Design and fabrication of hydrangea viburnum-like cobalt sulfide@nitrogen-rich carbon for high-performance supercapacitors
-
摘要: 本研究采用简单的溶剂热法制备了一种独特的具有大量电化学活性位点的绣球荚蒾状硫化钴(HVCS)。接着通过原位聚合将聚苯胺(PANI)组装到HVCS表面,最后将聚苯胺进一步碳化,得到绣球荚蒾状硫化钴@富氮炭复合材料(HVCS@NC)。得益于独特的微观结构设计和两组分电化学性能优势的互补,电化学分析表明制备所得HVCS@NC纳米复合电极具有理想的超级电容器电化学性能。该材料在电流密度为1 A·g−1时展现出622 F·g−1的比电容值,以HVCS@NC和活性炭(AC)分别作正极和负极组装的不对称超级电容器,在功率密度为1912.3 W·kg−1时能量密度达19.9 Wh·kg−1。研究表明,将导电高分子聚苯胺定位组装在具有特殊微观形貌结构硫化钴表面并碳化的工艺可以获得高性能硫化物基超级电容器电极材料,聚苯胺的可塑性及碳化处理后富含氮元素的特性对于改善过渡金属硫化物的电化学性能具有很大优势,这种结构设计策略可以潜在地扩展并应用到其他过渡金属硫化物基超级电容器电极材料电化学性能提升。Abstract: A unique hydrangea viburnum-like cobalt sulfide (HVCS) with multiple electrochemically active sites was successfully fabricated by a simple solvent thermal method. Polyaniline (PANI) is assembled onto the surface of HVCS through in situ polymerization and finally PANI are further carbonized to obtain hydrangea viburnum-like cobalt sulfide@nitrogen-rich carbon composite (HVCS@NC). Benefiting from the unique microstructure design and synergistic effect produced through the complementary properties of the two components, the fabricated HVCS@NC electrode demonstrates ideal electrochemical performance for supercapacitors through electrochemical analysis. The material exhibits an outstanding capacitive performance of 622 F·g−1 at a current density of 1 A·g−1 and the assembled asymmetric supercapacitor with HVCS@NC and active carbon (AC) as positive and negative electrodes, respectively, achieves a high specific energy of 19.9 Wh·kg−1 at a specific power of 1912.3 W·kg−1. All results show that high-performance supercapacitor electrode materials can be obtained by assembling conductive polymers on the surface of novel cobalt sulfide with special microscopic morphology and structure and then carbonizing. The plasticity and nitrogen-rich properties after carbonization of polyaniline have great advantages for improving the electrochemical performance of transition metal sulfide. This structural design strategy can be potentially extended to the improvement of electrochemical properties of other transition metal sulfide based electrode materials.
-
图 8 HVCS@NC在不同扫描速率下的CV曲线(a),2 A·g−1下的GCD曲线(b),HVCS@NC在不同电流密度下的GCD曲线(c),不同电流密度下HVCS@NC的比电容值(d),20 A·g−1循环稳定性测试(e),HVCS@NC在20 A·g−1循环稳定性测试(f)和阻抗对比图(g)
Figure 8. CV curves of HVCS@NC at different scan rates (a), GCD curves at 2 A g−1 (b), GCD curves of HVCS@NC at different current densities (c), specific capacitance of HVCS@NC at different current densities (d), cycling stability performance at 20 A·g−1 (e), cycling stability performance of HVCS@NC at 20 A·g−1 (f) and Nyquist plots of HVCS and HVCS@NC (g)
图 9 HVCS@NC//AC在不同扫描速率下的CV曲线(a),HVCS@NC//AC在不同电流密度下的GCD曲线(b),HVCS@NC//AC在不同电流密度下的比电容值(c),HVCS@NC//AC 的Ragone 图(d)和HVCS@NC//AC 在10.5 A·g−1下的循环稳定性能(e)
Figure 9. CV curves of HVCS@NC//AC at different scan rates (a), GCD curves of HVCS@NC//AC at different current densities (b), specific capacitance of HVCS@NC//AC at different current densities (c), Ragone plot of HVCS@NC//AC (d) and cycling stability of HVCS@NC//AC at 10.5 A g−1 (e)
-
