Research progress in preparation and performance of MXene and its composite absorbing materials
-
摘要: 信息时代迅猛发展的同时也给人们带来了日益严重的电磁污染问题,发展先进微波吸收材料不仅可以减少电磁波污染,也对军事安全有着重要意义。MXene是一种新型二维材料,独特的二维结构、丰富且可控的表面官能团、高比表面积、高导电率和低密度等特点使其成为一种理想的高性能微波吸收材料。本文讨论了MXene及其复合吸波材料的制备方法,介绍了和吸波性能密切相关的MXene的电磁性能,然后按照损耗机制对MXene及其复合材料的吸波性能进行总结与分析。最后从种类、结构、应用方面对MXene及其复合吸波材料的发展方向进行了展望。Abstract: The problem of electromagnetic pollution is becoming more and more serious with the rapid development of the information age. The development of advanced microwave absorbing materials can not only reduce electromagnetic pollution, but also have important implications for military security. MXene is a new type of two-dimensional material. The unique two-dimensional structure, abundant and controllable surface functional groups, high specific surface area, high conductivity and low density make it an ideal high-performance microwave absorbing material. This paper first discussed the preparation methods of MXene and its composite absorbing composites, then introduced the electromagnetic performance of MXene, which is closely related to the absorbing performance. In addition, MXene and its composite microwave absorbing materials are summarized and analyzed according to the loss mechanism. Finally, the development direction of MXene and its composite absorbing materials is prospected from the aspects of type, structure and application.
-
Keywords:
- MXene /
- wave absorption /
- composites /
- electrical loss /
- magnetic loss
-
电磁波是伴随着信息技术发展产生的无法避免的新污染源,对人体、环境、设备等都会产生不良影响[1],使用电磁干扰屏蔽和微波吸收材料是应对电磁波污染的主要途径。相比于电磁屏蔽材料,电磁波吸收材料能减少电磁波在环境中的二次污染,而且在军事领域有着重要的作用,如在现代国防军事中可以利用吸波材料制备的隐身设备躲避敌方雷达检测。传统的吸波材料主要包括磁性材料[2-4]、聚合物[5-6]、陶瓷材料[7-8]、碳基材料[9-11]、金属粉末[12]、纳米材料[13-14]等。随着科技的发展,传统吸波材料已经很难满足当今“薄、轻、宽、强”的要求,为此具有高比表面积和质轻的二维纳米材料成为具有良好应用前景的吸波材料。
MXene是2011年发现的新型二维纳米材料[15],从前相MAX中刻蚀A层制备得到。MAX可以写作Mn+1AXn,其中M为早期过渡金属元素,A为第IIIA、第IVA族元素,X为C或N或CN,n = 1、2、3或4[15-16]。M—A之间的键合力小于M—X的键合力,因此采取合适的处理方法去掉A层可以得到M—X结构[17]。二维层状结构和丰富的表面官能团(—F、—O、—OH、—Cl等)[18]使MXene被应用于多种领域,如电池[19-21]、超级电容器[22-24]、储氢[25-26]、吸附[27-28]、压力传感器[29-30]、气敏传感器[31-32]、电磁屏蔽[33-34]和吸收[35]等领域。MXene自发现以来受到人们广泛关注,根据Web of Science数据,2011~2020年,MXene相关论文发表数呈指数上升,如图1。
MXene在微波吸收方面有着巨大的潜力:(1) MXene具有数量可控的层状结构,多层材料层间距可根据制备方法的不同实现灵活调整,单层和少层材料为构建三维结构提供前提,层间结构也可实现电磁波在材料之间的多次反射和散射;(2) MXene的高导电率使其具有较强的介电损耗和极化损耗[36];(3) MXene刻蚀过程中会产生表面缺陷和官能团,这些缺陷和官能团在电磁场作用下可以产生偶极子,增加材料的介电损耗能力[37];(4) MXene种类繁多,现已有40多种[38],有些种类尤其是“M”为Cr和Mn的MXenes具有磁损耗潜力。但是,MXene的高导电性导致界面反射高阻抗匹配差,为了提高材料的阻抗匹配和电磁衰减能力,常将MXene与其他材料复合以提高微波吸收性能。
本文综述了国内外MXene吸波研究进展,归纳了MXene及其复合吸波材料的制备方法,按照损耗机制将其进行分类,包括MXene、MXene/电损耗材料、MXene/磁损耗材料、MXene/多组分损耗材料(图2)。最后针对目前研究的不足进行讨论,并对今后的研究发展方向提出了展望。
图 2 MXene微波吸收复合材料的分类:MXene、MXene/电损耗材料、MXene/磁损耗材料、MXene/多组分损耗材料Figure 2. Classification of MXene microwave absorbing composites: Pure MXene, MXene/electric loss materials, MXene/magnetic loss materials, MXene/multicomponent loss materialsRGO—Reduced graphene oxide; SiCnw—SiC nanowire; PPy—Polypyrrole; FCI—Flaky carbonyl iron1. MXene及其复合吸波材料的制备
1.1 MXene的制备
M—A之间存在相对M—X而言较弱的键合力,A层原子反应活性相对较高,采用合适的处理方法可以达到去除A层原子而达到保留M—X结构的目的(MAX和MXene的电子结构和SEM形貌如图3)。下面介绍几种目前制备MXene常见的方法。
(1) 氢氟酸刻蚀。2011年Naguib等[15]将Ti3AlC2 MAX相室温下浸泡在质量分数为50%的氢氟酸中2 h,选择性刻蚀Al层,首次得到了新型二维Ti3C2Tx MXene。HF刻蚀制备的MXene层片清晰、层间距均匀,但HF制备的MXene片往往会产生一些孔洞缺陷,且强腐蚀性酸HF对人体和环境都会带来危害。
(2) 氟盐加盐酸刻蚀。2014年Ghidiu等[41]采用LiF和HCl混合溶液代替HF在40℃下对Ti3AlC2进行刻蚀,成功制备了Ti3C2Tx,然后经过插层和超声得到了高质量、大尺寸的Ti3C2Tx单层纳米片。该方法采用更加温和的刻蚀剂,避免了相对危险的HF的使用,为之后MXene的制备提供了一种新思路,同时也是目前广泛应用的方法。类似的方法还有利用NH4F[42]、NaF[19]、KF[43]等氟盐与盐酸混合当作刻蚀剂。
(3) 熔盐刻蚀法。2016年,Urbankowski等[44]提出一种刻蚀新方法,即使用熔融氟盐在550℃氩气气氛下从Ti4AlN3中剥离出Al原子,制备了二维层状材料Ti4N3Tx,这也是首次实验合成氮化MXene。
