Research progress on heterogeneous structure construction strategies of polymer-based electromagnetic shielding composites
-
摘要: 随着5G网络的兴起,电磁辐射和干扰问题日益凸显,因此开发有效的电磁屏蔽材料尤为迫切。相较于传统金属基电磁屏蔽材料的高成本、高密度、难加工、易腐蚀等诸多限制,聚合物基电磁屏蔽复合材料具有低密度、耐腐蚀、易加工等优异的特性而备受关注。构建隔离结构、多孔结构、分层结构等异质结构,能够诱导导电填料的取向分布,使聚合物基电磁屏蔽复合材料在低填料含量下,获得高效的导电网络和优异的导电性能,从而提高其屏蔽性能。据此,本文综述了目前具有异质结构的聚合物基电磁屏蔽复合材料的研究进展,重点介绍了异质结构构建策略、制备技术及其对电磁屏蔽性能的影响,最后对具有异质结构的聚合物基电磁屏蔽复合材料的未来发展提出了展望。本工作对于提升聚合物基电磁屏蔽复合材料性能及其在通信、智能穿戴、航空航天等领域应用的开拓都具备指导意义。Abstract: With the rise of 5G networks, electromagnetic radiation and interference issues are becoming increasingly prominent, so the development of effective electromagnetic shielding materials is particularly urgent. Compared with the high cost, high density, difficult processing, easy corrosion and many other limitations of traditional metal-based electromagnetic shielding materials, polymer-based electromagnetic shielding composites have attracted much attention due to their excellent properties such as low density, corrosion resistance and easy processing. The construction of heterogeneous structures such as isolation structure, porous structure and layered structure can induce the orientation distribution of conductive fillers, so that polymer-based electromagnetic shielding composites can obtain excellent conductivity at low filler content, thereby improving their shielding performance. Based on this, this paper reviews the current research progress of polymer-based electromagnetic shielding composites with heterogeneous structures, focusing on the construction strategy and preparation technology of heterogeneous structures and their influence on electromagnetic shielding performance. Finally, prospects for the future development of polymer-based electromagnetic shielding composites with heterogeneous structures are proposed. This work has guiding significance for improving the performance of polymer-based electromagnetic shielding composites and the development of their applications in communications, smart wearables, aerospace and other fields.
-
图 1 (a) UHMWPE /CNTs 复合材料制备流程、屏蔽机制示意图[32]; (b) TPU/CNTs制备流程、微观形貌[33];(c) HPP/LPP/CNTs复合材料制备流程[36]; (d) POK/PVDF/MWCNT复合材料制备流程[38];(e) MWCNT在PVDF/PE共混体系中的相迁移过程示意图[39]。
Figure 1. (a) Preparation process and shielding mechanism of UHMWPE/CNTs composite materials[32]; (b) Preparation process and microstructure of TPU/CNTs[33]; (c) Preparation process of HPP/LPP/CNTs composite materials[36]; (d) Preparation process of POK/PVDF/MWCNT composite materials[38];(e) Schematic diagram of phase migration process of MWCNT in PVDF/PE blend system [39].
图 2 (a) EP/rGO/Ni-chain复合材料电磁波屏蔽机制、微观形貌及抗压强度、屏蔽效能[51]; (b) MWCNTs在PVDF/PLA混合物中的选择性分布、电磁波屏蔽机制[55]; (c) EP/rGH复合材料微观形貌、屏蔽效能[56]; (d) PDMS/rGO复合材料核-壳双层导电网络结构屏蔽效能、电磁波屏蔽机制[57]; (e) SGP/EA复合材料骨架外观、压缩模量、屏蔽效能[58]。
Figure 2. (a) Electromagnetic shielding mechanism, microstructure, comprehensive strength, and shielding effectiveness of EP/rGO/Ni-chain composite materials[51]; (b) Selective distribution of MWCNTs in PVDF/PLA mixture, electromagnetic shielding mechanism[55]; (c) Microstructure, and shielding effectiveness of EP/rGH composite materials[56]; (d) Core-shell dual-layer conductive network structure, shielding effectiveness, and electromagnetic shielding mechanism[57]; (e) Microstructure, skeleton appearance, shielding effectiveness, and compression modulus of SGP/EA composite materials[58].
