留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波原位合成2 D Ni-Fe MOF/硅藻土复合材料及其改性聚乙烯醇水凝胶不锈钢筛网油水分离性能

高德玉 程志林

高德玉, 程志林. 微波原位合成2 D Ni-Fe MOF/硅藻土复合材料及其改性聚乙烯醇水凝胶不锈钢筛网油水分离性能[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 高德玉, 程志林. 微波原位合成2 D Ni-Fe MOF/硅藻土复合材料及其改性聚乙烯醇水凝胶不锈钢筛网油水分离性能[J]. 复合材料学报, 2022, 40(0): 1-10
Deyu GAO, Zhilin CHENG. Microwave in-situ synthesis of 2 D Ni-Fe MOF/Diatomite composite and oil-water separation performance of modified polyvinyl alcohol hydrogel stainless steel screen[J]. Acta Materiae Compositae Sinica.
Citation: Deyu GAO, Zhilin CHENG. Microwave in-situ synthesis of 2 D Ni-Fe MOF/Diatomite composite and oil-water separation performance of modified polyvinyl alcohol hydrogel stainless steel screen[J]. Acta Materiae Compositae Sinica.

微波原位合成2 D Ni-Fe MOF/硅藻土复合材料及其改性聚乙烯醇水凝胶不锈钢筛网油水分离性能

详细信息
    通讯作者:

    程志林,博士,教授,硕士生导师,研究方向为纳米润滑材料 E-mail:zlcheng224@126.com

  • 中图分类号: (O69)

Microwave in-situ synthesis of 2 D Ni-Fe MOF/Diatomite composite and oil-water separation performance of modified polyvinyl alcohol hydrogel stainless steel screen

  • 摘要: 如何高效的处理含油污水的问题,是如今世界科研人员共同关注的问题。聚乙烯醇水凝胶作为高含水量以及具有三维亲水网络的软材料在油水分离领域引起了广泛的关注。但是,和大多数具有超润湿性质的水凝胶一样,聚乙烯醇水凝胶类油水分离材料不仅力学性能差,同时也存在化学稳定性差的问题。基于此,通过微波法制备了2D Ni-Fe MOF-Dia(2D Ni-Fe MOF-硅藻土)纳米材料及其聚乙烯醇(PVA)复合水凝胶。同时,不锈钢网经过浸泡2D Ni-Fe MOF-Dia/PVA水凝胶溶液得到2D Ni-Fe MOF-Dia/PVA水凝胶不锈钢筛网,表现出超亲水-水下超疏油性质。利用扫描电子显微镜(SEM), X射线光电子能谱(XPS)分析2D Ni-Fe MOF-Dia及其复合水凝胶的化学组成和表面形貌。研究了2D Ni-Fe MOF-Dia/PVA复合水凝胶的力学性能以及2D Ni-Fe MOF-Dia/PVA复合水凝胶不锈钢筛网的油水分离与乳液分离的分离效率以及水通量,并对其耐盐性、耐酸耐碱性油水分离性能进行了测试。结果表明:2D Ni-Fe MOF-Dia/PVA复合水凝胶具有优异的力学性能,拉伸与压缩强度分别达到1.49 MPa以及0.58 MPa,同时表现出超亲水-水下超疏油性质,2D Ni-Fe MOF-Dia/PVA不锈钢筛网的油水分离与乳液分离效率与通量分别可达99.2%和742.7 L·m−2·h−1。在酸性、碱性、盐性环境下均保持优异的分离效率与通量,并且在5次循环后,依旧保持稳定的分离效率与通量。

     

  • 图  1  2D Ni-Fe MOF-Dia (2D Ni-Fe MOF-硅藻土)的SEM图 (a), 2D Ni-Fe MOF-Dia的TEM图 (b), 2D Ni-Fe MOF-Dia的EDS图 (c)

    Figure  1.  SEM diagram of 2D Ni-Fe MOF-Dia (2D Ni-Fe MOF-Diatomite) (a), TEM diagram of 2D Ni-Fe MOF-Dia (b), EDS diagram of 2D Ni-Fe MOF-Dia (c)

    图  2  2D Ni-Fe-MOF-Dia的XPS图谱: 全谱 (a), Si 2p (b), Ni 2p (c), Fe 2p (d), O 1s (e), and C 1s (f)

    Figure  2.  XPS spectra of 2D Ni-Fe MOF-Dia: survey scan (a), Si 2p (b), Ni 2p (c), Fe 2p (d), O 1s (e), and C 1s (f).