传统方法制备出的MXene含有丰富且不可控的官能团,如—F、—O、—OH、—Cl等,为了得到可控官能团,中科院黄庆小组[45]利用Lewis酸熔盐刻蚀法制备Ti3C2Cl2 MXene,将Ti3AlC2与ZnCl2粉末混合,在氩气保护下550℃热处理7天后再用HCl溶液对产物进一步处理2 h,最后用去离子水洗涤以去除金属Zn,得到了只含Cl端的MXene。此外,还有Li等[46]利用水热碱刻蚀方法得到了不含F的高纯Ti3C2Tx(T=—O、—OH)。Yang等[47]利用电化学阳极腐蚀的方法溶解Al制备出了Ti3C2Tx(T=—O、—OH),也是一种无氟刻蚀方法。
1.2 MXene复合吸波材料的制备
1.2.1 静电自组装法
MXene因—OH等表面官能团的存在显示负电(pH为7时Ti3C2Tx的Zeta电位是−42 mV[48]),可以与经过阳离子聚合物(如聚二烯丙基二甲基氯化铵(PDDA)、十六烷基三甲基溴化铵(CTAB)等)修饰的材料利用静电自组装原理进行复合。Li等[49]在制备出的磁性纳米花状FeCo中滴加PDDA以修饰带正电,与MXene溶液通过静电作用结合再通过真空抽滤辅助成膜,研究复合材料的吸波性能。Ma等[50]在SiC纳米线(SiCnw)中加入低浓度的PDDA溶液进行搅拌以修饰电荷,干燥后在DMF溶液中分散,再与带负电的MXene一起超声通过静电作用进行自组装,之后在聚偏二氟乙烯(PVDF)中溶液浇筑和热压制备PVDF/SiCnw/MXene复合吸波材料(图4)。Deng等[51]将经过低浓度CTAB修饰的空心Fe3O4与MXene振荡20 h,再通过离心辅助得到复合吸波材料。
图 4 静电自组装法制备聚偏二氟乙烯(PVDF)/SiCnw/MXene的示意图[50]Figure 4. Schematic illustrations of the preparation process of poly(vinylidene fluoride) (PVDF)/SiCnw/MXene by electrostatic self-assembly method[50]PDDA—Poly(diallyl dimethylammonium chloride); DI—Deionized; DMF—N, N-Dimethylformamide; PVDF—Poly(vinylidene fluoride)1.2.2 水热或溶剂热法
水热或溶剂热法是将MXene与另一种材料的前相经过一次水热或其他溶剂热,得到的产物均匀,方法较为简单便利。Hou等[52]将Co(NO3)2、硫代乙酰胺、间苯二酚、多层MXene粉末和甲醇在水热反应釜中180℃放置24 h,再经过干燥退火得到Co9S8/C/Ti3C2Tx复合材料,并对比加入不同量Ti3C2Tx材料的吸波性能。Liu等[53]将多层Ti3C2Tx粉末与CoCl2·6H2O、硫脲与乙二醇分别搅拌均匀后一起置于水热反应釜中180℃反应12 h,合成CoS@Ti3C2Tx复合物(图5)。Qian等[54]将ZnO晶种层提前固定在Ti3C2Tx表面,再通过水热法在Ti3C2Tx表面生长ZnO纳米棒,制备得到了类海胆状的ZnO-MXene,以MXene纳米片为基底、以表面基团作为复合中心构建了独特的半导体网络。
1.2.3 冷冻干燥法
三维多孔结构可以提高材料的电磁波吸收频率宽度,也可以平衡介电损耗和阻抗匹配,增强杂化材料的极化损耗,从而获得优异的微波吸收性能[55],冷冻干燥法是制备多孔MXene吸波材料最常用的方法。Liang等[56]将一定比例的MXene、GO(氧化石墨烯)和Ni纳米链搅拌后倒入带有铜底板的特氟龙模具中液氮定向冷冻,然后冷冻干燥2天,构建三维多孔结构,之后经肼还原和NH3气氛下退火得到多孔Ni/MXene/RGO(还原氧化石墨烯),最后在材料外部包裹聚二甲基硅氧烷(PDMS)(图6(a)),定向冷冻干燥制备的气凝胶具有超低密度、疏水性、隔热性和不可燃性等优异性能。Wang等[57]将RGO和Ti3C2Tx放置在−90℃、10 Pa条件的冷冻干燥机中形成Ti3C2Tx@RGO三维多孔复合气凝胶(图6(b))。Yang等[58]将Ti3C2Tx加入明胶溶液中搅拌均匀,再加入甲醛使明胶分子交联,将混合溶液倒至铝基聚四氟乙烯模具中浸入液氮进行定向冷冻,再将材料在−60℃冷冻干燥5天得到轻质多孔复合气凝胶。
1.2.4 原位聚合法
导电高聚物的导电性可以在绝缘体、半导体、导体之间变化,不同电导率的高聚物具有不同的吸波性能和吸收频宽。原位聚合法是将小分子单体、引发剂或者固化剂与MXene混合,小分子会原位聚合形成大分子,而MXene也会均匀分布在其间。Wei等[59]将酸化后的苯胺单体、过硫酸铵(APS)和MXene冰浴搅拌12 h原位聚合形成了MXene/聚苯胺(PANI)复合吸波材料。Tong等[60]将APS作为引发剂引发聚合吡咯单体,原位聚合形成了聚吡咯(PPy)/MXene复合材料(图7(a)),表现出优异的微波吸收性能。
除了上述四种制备方法,MXene微波吸收复合材料常见的制备方法还有简单搅拌[61]、化学气相沉积法[62](图7(b))、静电纺丝[63]、交替抽滤/喷涂[64](图7(c))等。
2. MXene的电磁性能
2.1 导电性能
良好的导电性是MXene的一大重要特点。MXene的种类繁多,不同种类的MXene具有不同的导电性能。此外,MXene的导电率还受到其他因素的影响,如表面官能团[65]、层数[66]、堆叠程度[67]和环境[66-68]等。
没有官能团的情况下,所有的裸MXene均具有金属导电性,而表面功能化后的一些MXene将会变为半导体[69]。根据密度泛函理论,表面官能团的存在会对MXene的费米能级态密度产生强烈影响,从而影响MXene的导电率[70]。Xiong等[71]利用第一性原理对带不同官能团(T = —O、—OH和—F)的Sc2CT2进行研究,发现Sc2CO2-I是金属,而当官能团是—OH或—F,则是半导体。以Ti3C2Tx为代表的多数MXenes具有金属导电性,—O增加或—F减少有利于提高MXene的导电率[65]。
2.2 介电性能
MXene的介电性能通常与导电率有关。刻蚀时间[72]、刻蚀温度[73]和退火处理[74]等也会影响MXene的介电性能。Han等[74]对Ti3C2Tx退火处理后发现,热处理后的MXene由于无定型碳的存在具有高介电常数和电损耗性能。Tong等[75]发现刻蚀时间对Ti3C2Tx的介电性能和吸波性能有着显著影响。相比于刻蚀0 h,刻蚀24 h 的Ti3C2Tx的介电常数和介电损耗显著提高,吸波效果也达到最佳。超过24 h以后,由于Ti原子的损失和C原子的暴露,MXene的介电性能下降。
适当提高MXene的介电性能可以有效改善材料的吸波性能,但过高的介电常数会导致阻抗失配,从而降低吸波性能。
2.3 磁性能
理论上,一些裸MXenes被预测为铁磁性,但实际制备中的MXene表面通常携带丰富的官能团而显示非磁性,在磁场中的磁导率不会随着磁场频率而发生变化[35, 76]。当“M”是Cr或Mn时,此类MXene可以表现出磁性[77-78]。此外,适当的处理也会影响MXene的磁性,Zhang等[79]将单层Ti3C2Tx在H2中退火得到了弱顺磁性MXene。
3. MXene及其复合材料的吸波性能
3.1 MXene吸波材料
2016年,Qing等[80]首次研究了MXene的微波吸收性能,文章比较了经过HF刻蚀制备的Ti3C2Tx和相同含量Ti3AlC2原相的微波吸收性能,发现刻蚀后的MXene在12.4~18 GHz频率范围的反射损耗超−11 dB,具有优良的电磁波吸收率,是一种非常有前途的微波吸收候选材料。同时指出Ti3C2Tx良好的吸波性能是由于其丰富的官能团、表面缺陷和较大的层间距引起的偶极子极化作用产生的介电损耗。石蜡拥有低介电常数和低介电损耗,通常作为良好的透波剂与待测材料按照一定比例混合来检测材料的吸波性能。Zhang等[81]将Ti3C2Tx和石蜡按照4∶6、5∶5、6∶4不同质量比例混合,发现当质量比为5∶5时,Ti3C2Tx显示出良好的阻抗匹配和全Ku波段的吸收宽度,12 GHz时最小反射损耗值(Reflection loss,RL)为−34.4 dB,厚度仅为1.7 mm,为后续制备MXene/石蜡测试样比例提供了参考。
MXene的结构和性能受制备条件的影响很大,不少文章研究不同制备条件对MXene吸波性能的影响。Zhang等[73]和Fan等[82]分别研究了HF刻蚀不同时间对Ti3C2Tx层间距和微波吸收性能的影响。Tong等[75]以HF作为刻蚀剂研究了刻蚀时间对结构、形态、表面终止和介电性能的影响。Cui等[83]以LiF和HCl作为刻蚀剂研究了反应时间、温度和反应物浓度三个因素对Ti3C2Tx形貌和介电性能的影响,发现随着剥离程度的增加,MXene的多层结构发生变化,从而进一步影响微波吸收性能。Xu等[84]研究了不同溶剂二甲基甲酰胺(DMF)、乙醇和二甲亚砜(DMSO)对Ti3C2Tx吸波性能的影响,发现在DMF溶液中热处理后的Ti3C2Tx具有比在乙醇和DMSO中更大的层间距和更小的氧化程度,材料具有更好的电磁波吸收效果。