图 4 (a) PVDF层状泡沫/薄膜复合材料微观形貌、电磁波屏蔽机制及屏蔽效能[66]; (b) TPU/CNTs/Fe3O4@rGO复合材料制备流程、微观形貌、电磁波屏蔽机制及屏蔽效能[67];(c)硅橡胶复合泡沫制备流程、微观形貌、电磁波屏蔽机制及屏蔽效能[53]; (e) WPU/CNT/Fe3O4@rGO复合材料制备流程、微观形貌、电磁波屏蔽机制[75]。
Figure 4. (a) Preparation process, microstructure, electromagnetic shielding mechanism, and shielding effectiveness of PVDF layered foam/film composite[66]; (b) Preparation process, microstructure, electromagnetic shielding mechanism, and shielding effectiveness of TPU/CNTs/Fe3O4@rGO composite materials[67]; (c) Preparation process, microstructure, electromagnetic shielding mechanism, and shielding effectiveness of silicone rubber composite foam[53]; (e) Preparation process, microstructure, and electromagnetic shielding mechanism of WPU/CNT/Fe3O4@rGO composite materials[75].
-
[1] FAN X, WANG F, GAO Q, et al. Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength[J]. Journal of Materials Science & Technology, 2022, 103: 177-185. [2] KUANG T, CHANG L, CHEN F, et al. Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding[J]. Carbon, 2016, 105: 305-313. doi: 10.1016/j.carbon.2016.04.052 [3] LIANG L, YANG R, HAN G, et al. Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2T x MXene[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2644-2654. [4] SHEN Y, LIN Z, WEI J, et al. Facile synthesis of ultra-lightweight silver/reduced graphene oxide (rGO) coated carbonized-melamine foams with high electromagnetic interference shielding effectiveness and high absorption coefficient[J]. Carbon, 2022, 186: 9-18. doi: 10.1016/j.carbon.2021.09.068 [5] WANG Y H, LI C C. Highly effective EMI shielding composites for 5G Ka-band frequencies[J]. Applied Materials Today, 2024, 36: 102041. doi: 10.1016/j.apmt.2023.102041 [6] JI M, JI P, MEHREZ S, et al. Multi-interface-induced by regulating nanocomposite morphology and absorber design to achieve wideband electromagnetic wave absorber[J]. Ceramics International, 2023, 49(5): 8071-8080. doi: 10.1016/j.ceramint.2022.10.326 [7] NI J, ZHAN R, QIU J, et al. Multi-interfaced graphene aerogel/polydimethylsiloxane metacomposites with tunable electrical conductivity for enhanced electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2020, 8(34): 11748-11759. doi: 10.1039/D0TC02278K [8] 吕瑞涛, 黄正宏, 康飞宇. 金属填充碳纳米管的制备研究进展[J]. 材料科学与工程学报, 2006, 24(5): 6. doi: 10.3969/j.issn.1673-2812.2006.05.036LÜ R, HUANG Z, KANG F. Research progress on the preparation of metal-filled carbon nanotubes[J]. Journal of Materials Science and Engineering, 2006, 24(5): 6 (in Chinese). doi: 10.3969/j.issn.1673-2812.2006.05.036 [9] WANASINGHE D, ASLANI F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes[J]. Composites Part B: Engineering, 2019, 176: 107207. doi: 10.1016/j.compositesb.2019.107207 [10] CHUNG D D L. Materials for electromagnetic interference shielding[J]. Materials Chemistry and Physics, 2020, 255: 123587. doi: 10.1016/j.matchemphys.2020.123587 [11] 臧充光, 焦清介作. 特种功能防护材料[M]. 2021: 385.ZANG C, JIAO Q. Special Functional Protective Materials[M]. 2021: 385 (in Chinese). [12] HONG J, LUO N, ZHANG Z, et al. Regulated orientation and exfoliation of flaky fillers by close packing structures in polymer composites for excellent thermal conduction and EMI shielding[J]. Composites Part B: Engineering, 2024, 275: 111357. doi: 10.1016/j.compositesb.2024.111357 [13] JIA X, LI Y, SHEN B, et al. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review[J]. Composites Part B: Engineering, 2022, 233: 109652. doi: 10.1016/j.compositesb.2022.109652 [14] JOSEPH J, SHARMA A, SAHOO B, et al. PVA/ MLG/ MWCNT hybrid composites for X band EMI shielding – Study of mechanical, electrical, thermal and tribological properties[J]. Materials Today Communications, 2020, 23: 100941. doi: 10.1016/j.mtcomm.2020.100941 [15] LI Z, FENG D, LI B, et al. Fabrication and Properties of Thermoplastic Polyurethane/Silver Parts via Fused Deposition Modeling for Electromagnetic Interference Shielding and Wearable