    图  3  PVA (a), 2D Ni-Fe-MOF/PVA (b), Dia/PVA (c), 2D Ni-Fe MOF-Dia/PVA (d) 的截面SEM图

    Figure  3.  Cross sectional SEM of PVA (a), 2D Ni-Fe MOF/PVA (b), Dia/PVA (c), 2D Ni-Fe MOF-Dia/PVA (d)

    图  4  不同倍数下原始不锈钢筛网SEM图像和2D Ni-Fe-MOF-Dia/PVA 装饰的不锈钢筛网SEM图像以及EDS 图像。

    Figure  4.  SEM images of original stainless steel screen and 2D Ni-Fe MOF-Dia/PVA decorated stainless steel screen under different multiples and EDS images.

    图  5  PVA (a)、2D Ni-Fe MOF/PVA (b)、Dia/PVA (c)、2D Ni-Fe MOF-Dia/PVA (d) 的亲水性以及水滴在复合水凝胶表面完全铺展的时间, 2D Ni-Fe MOF-Dia/PVA包覆的不锈钢筛网水下油的滑动过程(e)

    Figure  5.  The hydrophilicity of PVA (a), 2D Ni-Fe MOF/PVA (b), Dia/PVA (c), 2D Ni-Fe MOF-Dia/PVA (d) and the time of water droplet spreading on the surface of the composite hydrogel, the sliding process of the submerged stainless steel screen of the stainless steel mesh (e).

    图  6  四种水凝胶(PVA、2 D Ni-Fe-MOF/PVA、Dia/PVA、2 D Ni-Fe-MOF-Dia/PVA)的力学性能 (a), 拉伸应力应变曲线 (b), 抗拉强度和断裂伸长率 (c), 压缩应力-应变曲线抗压强度 (d) (插图为压缩前后水凝胶高度差对比)

    Figure  6.  Mechanical properties of tensile stress-strain curves (a), tensile strength and elongation at break (b), compressive stress-strain curve (c), compressive strength (d) of four kinds of hydrogels (PVA, 2 D Ni-Fe MOF/PVA, Dia/PVA, 2 D Ni-Fe MOF-Dia/PVA) were illustrated (illustrations for height difference ratio of hydrogel before and after compression).

    图  7  2 D Ni-Fe MOF/PVA (a) 与2 D Ni-Fe MOF-Dia/PVA (b) 水凝胶筛网对于不同组分的油水分离效率

    Figure  7.  2 D Ni-Fe MOF/PVA (a), and 2 D Ni-Fe MOF-Dia/PVA (b) hydrogel screen for different components of oil-water separation efficiency

    图  8  石油醚-水混合循环分离效率以及水通量 (a), 对于不同浓度的氯化钠溶液/石油醚油水混合物的分离效率以及水通量 (b), 不同pH下的分离效率以及水通量 (c), 不同pH值下分离后水下油的接触角 (d)

    Figure  8.  Separation efficiency and water flux of petroleum ether water mixing cycle (a), separation efficiency and water flux for different concentrations of NaCl solution/petroleum ether oil-water mixture (b), separation efficiency and water flux at different pH values (c), contact angle of underwater oil after separation at different pH values (d).

    图  9  2 D Ni-Fe MOF-Dia/PVA水凝胶筛网在沙子中摩擦10,20,30,40次的分离效率与水通量大小

    Figure  9.  Separation efficiency and water flux of 2 D Ni-Fe MOF-Dia/PVA hydrogel mesh screen after repeatedly rubbed in sand for 10,20,30,40 times

    图  10  石油醚-水乳液分离前后显微镜照片 (a), 石油醚/水乳液分离前后透光率 (b), 二甲苯-水乳液循环分离及其水通量 (c)

    Figure  10.  microscopic photographs of petroleum ether water emulsion before and after separation (a), transmittance (b), separation of xylene water emulsion and water flux before and after separation of petroleum ether/water emulsion (c).