MXene是一种较易氧化的材料,Ti3C2Tx和Ti2CTx的常见氧化产物都是TiO2。Li等[85]将制备的多层Ti2CTx粉末在CO2气氛下以不同温度(500℃、800℃和900℃)煅烧1 h分别制备出了Ti2CTx/TiO2、C/TiO2和TiO2,发现800℃得到的退火样品Ti2CTx/TiO2表现出最佳的微波吸收性能,证明在Ti2CTx上嵌入低浓度的TiO2有助于提高MXene的吸波性能。Fan等[86]也对Ti3C2Tx进行不同温度(100℃、200℃、300℃、400℃和500℃)的煅烧,并通过密度泛函理论证明,在测试范围内,Ti3C2Tx/TiO2杂化物表现出增强的电磁波吸收性能。Iqbal等[87]2020年在Science发表了Ti3CNTx退火后的微波屏蔽吸收性能研究,文章对比了Ti3CNTx和Ti3C2Tx两种MXenes各自在不同退火温度下(150℃、250℃和350℃)的电磁吸收屏蔽性能,发现Ti3CNTx经过退火后表现出异常优异的微波吸收性能,原因是退火后Ti3CNTx的电导率、空隙率和偶极极化率的显著增加所致,此外,Ti3CNTx在350℃退火温度下还生成了TiO2,其退火后的表面剩余官能团和TiO2会产生偶极极化损耗来进一步增加电磁波的吸收。
MXene的导电性提供了高介电损耗,片层结构能使电磁波在层间进行多次反射,表面缺陷和官能团增加了介电损耗,因此MXene是一种有前途的微波吸收材料。但是高导电性和介电性能使其更倾向于反射电磁波而不是吸收。研究人员为了提高纯MXene的阻抗匹配,通常会对MXene进行氧化或调整制备工艺,然而效果依旧十分有限。为了得到优异的吸波材料,引入其他电/磁损耗材料才是MXene吸波材料的发展方向。
3.2 MXene/电损耗吸波材料
按照损耗类型不同,微波吸收材料可以分为电损耗型和磁损耗型。研究发现MXene本身的吸波是以介电损耗为主的[88],但是MXene过高的电导率和介电常数会导致电磁波界面发射高、阻抗匹配差,影响电磁波的吸收。因此,MXene常常加入其他类型电损耗材料来提高微波吸收能力。
3.2.1 MXene/碳基吸波材料
碳材料具有密度小、导电性高、稳定性好、柔韧性强的特点。常见的碳材料主要有炭黑、导电石墨、碳纤维、碳纳米管、石墨烯以及其衍生物等。Wang等[89]将三聚氰胺泡沫1100℃真空烧结2 h碳化制备碳泡沫骨架,在不同浓度的Ti3C2Tx中真空浸渍再冷冻干燥制备出一种新型柔性轻质碳泡沫/Ti3C2Tx复合物,不仅有着优异的微波吸收性能还具有良好的柔韧性和应变回弹性。Cui等[90]通过简单的超声喷涂工艺将一维羧化碳纳米管(C-CNTs)和二维Ti3C2Tx纳米组装成三维多孔MXene/C-CNTs(MCM)再经过碳化得到C-MCM。最佳质量比例下(MXene∶CNTs=3∶1,记为C-MCM-3)最小RL值为−45 dB(f=10 GHz),对应匹配厚度为2.7 mm (图8)。
Li等[91]将氧化石墨烯和Ti3C2Tx混合后静电纺丝再辅助冷冻干燥形成三维多孔结构材料。GO和Ti3C2Tx之间的电导率差异和新生成的异质界面以及丰富的表面官能团使得复合物显示出优秀的阻抗匹配和微波吸收性能,在整个S波段显示出有效的微波吸收,RL值在2.1 GHz达到−38.3 dB。Wang等[57]利用维生素C的还原性水热还原GO得到Ti3C2Tx/RGO,再冷冻干燥制备Ti3C2Tx@RGO多孔复合气凝胶。最小RL值在8.2 GHz达到−31.2 dB,有效频率宽度在2.05 mm厚度时达到5.4 GHz。多孔结构构建的高导电网络、多重散射、界面极化和偶极极化对其吸波性能起着重要的作用。
碳材料的加入为MXene提供了更多的异质界面和导电路径,提高材料的吸波能力。此外,一维碳材料(碳纤维和碳纳米管)和二维碳材料(石墨烯及其衍生物)也有利于和二维MXene片层构建轻质多孔高效复合吸波材料。
3.2.2 MXene/陶瓷基吸波材料
陶瓷材料具有耐高温、硬度高、耐候性强、膨胀系数小的特点。常见的陶瓷类吸波材料有碳化硅、钛酸钡等。其中SiC是一种典型的陶瓷材料,不仅具有良好的吸波效能,而且具有耐高温、相对密度小、强度高和电阻率高的特点,是国内外发展迅速的吸波剂之一[1]。Li等[92]利用静电自组装和双向冷冻工艺制备处理超低密度的有序层状Ti3C2Tx/SiCnw混合泡沫,发现该泡沫具有优异的微波吸收性能,且优于当前大多数基于泡沫结构的复合物。Ma等[50]利用静电自组装原理再辅助溶液浇铸和热压法在PVDF中制备了SiCnw/MXene异质纳米结构(制备流程示意图如图4),2D MXene纳米片和1D SiCnw的协同作用与结构中的大量堆垛层错在复合物基质中产生大量异质界面,优化了复合物的电磁波吸收性能。材料表现出在Ku波段上5.0 GHz的有效宽带,在1.45~1.5 mm的匹配厚度区间的最小RL值为−75.8 dB。
3.2.3 MXene/导电聚合物基吸波材料
导电聚合物由于自身的高介电、低密度、柔韧性、耐腐蚀、成本低廉和吸波频率宽度可调等性能,通常也和MXene复合作为优良吸波剂。Liu等[93]使用甲苯磺酸(ρ-TSA)用作掺杂剂来调节PPy的电导率,使导电PPy在Ti3C2Tx纳米片上原位聚合形成一种新的核壳状分层结构复合材料Ti3C2Tx@PPy,10wt%的吸波材料的石蜡样品中在7.6 GHz、厚度为3.6 mm时显示出最小RL值为−49.5 dB,在6.44~11.58 GHz范围内的有效吸收宽带为5.14 GHz,此外复合材料在2~5.5 mm的匹配厚度可以覆盖4~18 GHz宽度(图9(a))。Wei等[59]利用原位聚合的方法制备了MXene/PANI复合材料,多层结构、Ti3C2Tx的官能团和表面缺陷使得材料产生偶极极化,加之Ti3C2Tx和PANI的介电性能以及Ti3C2Tx和PANI之间的协同作用,使得所制备的复合材料显示出优异的微波吸收性能(图9(c)),有效吸收宽带涵盖X波段到Ku波段,可调厚度范围为1.5~2.6 mm(图9(b))。MXene/导电聚合物基吸波材料具有界面极化、偶极极化和多导电路径等特点,有利于改善阻抗匹配和提高电磁波的吸收。总之,电损耗材料的引入将会与MXene形成大量的异质界面和更多的导电网络,从而优化阻抗匹配,提高吸波效果。
3.3 MXene/磁损耗吸波材料
优异的吸波材料往往同时具备电损耗和磁损耗。MXene的介电性能优异,磁损耗很弱,当“M”为Cr或Mn时,这些MXenes可以具有磁性,但对于更多种类的MXenes而言,增加磁损耗的最简单的方法是添加磁性材料。
3.3.1 MXene/磁性金属粒子吸波材料
常见的磁性金属粒子有铁、钴、镍以及它们的合金。Liu等[94]利用化学镀的方法制备了一种双损耗Ti3C2/Ni纳米复合材料,研究了8.2~12.4 GHz频率宽度范围的电磁波吸收性能。Liang等[34]采用共溶剂热法通过调节材料比例在MXene表面原位均匀生长了尺寸可控的镍、钴或镍钴合金磁性粒子,再结合PVDF优异的介电性能,得到PVDF中含量10wt%的Ni@Ti3C2(8∶1)在3 mm处的最小RL值为−52.6 dB,而且通过调整试样厚度,材料的吸波范围可以完全覆盖整个X波段。吸收机制如图10所示,总结来说,Ni的引入使复合物电阻增高,阻抗匹配增加;Ni粒子产生磁耦合效应且在交变磁场作用下引起自然共振和交换共振衰减电磁能量;MXene的层状结构有助于电磁波在材料中的多次反射和散射;Ni、MXene和PVDF之间的异质界面在电磁波作用下产生界面极化、偶极极化等作用。He等[95]用水热法在MXene表面原位生成FeCo,制备的Ti3C2@FeCo复合材料在厚度仅为1.6 mm处显示出9.2~18.0 GHz的有效带宽。
Liang等[96]通过软模版和磁场辅助来制备镍纳米链,再将一定量的Ni链和MXene水热反应辅助冷冻干燥制备MXene/Ni纳米链复合物。Pan等[36]利用原位生长制备MXene/Co纳米链,发现与相似工艺制备的MXene/Co纳米粒子相比,MXene/Co纳米链表现出更加优异的微波吸收性能,在16.75 GHz、厚度仅为1.02 mm时的最小RL值为−46.48 dB。
构建具有特殊结构的粒子也是提高吸波性能的方法之一。MOF是一种新型多孔材料,具有孔隙率高、比表面积大、热稳定性好等特点。Han等[97]制备了Co-ZIF和Ni-ZIF两种磁性材料,分别与Ti3C2Tx进行复合再经过热解得到了MXene/MOF复合材料。MOF的加入改善了层状MXene的阻抗匹配,此外复合材料独特的结构、磁性-介电协同效应、多次散射以及偶极极化也为高性能吸波材料的制备提供了新思路。