[1] FENG Jianze, WANG Yan, XU Yongtai, et al. Construction of Supercapacitor-Based Ionic Diodes with Adjustable Bias Directions by Using Poly (ionic liquid) Electrolytes[J]. Advanced Materials,2021,33(31):2100887. doi: 10.1002/adma.202100887 [2] WU Nannan, BAI Xue, PAN Duo, et al. Recent advances of asymmetric supercapacitors[J]. Advanced Materials Interfaces,2021,8(1):2001710. doi: 10.1002/admi.202001710 [3] NAOI Katsuhiko, NAOI Wako, AOYAGI Shintaro, et al. New generation “nanohybrid supercapacitor”[J]. Accounts of chemical research,2013,46(5):1075-1083. doi: 10.1021/ar200308h [4] RAZA Waseem, ALI Faizan, RAZA Nadeem, et al. Recent advancements in supercapacitor technology[J]. Nano Energy,2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013 [5] ASKARI Mohammad Bagher, SALARIZADEH Parisa, SEIFI Majid, et al. ZnFe2O4 nanorods on reduced graphene oxide as advanced supercapacitor electrodes[J]. Journal of Alloys and Compounds,2021,860:158497. doi: 10.1016/j.jallcom.2020.158497 [6] KUMAR Sachin, SAEED Ghuzanfar, ZHU Ling, et al. 0 D to 3 D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review[J]. Chemical Engineering Journal,2021,403:126352. doi: 10.1016/j.cej.2020.126352 [7] ZHANG Fan, ZHANG Tengfei, YANG Xi, et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density[J]. Energy & Environmental Science,2013,6(5):1623-1632. [8] MILLER J. R., SIMON P. Materials science. Electrochemical capacitors for energy management[J]. Science,2008,321(5889):651-652. doi: 10.1126/science.1158736 [9] SIMON P. , GOGOTSI Y., DUNN B. Where do batteries end and supercapacitors begin?[J]. Science,2014,343(6176):1210-1211. doi: 10.1126/science.1249625 [10] LI Jianpeng, QIU Si, LIU Bifu, et al. Strong interaction between polyaniline and carbon fibers for flexible supercapacitor electrode materials[J]. Journal of Power Sources,2021,483:229219. doi: 10.1016/j.jpowsour.2020.229219 [11] TIWARI Pranjala, JANAS Dawid, CHANDRA Ramesh. Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application[J]. Carbon,2021,177:291-303. doi: 10.1016/j.carbon.2021.02.080 [12] WANG Feng, CHEONG Jun Young, HE Qiu, et al. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors[J]. Chemical Engineering Journal,2021,414:128767. doi: 10.1016/j.cej.2021.128767 [13] 翟耀, 辛国祥, 王佳琦, 等. 微波辅助合成具有优异电化学性能的rGO/CeO2超级电容器电极材料[J]. 化学学报, 2021, 79(9):1129-1137. doi: 10.6023/A21050216ZHAI Yao, XIN Guoxiang, WANG Jiaqi, et al. Microwave-assisted Synthesis of rGO/CeO2 Supercapacitor Electrode Materials with Excellent Electrochemical Properties[J]. Acta Chimica Sinica,2021,79(9):1129-1137(in Chinese). doi: 10.6023/A21050216 [14] 张振旺, 张振坤, 冯仲军, 等. 三维垂直定向石墨烯的制备及在超级电容器中的应用[J]. 科学通报, 2021, 66(27):3617-3630. doi: 10.1360/TB-2020-1578ZHANG Zhenwang, ZHANG Zhenkun, FENG Zhongjun, et al. Recent progress on the preparation of three-dimensional vertically aligned graphene and its applications insupercapacitors[J]. Chinese Science Bulletin,2021,66(27):3617-3630(in Chinese). doi: 10.1360/TB-2020-1578 [15] JAYARAMULU Kolleboyina, HORN Michael, SCHNEEMANN Andreas, et al. Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors[J]. Advanced Materials,2021,33(4):2004560. doi: 10.1002/adma.202004560 [16] WANG Yifan, ZHANG Lin, HOU Haoqing, et al. Recent progress in carbon-based materials for supercapacitor electrodes: a review[J]. Journal of Materials Science,2021,56(1):173-200. doi: 10.1007/s10853-020-05157-6 [17] TAN Yu Bin, LEE Jong-Min. Graphene for supercapacitor applications[J]. Journal of Materials Chemistry A,2013,1(47):14814-14843. doi: 10.1039/c3ta12193c [18] 武比, 秦丽溶, 赵建伟, 等. CoO@NiMo-O(P)分级复合材料的制备及其超级电容性能[J]. 