, BAI Xianghua, et al. Design of Anti-Ablation Armature Structure for Electromagnetic Rail Gun[J]. Ordnance Equipment Engineering,2020,41(3):67-71(in Chinese). doi: 10.11809/bqzbgcxb2020.03.013
    [6] 高翔. 电磁轨道炮枢轨磨损特性分析[D]. 河北: 燕山大学, 2020.

    GAO Xiang. Analysis of the Wear Characteristics of the Rail-Armature of Electromagnetic Railgun [D]. Hebei: Yan Shan University, 2020 (in Chinese).
    [7] 黄海明, 杜善义, 吴林志, 等. C/C复合材料烧蚀性能分析[J]. 复合材料学报, 2001, 18(3):76-80. doi: 10.3321/j.issn:1000-3851.2001.03.018

    HUANG Haiming, DU Shanyi, WU Linzhi, et al. Analysis of the Ablation of C/C composite[J]. Acta Materiae Compositae Sinica,2001,18(3):76-80(in Chinese). doi: 10.3321/j.issn:1000-3851.2001.03.018
    [8] 吴皇, 易茂中, 周文艳, 等. ZrC-Cu-C/C复合材料的烧蚀性能及烧蚀机制[J]. 复合材料学报, 2017, 34(1):152-159.

    WU Huang, YI Maozhong, ZHOU Wenyan, et al. Ablation property and mechanism of ZrC-Cu-C/C composites[J]. Acta Materiae Compositae Sinica,2017,34(1):152-159(in Chinese).
    [9] 关集俱, 刘德利, 王勇, 等. 碳纳米管/油酸复合物制备的纳米流体导电与润湿性能[J]. 复合材料学报, 2020, 37(10):2582-2589.

    GUAN Jiju, LIU Deli, WANG Yong, et al. Electroconductivity and wettability of nanofluids prepared by carbon nanotubes/oleic acid composite[J]. Acta Materiae Compositae Sinica,2020,37(10):2582-2589(in Chinese).
    [10] MURGESAN R, GOPAL M, MURALI G. Effect of Cu, Ni addition on the CNTs dispersion, wear and thermal expansion behavior of Al-CNT composites by molecular mixing and mechanical alloying[J]. Applied Surface Science,2019,495:143542-143542. doi: 10.1016/j.apsusc.2019.143542
    [11] JANG I, JOO H G, JANG Y H. Effects of carbon nanotubes on electrical contact resistance of a conductive Velcro system under low frequency vibration[J]. Tribology International,2016,104:45-56. doi: 10.1016/j.triboint.2016.08.019
    [12] 易建宏, 杨平, 沈涛. 碳纳米管增强金属基复合材料电学性能研究进展[J]. 复合材料学报, 2016, 33(4):689-703.

    YI Jianhong, YANG Ping, SHEN Tao. Research progress of electrical properties for carbon nanotubes reinforced metal matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(4):689-703(in Chinese).
    [13] FU Shaoli, CHEN Xiaohong, LIU Ping. Preparation of CNTs/Cu composites with good electrical conductivity and excellent mechanical properties[J]. Materials science & engineering. A,2020,771:138656.
    [14] ZHAO Lin, YAO Pingping, ZHOU Haibin, et al. Effect of CNTs in Copper Matrix on Mechanical Characteristics and Tribological Behavior under Dry Sliding and Boundary Lubrication Conditions[J]. Materials,2019,12(13):2203. doi: 10.3390/ma12132203
    [15] 龙飞, 贾淑果, 国秀花, 等. CNTs和TiB2混杂增强铜基复合材料的电弧侵蚀行为[J]. 复合材料学报, 2019:36.

    LONG Fei, JIA Shuguo, GUO Xiuhua, et al. Arc erosion behavior of hybrid copper matrix composites reinforced with (CNTs+TiB2)[J]. Acta Materiae Compositae Sinica,2019:36(in Chinese).
    [16] GUO Xiuhua, YANG Yubo, SONG Kexing, et al. Arc erosion resistance of hybrid copper matrix composites reinforced with CNTs and micro-TiB2 particles[J]. Journal of Materials Research and Technology,2021,11:1469-1479. doi: 10.1016/j.jmrt.2021.01.084
    [17] SONG Kexing, XING Jiandong, DONG Qiming, et al. Internal oxidation of dilute Cu-Al alloy powers with oxidant of Cu2O[J]. Materials Science and Engineering A,2004,380:117-122. doi: 10.1016/j.msea.2004.03.042
    [18] 王虎, 朱延玲. 碳纳米管预处理及表面化学镀铜[J]. 表面技术, 2019, 48(11):211-218.

    WANG Hu, ZHU Yanling. Pretreatment and Copper Plating of Carbon Nanotubes by Electroless Deposition[J]. Surface Technology,2019,48(11):211-218(in Chinese).
    [19] WANG Hu, ZHANG Zhaohui, ZHANG Hongmei, et al. Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes[J]. Materials Science and Engineering:A,2017,696:80-89. doi: 10.1016/j.msea.2017.04.055
    [20] LONG Fei, GUO Xiuhua, SONG Kexing, et al. An internai-oxidation-based strategy induced high-density alumina in-situ nanoprecipitation and carbon nanotube interface optimization for co-reinforcing copper matrix composites[J]. Composites Part B,2022,229:109455. doi: 10.1016/j.compositesb.2021.109455
    [21] BRAUNOVIC M, KONCHITS V. Electrical Contacts: Foundamentals, Applications and Technology[J]. New York:CRC Press, Taylor & Francis Group,2006:205-247.
    [22] ZHANG Xiaohui, ZHANG Yi, TIAN Baohong, et al. Graphene oxide effecte on the properties of Al2O3-Cu/35W5Cr composite[J]. Materials Science and Technology,2020,37(02):185-199.
    [23] SHEHATA F, FATHY A, ABDELHAMEED M, et al. Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing[J]. Materials and Design,2009,30(7):2756-2762. doi: 10.1016/j.matdes.2008.10.005
    [24] SADOUN A M, MOHAMMED M M, FATHY A, et al. Effect of Al2O3 addition on hardness and wear behavior of Cu-Al2O3 electroless coated Ag nanocomposite[J]. Materials research and technology,2020,9(3):5024-5033. doi: 10.1016/j.jmrt.2020.03.020
    [25] 国秀花. 颗粒特征参量对铜基复合材料载流摩擦磨损性能的影响[D]. 西安: 西安理工大学, 2015.

    GUO Xiuhua. Effects of Characteristic Parameters of Reinforced Particles on Electrical Wear Performances of Copper Matrix Composites [D]. Xi’an: Xi’an University of Technology, 2015 (in Chinese).
  • 加载中
计量
  • 文章访问数:  101
  • HTML全文浏览量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 录用日期:  2022-01-05
  • 修回日期:  2021-12-21
  • 网络出版日期:  2022-02-12

目录

    /

    返回文章
    返回