3.3.2 MXene/磁性氧化物吸波材料
除了金属磁性粒子,磁性氧化物的加入也是一种提高MXene磁损耗的方法。Zhang等[98]在溶剂热系统中通过还原反应制备Fe3O4@Ti3C2Tx复合物,含有25wt% Fe3O4的样品表现出15.7 GHz下−57.2 dB的最小RL值,有效吸收带宽为1.4 GHz(厚度为4.2 mm)。Gao等[99]通过原位溶剂热法合成了纳米花状Ni(NiO)/Ti3C2Tx/TiO2,除了磁性粒子和MXene之间的作用,花状Ni(NiO)形成的锯齿型路径在交变电磁波的作用下产生涡流,对电磁波也产生很大的损耗作用。Deng等[51]采用水热法制备空心Fe3O4(HFO),再利用静电自组装原理与Ti3C2Tx进行复合,得到了质轻且具有高吸波性能的材料。Shan等[100]通过原位化学共沉淀法制备Ti3C2Tx/NiFe2O4,磁性粒子在MXene表面及层间附着,复合材料在厚度仅为1.5 mm下表现出7.68 GHz的最佳有效吸收带宽。类似的还有Ti3C2Tx@NiCo2O4[101]、Ti3C2Tx@CoFe2O4[102]等。
3.3.3 MXene/羧基铁吸波材料
羧基铁(FCI)是目前最为常用的雷达吸波剂之一,材料自身的电损耗和磁损耗较大且具有可大规模制造和低成本的优点。Yan等[103]通过高能球磨制备了片状FCI,采用超声混合法制备了不同质量比的Ti3C2/FCI,研究其在2~18 GHz下的微波吸收性能,20wt% Ti3C2和40wt% FCI含量的涂层在厚度为1.0 mm时有效吸收宽带为8.16 GHz,其优异的吸波性能归因于良好的阻抗匹配和衰减能力。
总之,磁性材料与电磁场会产生自然共振、交换共振和涡流损耗等多种相互作用,从而带来优异的磁损耗。与高导电MXene复合将产生电磁协同损耗、多次散射、偶极极化和界面极化等作用,增加吸收宽带,提高吸波效果。另一方面,磁性材料的结构优化(多孔结构、壳层结构、中空结构等)不仅降低材料密度,也会增加材料内部多重反射损耗,是提高吸波效果的另一重要途径。
此外,为了获得综合微波吸收性能更加优异的材料,有时也会在MXene中同时加入电损耗和磁损耗材料以形成多组分电磁损耗材料,比如Ti3C2Tx/Fe3O4/PANI[104]、RGO/Nb2CTx/Fe3O4[105]、PVB/Ti3C2Tx/Ba3Co2Fe24O41[106],还有利用MXene为基础制备的Ni/TiO2/C[107]和Fe/TiO2/C[108]等。与单一材料相比,电损耗和磁损耗材料的同时引入可以更好地提高MXene的吸波性能,将是未来衰减电磁波的主要途径。表1对MXene及其复合材料的吸波性能进行了总结。
表 1 MXene及其复合材料的吸波性能Table 1. Microwave absorption properties of MXene and its composite materialsType Materials Methods Microwave absorbing performance Ref. RLmin/dB Band width/GHz Thickness/mm MXene Ti3C2Tx Etching MAX phase −17 5.6 (12.4-18) 1.4 [80] Ti3C2Tx Etching MAX phase −34.4 4.7 (12.4-17.1) 1.7 [81] Ti3C2Tx Etching MAX phase −45.2 3.66 1.68 [83] C/TiO2 Annealing process −50.3 4.7 2.1 [85] Ti3C2Tx/TiO2 Annealing process −40.07 3.6 1.5 [86] MXene/electric
loss materialsTi3C2Tx/CNTs Ultrasonic spray −45 4.9 1.9 [90] Ti3C2/CNTs Chemical vapor deposition −52.9 4.46 1.55 [62] Ti3C2Tx@GO Electrostatic-spinning + Freeze drying −49.1 2.9 (12.9-15.8) 1.2 [91] Ti3C2Tx@RGO Hydrothermal method + Freeze drying −31.2 5.4 (11.4-16.8) 2.05 [57] Ti3C2Tx/SiCnw Electrostatic self-assembly+
Freeze drying−55.7 4.2 (8.2-12.4) 3.5-3.8 [92] Ti3C2Tx/SiCnw Electrostatic self-assembly+
Solution casting+
Hot-pressing−75.8 5.0 1.5 [50] Ti3C2Tx@PPy In-situ polymerization −49.5 6.63 (8.55-15.18) 2.7 [93] Ti3C2Tx/PANI In-situ polymerization −56.3 5.95 2.4 [59] MXene/magnetic
loss materialsTi3C2/Ni Electroless plating −24.3 2.6 (8.66-11.26) 2.2 [94] Ti3C2Tx@Ni Co-solvothermal −52.6 6.1 3.0 [34] Ti3C2Tx/Ni chain Hydrothermal method −49.9 2.1 1.75 [96] FeCo−Ti3C2 Hydrothermal method −17.86 8.8 (9.2-18.0) 1.6 [95] Fe3O4@Ti3C2Tx Solvothermal method −57.2 1.4 4.2 [98] NiFe2O4−Ti3C2Tx Chemical coprecipitation −24.7 7.68 (10.32-18.0) 1.5 [100] CoFe2O4−Ti3C2 In-situ solvothermal −30.9 8.5 (8.3-16.8) 1.5 [102] Ti3C2/FCI Ultrasonic mixing −15.52 8.16 (9.84-18) 1.0 [103] MXene/
multicomponent
loss materialsTi3C2/Fe3O4/PANI Coprecipitation + In-situ polymerization −40.3 5.2 (12.8-18) 1.9 [104] RGO/Nb2CTx/Fe3O4 Hydrothermal method +
Electrostatic self-assembly−59.17 6.8 (9.76-16.56) 2.5 [105] PVB/Ti3C2/Ba3Co2Fe24O41 Tape casting −46.3 1.6 (4.9-6.5) 2.8 [106] Ni/TiO2/C Microwave heating −39.91 3.04 (14.24-17.28) 1.5 [107] Fe&TiO2@C Microwave heating +
Heat treatment−51.8 6.5 (11.5-18) 1.6 [108] Notes: RLmin—Minimum reflection loss; GO—Graphene oxide; CNTs—Carbon nanotubes; PVB—Polyvinyl butyral. 4. 结论与展望
本文综述了近年来MXene及其微波吸收复合材料的研究进展。讨论了MXene及其复合吸波材料常见的制备方法,介绍了MXene电磁性能,接着根据损耗机制将MXene及其复合吸波材料分为MXene吸波材料、MXene/电损耗吸波材料、MXene/磁损耗吸波材料并进行分类总结及机制解释。相比于传统吸波材料,MXene作为一种表面携带可控官能团、组成元素种类丰富的新型二维类石墨烯材料具有更大的研究价值。然而,单一的MXene材料由于高导电性、阻抗匹配较差,通常与其他电磁损耗材料复合。目前,MXene吸波材料还处于研究阶段,基于吸波材料“薄、轻、宽、强”的应用要求,MXene吸波材料未来的发展方向可以从以下几个方面尝试。
(1) 种类方面。对MXene本身而言,目前MXene吸波方面的研究仍然以Ti3C2Tx MXene为主,需要进一步扩大其他种类MXene的吸波性能研究,尤其是对本身带有磁性的“M”为Cr和Mn的MXenes(如Cr2CTx、Mn2CTx等)进行研究;不同种类官能团对MXene性能有着很大影响,调控MXene的表面官能团进行吸波性能的研究也是一大方向。对添加的材料而言,应寻找更多有效适合的材料与MXene进行复合,以及研究基于MXene的多组分损耗材料,提高材料的吸波性能并对其吸波机制进行充分解释说明。