复合材料学报, 2021, doi: 10.13801/j.cnki.fhclxb.20211221.003.WU Bi, QIN Lirong, ZHAO Jianwei, et al. Preparation of hierarchical CoO@NiMo-O(P) composites and its supercapacitive performance[J]. Acta Materiae Compositae Sinica, 2021, doi:10.13801/j.cnki.fhclxb.20211221.003(in Chinese). [19] ALLADO Kokougan, LIU Mengxin, JAYAPALAN Anitha, et al. Binary MnO2/Co3O4 metal oxides wrapped on superaligned electrospun carbon nanofibers as binder free supercapacitor electrodes[J]. Energy & Fuels,2021,35(9):8396-8405. [20] LIU Chia-Sheng, HUANG Cheng-Liang, FANG Hsing-Chih, et al. MnO2-based carbon nanofiber cable for supercapacitor applications[J]. Journal of Energy Storage,2021,33:102130. doi: 10.1016/j.est.2020.102130 [21] XIE Yibing, MU Yakui. Interface Mo-N coordination bonding MoSxNy@Polyaniline for stable structured supercapacitor electrode[J]. Electrochimica Acta,2021,391:138953. doi: 10.1016/j.electacta.2021.138953 [22] NIU Fei, HAN Xiying, SUN Hui, et al. Connecting PEDOT nanotube arrays by polyaniline coating toward a flexible and high-rate supercapacitor[J]. ACS Sustainable Chemistry & Engineering,2021,9(11):4146-4156. [23] HUANG Hai, ABBAS Syed Comail, DENG Qidu, et al. An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@ fibers[J]. Journal of Power Sources,2021,498:229886. doi: 10.1016/j.jpowsour.2021.229886 [24] YAN Xiaoyan, TONG Xili, MA Lei, et al. Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties[J]. Materials Letters,2014,124:133-136. doi: 10.1016/j.matlet.2014.03.067 [25] LI Wei, WANG Shaolan, XIN Lipeng, et al. Single-crystal β-NiS nanorod arrays with a hollow-structured Ni3S2 framework for supercapacitor applications[J]. Journal of Materials Chemistry A,2016,4(20):7700-7709. doi: 10.1039/C6TA01133K [26] HUANG Ke-Jing, ZHANG Ji-Zong, XING Ke. One-step synthesis of layered CuS/multi-walled carbon nanotube nanocomposites for supercapacitor electrode material with ultrahigh specific capacitance[J]. Electrochimica Acta,2014,149:28-33. doi: 10.1016/j.electacta.2014.10.079 [27] LI Xianfu, SHEN Jianfeng, LI Na, et al. Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications[J]. Journal of Power Sources,2015,282:194-201. doi: 10.1016/j.jpowsour.2015.02.057 [28] MIAO Yidong, ZHANG Xuping, ZHAN Jiang, et al. Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes[J]. Advanced Materials Interfaces,2020,7(3):1901618. doi: 10.1002/admi.201901618 [29] XU Qing, JIANG Deli, WANG Tianyong, et al. Ag nanoparticle-decorated CoS nanosheet nanocomposites: a high-performance material for multifunctional applications in photocatalysis and supercapacitors[J]. Rsc Advances,2016,6(60):55039-55045. doi: 10.1039/C6RA08067G [30] LIU Ye, GUO Shoujing, ZHANG Wei, et al. Three-dimensional interconnected cobalt sulfide foam: Controllable synthesis and application in supercapacitor[J]. Electrochimica Acta,2019,317:551-561. doi: 10.1016/j.electacta.2019.05.121 [31] JIA Henan, WANG Zhaoyue, ZHENG Xiaohang, et al. Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors[J]. Electrochimica Acta,2019,312:54-61. doi: 10.1016/j.electacta.2019.04.192 [32] XU Zenghua, ZHANG Ximing, LIANG Yue, et al. Green Synthesis of Nitrogen-doped Porous Carbon Derived from Rice Straw for High-performance Supercapacitor Application[J]. Energy & Fuels,2020,34(7):8966-8976. [33] HONG Ping, LIU Xu, ZHANG Xu, et al. Hierarchically porous carbon derived from the activation of waste chestnut shells by potassium bicarbonate (KHCO3) for high-performance supercapacitor electrode[J]. International Journal of Energy Research,2019,44(2):988-999. [34] 张燕, 王淼, 赵佳辉, 等. 氮掺杂石墨烯/碳纳米管/无定形碳复合材料制备及其电化学性能[J]. 化工进展, 2022:1-10. doi: 10.16085/j.issn.1000-6613.2021-2501ZHANG Yan, WANG Miao, ZHAO Jiahui, et al. Preparation and electrochemical properties of nitrogen-doped graphene/carbon nanotubes/amorphous carbon composites[J]. Chemical Industry and Engineering Progress,2022:1-10(in Chinese). doi: 10.16085/j.issn.1000-6613.2021-2501 [35] CUI Xiaodan, XIE Zhiqiang, WANG Ying. Novel CoS2 embedded carbon nanocages by direct sulfurizing metal–organic frameworks for dye-sensitized solar cells[J]. Nanoscale,2016,8(23):11984-11992. doi: 10.1039/C6NR03052A [36] JIN Meng, LU Shi-Yu, MA Li, et al. Different distribution of in-situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors[J]. Journal of Power Sources,2017,341:294-301. doi: 10.1016/j.jpowsour.2016.12.013 [37] ZHANG Xiuling, MA Li, GAN Mengyu, et al. Fabrication of 3 D lawn-shaped N-doped porous carbon matrix/polyaniline nanocomposite as the electrode material for supercapacitors[J]. Journal of Power Sources,2017,340:22-31. doi: 10.1016/j.jpowsour.2016.11.058 [38] ZHANG Xiuling, MA Li, GAN Mengyu, et al. Controllable constructing of hollow MoS2/PANI core/shell microsphere for energy storage[J]. Applied Surface Science,2018,460:48-57. doi: 10.1016/j.apsusc.2017.10.010 [39] DING Shixiang, LI Xiaoyan, JIANG Xiaoli, et al. Core-shell nanostructured ZnO@CoS arrays as advanced electrode materials for high-performance supercapacitors[J]. Electrochimica Acta,2020,354:136711. doi: 10.1016/j.electacta.2020.136711 [40] CHEN Hongyu, ZHU Xianfeng, CHANG Yi, et al. 3 D flower-like CoS hierarchitectures recycled from spent LiCoO2 batteries and its application in electrochemical capacitor[J]. Materials Letters,2018,218:40-43. doi: 10.1016/j.matlet.2018.01.144 [41] GUO Pan, WU Yu-Xuan, LAU Woon-Ming, et al. CoS nanosheet arrays grown on nickel foam as an excellent OER catalyst[J]. Journal of Alloys and Compounds,2017,723:772-778. doi: 10.1016/j.jallcom.2017.06.299 [42] LI Jiangfeng, CHEN Dandan, WU Qingsheng. Facile synthesis of CoS porous nanoflake for high performance supercapacitor electrode materials[J]. Journal of Energy Storage,2019,23:511-514. doi: 10.1016/j.est.2019.03.017 [43] SONG Yang, QU Wenwen, HE Yuhang, et al. Synthesis and processing optimization of N-doped hierarchical porous carbon derived from corncob for high performance supercapacitors[J]. Journal of Energy Storage,2020,32:101877. doi: 10.1016/j.est.2020.101877 [44] 张伟, 安兴业, 刘利琴, 等. 木质素纳米颗粒/天然纤维基活性炭纤维材料的制备及其电化学性能[J]. 化工进展, 2021(9):1-16.ZHANG Wei, AN Xingye, LIU Liqin, et al. Preparation and electrochemical performance of lignin nanoparticles/natural fiber based activated carbon fiber materials[J]. Chemical Industry and Engineering Progress,2021(9):1-16(in Chinese). -