Sensors[J]. Adv. Eng. Mater., 2022, 24(7): 2101392. doi: 10.1002/adem.202101392 [16] MA R Y, YI S Q, LI J, et al. Highly efficient electromagnetic interference shielding and superior mechanical performance of carbon nanotube/polydimethylsiloxane composite with interface-reinforced segregated structure[J]. Composites Science and Technology, 2023, 232: 109874. doi: 10.1016/j.compscitech.2022.109874 [17] LI T, ZHAO G, ZHANG L, et al. Ultralow-threshold and efficient EMI shielding PMMA/MWCNTs composite foams with segregated conductive network and gradient cells[J]. Express Polymer Letters, 2020, 14(7): 685-703. doi: 10.3144/expresspolymlett.2020.56 [18] ZHAN Y, OLIVIERO M, WANG J, et al. Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks[J]. Nanoscale, 11(3): 1011-1020. [19] YIN G, WANG Y, WANG W, et al. Multilayer structured PANI/MXene/CF fabric for electromagnetic interference shielding constructed by layer-by-layer strategy[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2020, 601: 125047. [20] ZHENG X, WANG P, ZHANG X, et al. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy[J]. Composites Part A: Applied Science and Manufacturing, 2022, 152: 106700. doi: 10.1016/j.compositesa.2021.106700 [21] ZENG Z H, WU N, WEI J J, et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding[J]. Nano-Micro Letters, 2022, 14(1): 59. doi: 10.1007/s40820-022-00800-0 [22] TAN Z, ZHAO H, SUN F, et al. Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: Toward enhanced electromagnetic interference shielding and thermal management capacity[J]. Composites Part A: Applied Science and Manufacturing, 2022, 155: 106809. doi: 10.1016/j.compositesa.2022.106809 [23] RYU S H, HAN Y K, KWON S J, et al. Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite[J]. Chemical Engineering Journal, 2022, 428: 131167. doi: 10.1016/j.cej.2021.131167 [24] ZHANG Y, ZHOU C, SUN W, et al. Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance[J]. Composites Science and Technology, 2020, 197: 108253. doi: 10.1016/j.compscitech.2020.108253 [25] FENG D, XU D, WANG Q, et al. Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering[J]. Journal of Materials Chemistry C, 2019, 7(26): 7938-7946. doi: 10.1039/C9TC02311A [26] CHEN J, LIAO X, XIAO W, et al. Facile and Green Method to Structure Ultralow-Threshold and Lightweight Polystyrene/MWCNT Composites with Segregated Conductive Networks for Efficient Electromagnetic Interference Shielding[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9904-9915. [27] ZHANG Q, CUI J, ZHAO S, et al. Regulation binary electromagnetic filler networks in segregated poly(vinylidenefluoride) composite for absorption-dominated electromagnetic interference shielding[J]. Journal of Applied Polymer Science, 2023, 140(12): e53650. doi: 10.1002/app.53650 [28] YUAN D, GUO H, KE K, et al. Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing[J]. Composites Part A: Applied Science and Manufacturing, 2020, 132: 105837. doi: 10.1016/j.compositesa.2020.105837 [29] ZHAO G, CAO X, ZHANG Q, et al. A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes[J]. Materials Today Physics, 2021, 21: 100483. doi: 10.1016/j.mtphys.2021.100483 [30] PONTES K, SOARES B G. Segregated structure of poly (vinylidene fluoride-co-hexafluoropropylene) composites loaded with polyaniline@carbon nanotube hybrids with enhanced microwave absorbing properties[J]. Synthetic Metals, 2022, 288: 117096. doi: 10.1016/j.synthmet.2022.117096 [31] DUAN H, XU Y, YAN D X, et al. Ultrahigh molecular weight polyethylene composites with segregated nickel conductive network for highly efficient electromagnetic interference shielding[J]. Materials Letters, 2017, 209: 353-356. doi: 10.1016/j.matlet.2017.08.053 [32] YU W C, XU J Z, WANG Z G, et al. Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 237-245. doi: 10.1016/j.compositesa.2018.05.004 [33] SUN B, SUN S, HE P, et al. Asymmetric layered structural design with segregated conductive network for absorption-dominated high-performance electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 416: 129083. doi: 10.1016/j.cej.2021.129083 [34] KESHMIRI N, AHMADIAN HOSEINI A H, NAJMI P, et al. Highly conductive polystyrene/carbon nanotube/PEDOT: PSS nanocomposite with segregated structure for electromagnetic interference shielding[J]. Carbon, 2023, 212: 118104. doi: 10.1016/j.carbon.2023.118104 [35] WU H Y, ZHANG Y P, JIA L C, et al. Injection Molded Segregated Carbon Nanotube/Polypropylene Composite for Efficient Electromagnetic Interference Shielding[J]. Industrial & Engineering Chemistry Research, 2018, 57(37): 12378-12385. [36] ZHANG Y P, ZHOU C G, SUN W J, et al. Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance[J]. Composites Science and Technology, 2020, 197: 108253. doi: 10.1016/j.compscitech.2020.108253 [37] YANG G, WANG M, DONG J, et al. Fibers-induced segregated-like structure for polymer composites achieving excellent thermal conductivity and electromagnetic interference shielding efficiency[J]. Composites Part B: Engineering, 2022, 246: 110253. doi: 10.1016/j.compositesb.2022.110253 [38] YANG Y, FENG C, ZHOU Y, et al. Achieving improved electromagnetic interference shielding performance and balanced mechanical properties in polyketone nanocomposites via a composite MWCNTs carrier[J]. Composites Part A: Applied Science and Manufacturing, 2020, 136: 105967. doi: 10.1016/j.compositesa.2020.105967 [39] LENCAR C, RAMAKRISHNAN S, ERFANIAN E, et al. The role of phase migration of carbon nanotubes in melt-mixed PVDF/PE polymer blends for high conductivity and EMI shielding applications[J]. Molecules, 2022, 27(3): 933. doi: 10.3390/molecules27030933 [40] SADEGHI A, MOEINI R, YEGANEH J K. Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nanosheets prepared through melt compounding[J]. Polymer Composites, 2019, 40(S2): E1461-E1469. [41] ZOU F, LIAO X, SONG P, et al. Enhancement of electrical conductivity and electromagnetic interference shielding performance via supercritical CO2 induced phase coarsening for double percolated polymer blends[J]. Nano Research, 2023, 16(1): 613-623. doi: 10.1007/s12274-022-4867-4 [42] CHEN J, RONG C, LIN T, et al. Stable Co-Continuous PLA/PBAT Blends Compatibilized by Interfacial Stereocomplex Crystallites: Toward Full Biodegradable Polymer Blends with Simultaneously Enhanced Mechanical Properties and Crystallization Rates[J]. Macromolecules, 2021, 54(6): 2852-2861. doi: 10.1021/acs.macromol.0c02861 [43] LI Y, SONG D, CHEN Q, et al. Polymer blend templated hierarchical porous composites with segregated structure and enhanced electromagnetic interference shielding performance[J]. Polymer Composites, 2023, 44(12): 9087-9100. doi: 10.1002/pc.27758 [44] TAO J R, YANG D, YANG Y, et al. Migration mechanism of carbon nanotubes and matching viscosity-dependent morphology in Co-continuous Poly(lactic acid)/Poly(ε-caprolactone) blend: Towards electromagnetic shielding enhancement[J]. Polymer, 2022, 252: 124963. doi: 10.1016/j.polymer.2022.124963 [45] BAI L, HE S, FRUEHWIRTH J W, et al. Localizing graphene at the interface of cocontinuous polymer blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites[J]. Journal of Rheology, 2017, 61(4): 575-587. doi: 10.1122/1.4982702 [46] BAI L, SHARMA R, CHENG X, et al. Kinetic Control of Graphene Localization in Co-continuous Polymer Blends via Melt Compounding[J]. Langmuir, 2018, 34(3): 1073-1083. doi: 10.1021/acs.langmuir.7b03085 [47] SHEN B, ZHAI W, TAO M, et al. Lightweight, Multifunctional Polyetherimide/Graphene@Fe3O4 Composite Foams for Shielding of Electromagnetic Pollution[J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5(21): 11383-11391. [48] ESWARAIAH V, SANKARANARAYANAN V, RAMAPRABHU S. Functionalized Graphene–PVDF Foam Composites for EMI Shielding[J]. Macromolecular Materials and Engineering, 2011, 296(10): 894-898. doi: 10.1002/mame.201100035 [49] FARAJI M, MOHAMMADZADEH AYDISHEH H. Facile and scalable preparation of highly porous polyvinyl chloride-multi walled carbon nanotubes-polyaniline composite film for solid-state flexible supercapacitor[J]. Composites Part B: Engineering, 2019, 168: 432-441. doi: 10.1016/j.compositesb.2019.03.060 [50] WANG G, ZHAO G, WANG S, et al. Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications[J]. Journal of Materials Chemistry C, 6(25): 6847-6859. [51] GAO Q, ZHANG G, ZHANG Y, et al. Absorption dominated high-performance electromagnetic interference shielding epoxy/functionalized reduced graphene oxide/Ni-chains microcellular foam with asymmetric conductive structure[J]. Composites Science and Technology, 2022, 223: 109419. doi: 10.1016/j.compscitech.2022.109419 [52] YUAN H, XIONG Y, SHEN Q, et al. Synthesis and electromagnetic absorbing performances of CNTs/PMMA laminated nanocomposite foams in X-band[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 334-341. doi: 10.1016/j.compositesa.2018.01.024 [53] YANG J, LIAO X, WANG G, et al. Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 390: 124589. doi: 10.1016/j.cej.2020.124589 [54] ZHAO B, DENG J, ZHAO C, et al. Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure[J]. Journal of Materials Chemistry C, 2020, 8(1): 58-70. doi: 10.1039/C9TC04575A [55] LI Y, NIE C, SONG D, et al. Enhanced electrical and electromagnetic interference shielding performance of immiscible poly(vinylidene chloride)/poly(lactic acid)/multi-walled carbon nanotube composites via constructing filler-wrapped porous structure[J]. Polymer Composites, 2023, 44(6): 3313-3324. doi: 10.1002/pc.27323 [56] SONG P, LIANG C, WANG L, et al. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide[J]. Composites Science and Technology, 2019, 181: 107698. doi: 10.1016/j.compscitech.2019.107698 [57] SONG P, LIU B, LIANG C, et al. Lightweight, Flexible Cellulose-Derived Carbon Aerogel@Reduced Graphene Oxide/PDMS Composites with Outstanding EMI Shielding Performances and Excellent Thermal Conductivities[J]. Nano-Micro Letters, 2021, 13(1): 91. doi: 10.1007/s40820-021-00624-4 [58] DU Q, LI C, LIU C, et al. Skeleton designable SGP/EA resin composites with integrated thermal conductivity, electromagnetic interference shielding, and mechanical performances[J]. Composites Science and Technology, 2022, 229: 109686. doi: 10.1016/j.compscitech.2022.109686 [59] JIA H, KONG Q Q, LIU Z, et al. 3D graphene/ carbon nanotubes/ polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105712. doi: 10.1016/j.compositesa.2019.105712 [60] FAN B, XING L, YANG K, et al. Salt-templated graphene nanosheet foams filled in silicon rubber toward prominent EMI shielding effectiveness and high thermal conductivity[J]. Carbon, 2023, 207: 317-327. doi: 10.1016/j.carbon.2023.03.022 [61] LI Z, LIN Z, HAN M, et al. Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications[J]. Chemical Engineering Journal, 2021, 420: 129826. doi: 10.1016/j.cej.2021.129826 [62] WANG X X, SHU J C, CAO W Q, 等. Eco-mimetic nanoarchitecture for green EMI shielding[J]. Chemical Engineering Journal, 2019, 369: 1068-1077. [63] ZHANG X, TANG J, ZHONG Y, et al. Asymmetric layered structural design with metal microtube conductive network for absorption-dominated electromagnetic interference shielding[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643: 128781. doi: 10.1016/j.colsurfa.2022.128781 [64] YAN K, WU C, XIE L, et al. High EMI shielding effectiveness and superhydrophobic properties based on step-wise asymmetric structure constructed by one-step method[J]. Nano Research, 2023, 16(7): 10483-10492. doi: 10.1007/s12274-023-5713-z [65] YUAN M, FEI Y, ZHANG H, et al. Electromagnetic asymmetric films comprise metal organic frameworks derived porous carbon for absorption-dominated electromagnetic interference shielding[J]. Composites Part B: Engineering, 2022, 233: 109622. doi: 10.1016/j.compositesb.2022.109622 [66] MA L, HAMIDINEJAD M, ZHAO B, et al. Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection[J]. Nano-Micro Letters, 2022, 14(1): 19. doi: 10.1007/s40820-021-00759-4 [67] SUN B, SUN S, GUO Y, et al. Asymmetric magnetic-electric dual-functional composite foams for ultra-efficient electromagnetic interference shielding with unprecedented low reflection[J]. Composites Part A: Applied Science and Manufacturing, 2022: 107301. [68] WANG Z, WANG L, CHANG R, et al. Construction of alternating multilayer MXene/WPU thin films with excellent EMI shielding performance and mechanical properties[J]. Journal of Alloys and Compounds, 2023, 956: 170367. doi: 10.1016/j.jallcom.2023.170367 [69] TANG X, LIN G, LIU C, et al. Lightweight and tough multilayered composite based on poly (aryl ether nitrile)/carbon fiber cloth for electromagnetic interference shielding[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129578. doi: 10.1016/j.colsurfa.2022.129578 [70] KONG W W, SHI J F, ZOU K K, et al. Synergistically optimizing interlaminar and electromagnetic interference shielding behavior of carbon fiber composite based on interfacial reinforcement[J]. Carbon, 2022, 200: 448-455. doi: 10.1016/j.carbon.2022.08.080 [71] WANG G, LAI D, WANG Y. Flexible, Robust, and Lightweight Multilayered Films Consisting of Alternating Poly(vinyl amine)/Nanofibrillated Cellulose and Porous Graphene Layers for Efficient Electromagnetic Interference Shielding[J]. ACS Applied Nano Materials, 2023, 6(12): 10646-10657. doi: 10.1021/acsanm.3c01601 [72] HU G, WU C, WANG Q, et al. Ultrathin nanocomposite films with asymmetric gradient alternating multilayer structures exhibit superhigh electromagnetic interference shielding performances and robust mechanical properties[J]. Chemical Engineering Journal, 2022, 447: 137537. doi: 10.1016/j.cej.2022.137537 [73] ZHOU D, YU Z, YUAN H, et al. Achieving wideband electromagnetic wave absorbing performance for PMMA-based composites foam by designing the alternating directional (AD) microporous structure[J]. Materials Today Advances, 2023, 19: 100395. doi: 10.1016/j.mtadv.2023.100395 [74] LIU S, WANG S, SANG M, et al. Nacre-mimetic hierarchical architecture in polyborosiloxane composites for synergistically enhanced impact resistance and ultra-efficient electromagnetic interference shielding[J]. ACS Nano, 2022, 16(11): 19067-19086. doi: 10.1021/acsnano.2c08104 [75] WANG G, YI D, JIA X, et al. Structural design of compressible shape-memory foams for smart self-fixable electromagnetic shielding with reduced reflection[J]. Materials Today Physics, 2022, 22: 100612. doi: 10.1016/j.mtphys.2022.100612 [76] LEI Z, TIAN D, LIU X, et al. Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity[J]. Chemical Engineering Journal, 2021, 424: 130365. doi: 10.1016/j.cej.2021.130365 [77] XUE T, YANG Y, YU D, et al. 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection[J]. Nano-Micro Letters, 2023, 15(1): 45. doi: 10.1007/s40820-023-01017-5 [78] SHENG A, REN W, YANG Y, et al. Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105692. doi: 10.1016/j.compositesa.2019.105692 [79] XU Y, YANG Y, YAN D X, et al. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 19143-19152. [80] WANG C, LI J, GUO S. High-performance electromagnetic wave absorption by designing the multilayer graphene/thermoplastic polyurethane porous composites with gradient foam ratio structure[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105522. doi: 10.1016/j.compositesa.2019.105522 [81] LI Y, XUE B, YANG S, et al. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 410: 128356. doi: 10.1016/j.cej.2020.128356 [82] YANG J, CHEN Y, WANG B, et al. Gradient structure silicone rubber composites for selective electromagnetic interference shielding enhancement and low reflection[J]. Composites Science and Technology, 2022, 229: 109688. doi: 10.1016/j.compscitech.2022.109688
计量
- 文章访问数: 28
- HTML全文浏览量: 22
- 被引次数: 0