(2) 结构方面。构建特殊形貌(如三维多孔结构、多层吸波结构、壳层结构、花状结构等)可以提高材料对电磁波的吸收和多重反射等能力。此外,对单一材料本身结构的构建也有利于多重反射和质轻的需求,如设计中空、多孔或壳层结构磁性粒子代替实心磁性粒子。
(3) 应用方面。目前MXene制备产率较低,尤其是单少层的产率,应该研究更加环保高效的MXene制备工艺,为之后工业化生产做基础。此外,制备厚度薄、质量轻、频率宽、耐候性强、力学性能优良的吸波材料,朝向更加实用的方向发展,如军事隐身材料、人体可穿戴吸波材料、墙体或建筑物可填充价格低廉的吸波材料等方向。
-
图 2 MXene微波吸收复合材料的分类:MXene、MXene/电损耗材料、MXene/磁损耗材料、MXene/多组分损耗材料
Figure 2. Classification of MXene microwave absorbing composites: Pure MXene, MXene/electric loss materials, MXene/magnetic loss materials, MXene/multicomponent loss materials
RGO—Reduced graphene oxide; SiCnw—SiC nanowire; PPy—Polypyrrole; FCI—Flaky carbonyl iron
图 4 静电自组装法制备聚偏二氟乙烯(PVDF)/SiCnw/MXene的示意图[50]
Figure 4. Schematic illustrations of the preparation process of poly(vinylidene fluoride) (PVDF)/SiCnw/MXene by electrostatic self-assembly method[50]
PDDA—Poly(diallyl dimethylammonium chloride); DI—Deionized; DMF—N, N-Dimethylformamide; PVDF—Poly(vinylidene fluoride)
图 7 原位聚合制备的Ti3C2Tx/PPy (a)[60]、CVD法制备的Ti3C2Tx/CNT (b)[62]和交替抽滤或喷涂法制备的Ti3C2Tx/TMO (c)[64]的工艺流程图
Figure 7. Schematic illustrations of the preparation process of Ti3C2Tx/PPy by in-situ polymerization (a)[60], Ti3C2Tx/CNT by CVD (b)[62] and Ti3C2Tx/TMO[64] by alternating filtration or spray coating methods (c)
APS—Ammonium persulfate; CVD—Chemical vapor deposition; TMO—Transition metal oxide
表 1 MXene及其复合材料的吸波性能
Table 1 Microwave absorption properties of MXene and its composite materials
Type Materials Methods Microwave absorbing performance Ref. RLmin/dB Band width/GHz Thickness/mm MXene Ti3C2Tx Etching MAX phase −17 5.6 (12.4-18) 1.4 [80] Ti3C2Tx Etching MAX phase −34.4 4.7 (12.4-17.1) 1.7 [81] Ti3C2Tx Etching MAX phase −45.2 3.66 1.68 [83] C/TiO2 Annealing process −50.3 4.7 2.1 [85] Ti3C2Tx/TiO2 Annealing process −40.07 3.6 1.5 [86] MXene/electric
loss materialsTi3C2Tx/CNTs Ultrasonic spray −45 4.9 1.9 [90] Ti3C2/CNTs Chemical vapor deposition −52.9 4.46 1.55 [62] Ti3C2Tx@GO Electrostatic-spinning + Freeze drying −49.1 2.9 (12.9-15.8) 1.2 [91] Ti3C2Tx@RGO Hydrothermal method + Freeze drying −31.2 5.4 (11.4-16.8) 2.05 [57] Ti3C2Tx/SiCnw Electrostatic self-assembly+
Freeze drying−55.7 4.2 (8.2-12.4) 3.5-3.8 [92] Ti3C2Tx/SiCnw Electrostatic self-assembly+
Solution casting+
Hot-pressing−75.8 5.0 1.5 [50] Ti3C2Tx@PPy In-situ polymerization −49.5 6.63 (8.55-15.18) 2.7 [93] Ti3C2Tx/PANI In-situ polymerization −56.3 5.95 2.4 [59] MXene/magnetic
loss materialsTi3C2/Ni Electroless plating −24.3 2.6 (8.66-11.26) 2.2 [94] Ti3C2Tx@Ni Co-solvothermal −52.6 6.1 3.0 [34] Ti3C2Tx/Ni chain Hydrothermal method −49.9 2.1 1.75 [96] FeCo−Ti3C2 Hydrothermal method −17.86 8.8 (9.2-18.0) 1.6 [95] Fe3O4@Ti3C2Tx Solvothermal method −57.2 1.4 4.2 [98] NiFe2O4−Ti3C2Tx Chemical coprecipitation −24.7 7.68 (10.32-18.0) 1.5 [100] CoFe2O4−Ti3C2 In-situ solvothermal −30.9 8.5 (8.3-16.8) 1.5 [102] Ti3C2/FCI Ultrasonic mixing −15.52 8.16 (9.84-18) 1.0 [103] MXene/
multicomponent
loss materialsTi3C2/Fe3O4/PANI Coprecipitation + In-situ polymerization −40.3 5.2 (12.8-18) 1.9 [104] RGO/Nb2CTx/Fe3O4 Hydrothermal method +
Electrostatic self-assembly−59.17 6.8 (9.76-16.56) 2.5 [105] PVB/Ti3C2/Ba3Co2Fe24O41 Tape casting −46.3 1.6 (4.9-6.5) 2.8 [106] Ni/TiO2/C Microwave heating −39.91 3.04 (14.24-17.28) 1.5 [107] Fe&TiO2@C Microwave heating +
Heat treatment−51.8 6.5 (11.5-18) 1.6 [108] Notes: RLmin—Minimum reflection loss; GO—Graphene oxide; CNTs—Carbon nanotubes; PVB—Polyvinyl butyral. -
[1] 刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料[M]. 第二版. 北京: 化学工业出版社, 2013. LIU Shunhua, LIU Junmin, DONG Xinglong, et al. Electromagnetic shielding and absorbing materials[M]. 2th ed. Beijing: Chemical Industry Press, 2013(in Chinese).
[2] YU G, YANG C, CHI H J, et al. Facile synthesis of FeCo/Fe3O4 nanocomposite with high wave-absorbing properties[J]. International Journal of Molecular Sciences,2013,14(7):14204-14213. DOI: 10.3390/ijms140714204
[3] SUI M X, SUN X D, LOU H F, et al. Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: Effect of reactant concentration, reaction temperature and reaction time[J]. Journal of Materials Science: Materials in Electronics,2018,29(9):7539-7550. DOI: 10.1007/s10854-018-8746-4
[4] PAN Y, MA G, LIU X, et al. Electromagnetic and microwave absorption properties of coatings based on spherical and flaky carbonyl iron[J]. Journal of Materials Science: Materials in Electronics,2019,30(19):18123-18134. DOI: 10.1007/s10854-019-02165-4
[5] ONO K, SHINTANI H, YANO O, et al. Absorption of 10-MHz to 110-MHz ultrasonic waves by solutions of polystyrene[J]. Polymer Journal,1973,5(2):164-175. DOI: 10.1295/polymj.5.164
[6] YE Z, LI Z, ROBERTS J A, et al. Electromagnetic wave absorption properties of carbon nanotubes-epoxy compo-sites at microwave frequencies[J]. Journal of Applied Physics,2010,108(5):054315. DOI: 10.1063/1.3477195
[7] GREEN M, LIU Z, XIANG P, et al. Doped, conductive SiO2 nanoparticles for large microwave absorption[J]. Light: Science & Applications,2018,7(1):87-96.
[8] MEI H, ZHAO X, ZHOU S, et al. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption[J]. Chemical Engineering Journal,2019,372(31):940-945.
[9] CUI L, HAN X, WANG F, et al. A review on recent advances in carbon-based dielectric system for microwave absorption[J]. Journal of Materials Science,2021,56(18):10782-10811. DOI: 10.1007/s10853-021-05941-y
[10] LI B, JI Z, XIE S, et al. Electromagnetic wave absorption properties of carbon black/cement-based composites filled with porous glass pellets[J]. Journal of Materials Science: Materials in Electronics,2019,30(13):12416-12425. DOI: 10.1007/s10854-019-01600-w
[11] XU J, QI X, LUO C, et al. Synthesis and enhanced microwave absorption properties: A strongly hydrogenated TiO2 nanomaterial[J]. Nanotechnology,2017,28(42):425701. DOI: 10.1088/1361-6528/aa81ba
[12] DOSOUDIL R, FRANEK J, SLAMA J, et al. Electromagnetic wave absorption performances of metal alloy/spinel ferrite/polymer composites[J]. IEEE Transactions on Magnetics,2012,48(4):1524-1527. DOI: 10.1109/TMAG.2011.2172779
[13] ABDALLA I, ELHASSAN A, YU J, et al. A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption[J]. Carbon,2020,157(14):703-713.
[14] YE Z, LIU W, LIU Z, et al. The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids[J]. Ceramics International,2017,43(16):13146-13153. DOI: 10.1016/j.ceramint.2017.07.007
[15] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. DOI: 10.1002/adma.201190147
[16] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y, et al. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): 1581
[17] LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Materials Science and Engineering: B,2015,191:33-40. DOI: 10.1016/j.mseb.2014.10.009
[18] XIE Y, NAGUIB M, MOCHALIN V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. Journal of the American Chemical Society,2014,136(17):6385-6394. DOI: 10.1021/ja501520b
[19] KHAZAEI M, RANJBAR A, ARAI M, et al. Electronic pro-perties and applications of MXenes: A theoretical review[J]. Journal of Materials Chemistry C,2017,5(10):2488-2503. DOI: 10.1039/C7TC00140A
[20] LIU F, JIE Z, WANG S, et al. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries[J]. Journal of the Electrochemical Society,2017,164(4):709-713. DOI: 10.1149/2.0641704jes
[21] SUN D, HU Q, CHEN J, et al. Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: A first-principles investigation[J]. ACS Applied Materials & Interfaces,2016,8(1):74-81.
[22] ZHANG C J, KREMER M P, SERAL-ASCASO A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene lnks[J]. Advanced Functional Materials,2018,28(9):1705506. DOI: 10.1002/adfm.201705506
[23] HE H, XIA Q, WANG B, et al. Two-dimensional vanadium carbide (V2CTx) MXene as supercapacitor electrode in seawater electrolyte[J]. Chinese Chemical Letters,2020,31(4):984-987. DOI: 10.1016/j.cclet.2019.08.025
[24] LIU S, LIU J, LIU X, et al. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature[J]. Nature Nanotechnology,2021,16(3):331-336. DOI: 10.1038/s41565-020-00818-8
[25] YADAV A, DASHORA A, PATEL N, et al. Study of 2D MXene Cr2C material for hydrogen storage using density functional theory[J]. Applied Surface Science,2016,389:88-95. DOI: 10.1016/j.apsusc.2016.07.083
[26] WANG B, ZHOU A, LIU F, et al. Carbon dioxide adsorption of two-dimensional carbide MXenes[J]. Journal of Advanced Ceramics,2018,7(3):237-245. DOI: 10.1007/s40145-018-0275-3
[27] ZHANG Y J, ZHOU Z J, LAN J H, et al. Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene[J]. Applied Surface Science,2017,426:572-578. DOI: 10.1016/j.apsusc.2017.07.227
[28] DING L, WEI Y, WANG Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition,2017,56(7):1825-1829. DOI: 10.1002/anie.201609306
[29] WANG K, LOU Z, WANG L, et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors[J]. ACS Nano,2019,13(8):9139-9147. DOI: 10.1021/acsnano.9b03454
[30] LIU L, WANG L, LIU X, et al. High-performance wearable strain sensor based on MXene@cotton fabric with network structure[J]. Nanomaterials,2021,11(4):889-899. DOI: 10.3390/nano11040889
[31] KIM S J, KOH H J, REN C E, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio[J]. ACS Nano,2018,12(2):986-993. DOI: 10.1021/acsnano.7b07460
[32] WU M, HE M, HU Q, et al. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room tempera-ture[J]. ACS Sensors,2019,4(10):2763-2770. DOI: 10.1021/acssensors.9b01308
[33] JIA X, SHEN B, ZHANG L, et al. Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity[J]. Carbon,2021,173(5):932-940.
[34] LIU Q, HE X, YI C, et al. Fabrication of ultra-light nickel/graphene composite foam with 3D interpenetrating network for high-performance electromagnetic interference shielding[J]. Composites Part B: Engineering,2020,182(11):107614.
[35] LIANG L, YANG R, HAN G, et al. Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene[J]. ACS Applied Materials & Interfaces,2020,12(2):2644-2654.
[36] ZHANG Z, CAI Z, ZHANG Y, et al. The recent progress of MXene-based microwave absorption materials[J]. Carbon,2021,174(2):484-499.
[37] PAN F, YU L, XIANG Z, et al. Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite[J]. Carbon,2021,172(19):506-515.
[38] WU M, AN Y, YANG R, et al. V2CTx and Ti3C2Tx MXenes nanosheets for gas sensing[J]. ACS Applied Nano Materials,2021,4(6):6257-6268. DOI: 10.1021/acsanm.1c01059
[39] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th Anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. DOI: 10.1002/adma.201304138
[40] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. DOI: 10.1021/nn204153h
[41] GHIDIU M, LUKATSKAYA M, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. DOI: 10.1038/nature13970
[42] WANG L, ZHANG H, WANG B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process[J]. Electronic Materials Letters,2016,12(5):702-710. DOI: 10.1007/s13391-016-6088-z
[43] WANG L, LIU D, LIAN W, et al. The preparation of V2CTx by facile hydrothermal-assisted etching processing and its performance in lithium-ion battery[J]. Journal of Materials Research and Technology,2020,9(1):984-993. DOI: 10.1016/j.jmrt.2019.11.038
[44] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale,2016,8(22):11385-11391. DOI: 10.1039/C6NR02253G
[45] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society,2019,141(11):4730-4737. DOI: 10.1021/jacs.9b00574
[46] LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edition,2018,57(21):6115-6119. DOI: 10.1002/anie.201800887
[47] YANG S, ZHANG P, WANG F, et al. Fluoride-free synthe-sis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie International Edition,2018,130(47):15717-15721. DOI: 10.1002/ange.201809662
[48] HU K, WANG H, ZHANG X, et al. Ultralight Ti3C2Tx MXene foam with superior microwave absorption performance[J]. Chemical Engineering Journal,2021,408:127283. DOI: 10.1016/j.cej.2020.127283
[49] LI X, WEN C, YANG L, et al. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy[J]. Carbon,2021,175(28):509-518.
[50] MA L, HAMIDINEJAD M, LIANG C, et al. Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites[J]. Carbon,2021,179(6304):408-416.
[51] DENG B, LIU Z, PAN F, et al. Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching[J]. Journal of Materials Chemistry A,2021,9(6):3500-3510. DOI: 10.1039/D0TA10551A
[52] HOU T, JIA Z, WANG B, et al. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber[J]. Chemical Engineering Jour-nal,2021,414(3):128875.
[53] LIU H, LI L, CUI G, et al. Heterostructure composites of CoS nanoparticles decorated on Ti3C2Tx nanosheets and their enhanced electromagnetic wave absorption performance[J]. Nanomaterials,2020,10(9):1666-1681. DOI: 10.3390/nano10091666
[54] QIAN Y, WEI H, DONG J, et al. Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption[J]. Ceramics International,2017,43(14):10757-10762. DOI: 10.1016/j.ceramint.2017.05.082
[55] SONG Q, YE F, KONG L, et al. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range[J]. Advanced Functional Materials,2020,30(31):2000475. DOI: 10.1002/adfm.202000475
[56] LIANG L, LI Q, YAN X, et al. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance[J]. ACS Nano,2021,15(4):6622-6632. DOI: 10.1021/acsnano.0c09982
[57] WANG L, LIU H, LV X, et al. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2020,828:154251. DOI: 10.1016/j.jallcom.2020.154251
[58] YANG M, YUAN Y, LI Y, et al. Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels[J]. ACS Applied Materials & Interfaces,2020,12(29):33128-33138.
[59] WEI H, DONG J, FANG X, et al. Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption[J]. Composites Science and Technology,2019,169(8):52-59.
[60] TONG Y, HE M, ZHOU Y, et al. Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption[J]. Applied Surface Science,2018,434:283-293. DOI: 10.1016/j.apsusc.2017.10.140
[61] TAN K H, SAMYLINGAM L, ASLFATTAHI N, et al. Optical and conductivity studies of polyvinyl alcohol-MXene (PVA-MXene) nanocomposite thin films for electronic applications[J]. Optics & Laser Technology,2021,136:106772.
[62] LI X, YIN X, HAN M, et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C,2017,5(16):4068-4074. DOI: 10.1039/C6TC05226F
[63] WANG Z, YANG L, ZHOU Y, et al. NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces,2021,13(14):16713-16721.
[64] ZHAO M Q, TORELLI M, REN C E, et al. 2D Titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage[J]. Nano Energy,2016,30:603-613. DOI: 10.1016/j.nanoen.2016.10.062
[65] HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes’ electronic properties through termination and intercalation[J]. Nature Communications,2019,10(1):522-532. DOI: 10.1038/s41467-018-08169-8
[66] LIPATOV A, ALHABEB M, LUKATSKAYA M, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials,2016,2(12):1600255. DOI: 10.1002/aelm.201600255
[67] DU F, TANG H, PAN L, et al. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries[J]. Electrochimica Acta,2017,235:690-699. DOI: 10.1016/j.electacta.2017.03.153
[68] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials,2014,26(7):2374-2381. DOI: 10.1021/cm500641a
[69] KHAZAEI M, ARAI M, SASAKI T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides[J]. Advanced Functional Materials,2013,23(17):2185-2192. DOI: 10.1002/adfm.201202502
[70] ZHU J, HA E, ZHAO G, et al. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption[J]. Coordination Chemistry Reviews,2017,352:306-327. DOI: 10.1016/j.ccr.2017.09.012
[71] XIONG K, WANG P, YANG G, et al. Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities[J]. Scientific Reports,2017,7(1):15095. DOI: 10.1038/s41598-017-15233-8
[72] CUI G, SUN X, ZHANG G, et al. Electromagnetic absorption performance of two-dimensional MXene Ti3C2Tx exfoliated by HCl + LiF etchant with diverse etching times[J]. Materials Letters,2019,252:8-10. DOI: 10.1016/j.matlet.2019.05.053
[73] ZHANG Z, HE Y, LV Y, et al. Effect of surface structure and composition on the electromagnetic properties of Ti3C2Tx MXenes for highly efficient electromagnetic wave absorption[J]. The Journal of Physical Chemistry C,2020,124(36):19666-19674. DOI: 10.1021/acs.jpcc.0c06115
[74] HAN M, YIN X, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band[J]. ACS Applied Materials & Interfaces,2016,8(32):21011-21019.
[75] TONG Y, HE M, ZHOU Y, et al. Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time[J]. Journal of Materials Science Materials in Electronics, 2018, 29(10): 8078–8088.
[76] XIE Y, KENT P R C. Hybrid density functional study of structural and electronic properties of functionalized Ti(n+1)X(n) (X=C, N) monolayers[J]. Physical Review B,2013,87(23):235441. DOI: 10.1103/PhysRevB.87.235441
[77] ZHANG Y, LI F. Robust half-metallic ferromagnetism in Cr3C2 MXene[J]. Journal of Magnetism and Magnetic Materials,2017,433:222-226. DOI: 10.1016/j.jmmm.2017.03.031
[78] AKINOLA O, CHAKRABORTY I, CELIO H, et al. Synthesis and characterization of Cr2C MXenes[J]. Journal of Materials Research,2021,36(10):1980-1989. DOI: 10.1557/s43578-021-00258-7
[79] ZHANG K, DI M, FU L, et al. Enhancing the magnetism of 2D carbide MXene Ti3C2Tx by H2 annealing[J]. Carbon,2020,157:90-96. DOI: 10.1016/j.carbon.2019.10.016
[80] QING Y, ZHOU W, LUO F, et al. Titanium carbide (MXene) nanosheets as promising microwave absorbers[J]. Ceramics International,2016,42(14):16412-16416. DOI: 10.1016/j.ceramint.2016.07.150
[81] ZHANG J, XUE W, CHEN X Y. Ti3C2Tx MXenes as thin broadband absorbers[J]. Nanotechnology,2020,31(27):275301. DOI: 10.1088/1361-6528/ab80fd
[82] FAN B, LI N, DAI B, et al. Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes[J]. Advanced Powder Technology,2020,31(2):808-815. DOI: 10.1016/j.apt.2019.11.035
[83] CUI G, ZHENG X, LV X, et al. Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature[J]. Ceramics International, 2019, 45(17): 23600-23610.
[84] XU G, GONG S, WEI S, et al. Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption[J]. Nanotechnology,2018,29(35):355201. DOI: 10.1088/1361-6528/aac8f6
[85] LI X, YIN X, HAN M, et al. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene[J]. Journal of Materials Chemistry C,2017,5(30):7621-7628. DOI: 10.1039/C7TC01991B
[86] FAN B, SHANG S, DAI B, et al. 2D-Layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption[J]. Ceramics International,2020,46(10):17085-17092. DOI: 10.1016/j.ceramint.2020.04.004
[87] IQBAL A, SHAHZAD F, HANTANASIRISAKUL K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene)[J]. Science,2020,369(6502):446-450. DOI: 10.1126/science.aba7977
[88] FENG W, LUO H, WANG Y, et al. Ti3C2 MXene: A promi-sing microwave absorbing material[J]. RSC Advances,2018,8(5):2398-2403. DOI: 10.1039/C7RA12616F
[89] WANG Y, YANG J, CHEN Z, et al. A new flexible and ultralight carbon foam/Ti3C2Tx MXene hybrid for high-performance electromagnetic wave absorption[J]. RSC Advances,2019,9(70):41038-41049. DOI: 10.1039/C9RA09817H
[90] CUI Y, WU F, WANG J, et al. Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties[J]. Composites Part A: Applied Science and Manufacturing,2021,145:106378. DOI: 10.1016/j.compositesa.2021.106378
[91] LI Y, MENG F, MEI Y, et al. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption[J]. Chemical Engineering Journal,2020,391:123512. DOI: 10.1016/j.cej.2019.123512
[92] LI X, YIN X, XU H, et al. Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band[J]. ACS Applied Materials & Interfaces,2018,10(40):34524-34533.
[93] LIU T, LIU N, AN Q, et al. Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance[J]. Journal of Alloys and Compounds,2019,802:445-457. DOI: 10.1016/j.jallcom.2019.06.243
[94] LIU Y, ZHANG S, SU X, et al. Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles[J]. Journal of Materials Science,2020,55(24):10339-10350. DOI: 10.1007/s10853-020-04739-8
[95] HE J, SHAN D, YAN S, et al. Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance[J]. Journal of Magnetism and Magnetic Materials,2019,492:165639. DOI: 10.1016/j.jmmm.2019.165639
[96] LIANG L, HAN G, LI Y, et al. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity[J]. ACS Applied Materials & Interfaces,2019,11(28):25399-25409.
[97] HAN X, HUANG Y, DING L, et al. Ti3C2Tx MXene nanosheet/metal–organic framework composites for microwave absorption[J]. ACS Applied Nano Materials,2021,4(1):691-701. DOI: 10.1021/acsanm.0c02983
[98] ZHANG X, WANG H, HU R, et al. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles[J]. Applied Surface Science,2019,484:383-391. DOI: 10.1016/j.apsusc.2019.03.264
[99] GAO Y, DU H, LI R, et al. Multi-phase heterostructures of flower-like Ni(NiO) decorated on two-dimensional Ti3C2Tx/TiO2 for high-performance microwave absorption properties[J]. Ceramics International,2021,47(8):10764-10772. DOI: 10.1016/j.ceramint.2020.12.193
[100] SHAN D, HE J, DENG L, et al. The underlying mecha-nisms of enhanced microwave absorption performance for the NiFe2O4-decorated Ti3C2Tx MXene[J]. Results in Physics,2019,15:102750. DOI: 10.1016/j.rinp.2019.102750
[101] HOU T, WANG B, MA M, et al. Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 compo-sites to achieve excellent microwave absorption properties[J]. Composites Part B: Engineering,2020,180:107577. DOI: 10.1016/j.compositesb.2019.107577
[102] HE J, LIU S, DENG L, et al. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites[J]. Applied Surface Science,2020,504:144210. DOI: 10.1016/j.apsusc.2019.144210
[103] YAN S, CAO C, HE J, et al. Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites[J]. Journal of Materials Science: Materials in Electronics,2019,30(7):6537-6543. DOI: 10.1007/s10854-019-00959-0
[104] WANG Y, GAO X, ZHANG L, et al. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber[J]. Applied Surface Science,2019,480:830-838. DOI: 10.1016/j.apsusc.2019.03.049
[105] CUI C, GUO R, REN E, et al. MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave[J]. Chemical Engineering Journal,2021,405(3):126626.
[106] YANG H, DAI J, LIU X, et al. Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range[J]. Materials Chemistry and Physics,2017,200:179-186. DOI: 10.1016/j.matchemphys.2017.05.057
[107] ZHOU C, WANG X, LUO H, et al. Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption[J]. Chemical Engineering Journal,2020,383:123095. DOI: 10.1016/j.cej.2019.123095
[108] DENG B, XIANG Z, XIONG J, et al. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption[J]. Nano-Micro Letters,2020,12(1):55-71. DOI: 10.1007/s40820-020-0398-2
-
期刊类型引用(11)
1. 李月霞,吴梦,纪子影,刘璐,应国兵,徐鹏飞. Ti_3C_2T_x/Fe_3O_4纳米复合材料的吸波和电磁屏蔽性能与机制. 材料导报. 2024(09): 25-31 . 百度学术
2. 袁宇洋. 电磁波吸波材料吸波原理、制备技术及发展方向. 功能材料与器件学报. 2024(02): 53-65 . 百度学术
3. 李艳艳,赵立环,杨玉洁. MXene及其复合材料的抗菌纺织品研究进展. 复合材料学报. 2023(04): 1896-1912 . 本站查看
4. 张咪咪 ,董子靖 ,刘杰 ,陈敏 ,杜馨禹 ,余灵婕 . 基于铁氧体的多元复合吸波材料的研究综述. 合成纤维. 2023(08): 73-79 . 百度学术
5. 申永前,张帆,朱健,龙建,高峰,杜雪岩. CCB@Fe_3O_4/NR吸波胶片的制备与微波吸收性能. 复合材料学报. 2023(09): 5145-5157 . 本站查看
6. 叶好,胡平,王策,刘勇. 磁性纤维电磁波吸收剂研究进展. 化工进展. 2023(10): 5310-5321 . 百度学术
7. 刘振强,胡鑫森,丁春艳. 氮化硼掺杂多孔碳复合材料的制备及其吸波性能研究. 化工新型材料. 2023(S2): 538-543+549 . 百度学术
8. 张露,包丽,赵兵,祁宁,黄小萃,柴文波,黄紫娟. 基于Ti_3C_2T_X纳米片的高柔性导电棉织物的制备与表征. 印染. 2022(05): 11-15 . 百度学术
9. 梁程,程群峰. MXene纤维的制备、性能及应用研究进展. 复合材料学报. 2022(09): 4227-4243 . 本站查看
10. 何一丹,章晓娟,杨红娟,赵萌萌,温变英. MXene及其复合材料在吸波和导热领域的研究进展. 中国塑料. 2022(10): 167-177 . 百度学术
11. 郑雪琴,王恒睿,刘淼. 导电二维材料基聚合物复合材料的制备与吸波性能研究进展. 闽江学院学报. 2022(05): 68-77+84 . 百度学术
其他类型引用(12)
-