  • [1] 何影格, 陈媛媛, 刘维仪, 等. 超浸润性可逆切换的超双疏复合海绵材料的制备及油水分离应用[J]. 复合材料学报, 2021, 38(3): 854-862.

    HE Y G, CHEN Y Y, LIU W Y, et al. Preparation of super double hydrophobic composite sponge with super wettability and reversible switching and its application in oil-water separation [J] Acta Materiae Compositae Sinica, 2021, 38(3): 854-862(in Chinese).
    [2] 魏倩, 林韶晖, 冯献社, 等. 超疏水石墨烯/甲醛-三聚氰胺-亚硫酸氢钠共聚物海绵的制备及其在油水分离中的应用[J]. 复合材料学报, 2019, 36(7): 1728-1736.

    WEI Q, LIN S H, FENG X S, et al. Preparation of super hydrophobic graphene / formaldehyde melamine sodium bisulfite copolymer sponge and its application in oil-water separation [J] Acta Materiae Compositae Sinica, 2019, 36(7): 1728-1736(in Chinese).
    [3] 陈迪, 黄杉, 杨园园, 等. 超浸润性γ-氨丙基三乙氧基硅烷-TiO2包覆织物的制备及其水净化性能[J]. 复合材料学报, 2021, 39(0):1-11.

    CHEN D, HUANG S, YANG Y Y, et al. Super infiltration γ- Preparation of aminopropyl triethoxysilane TiO2 coated fabric and its water purification performance[J]. Acta Materiae Compositae Sinica,2021,39(0):1-11(in Chinese).
    [4] LU J W, GAO Z S, XU Ting et al. Robust hydrogel coating with oil-repellent property in air, water, and oil surroundings[J]. ACS Applied Materials Interfaces,2020,12(43):49138-49145. doi: 10.1021/acsami.0c16410
    [5] LIU Y, YIN J Y, FU Y B, et al. Underwater superoleophobic APTES-SiO2/PVA organohydrogel for low-temperature tolerant, self-healing, recoverable oil/water separation mesh[J]. Chemical Engineering Journal,2020,382(15):122925.
    [6] LIU Y, XIA M, WU L L, et al. Physically cross-linked double-network hydrogel for high-performance oil–water separation mesh[J]. Industrial & Engineering Chemistry Research,2019,58(47):21649-21658.
    [7] LI K Q, CHEN W J, WU W J, et al. Facile fabrication of superhydrophilic/underwater superoleophobic polyvinyl acetate/sodium silicate composite coating for the effective water/oil separation and the study on the anti-fouling property, durability and separation mechanism[J]. Progress in Organic Coatings,2021,150(0300-9440):105979.
    [8] KIRTI Thakur, ADITYA Rajhans, Balasubramanian Kandasubramanian et al. Starch/PVA hydrogels for oil/water separation[J]. Environmental Science and Pollution Research,2019,36(31):32013-32028.
    [9] BAI Z X, JIA K, LIU C C, et al. A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation[J]. Advanced Functional Materials,2021,31(49):2104701. doi: 10.1002/adfm.202104701
    [10] 孟盼, 王雁冰, 魏冲, 等. 硅藻土/硅橡胶可陶瓷化复合材料的制备及性能[J]. 复合材料学报, 2017, 34(1):53-59.

    MENG P, WANG Y B, WEI C, et al. Preparation and properties of diatomite/silicone rubber ceramic composites[J]. Acta Materiae Compositae Sinica,2017,34(1):53-59(in Chinese).
    [11] 林健, 郭郊, 赵宇, 等. 硅藻土/聚氨酯多孔复合材料的组织结构与吸声特性[J]. 复合材料学报, 2014, 31(6):1476-1480.

    LIN J, GUO J, ZHAO Y, et al. Microstructure and sound absorption properties of diatomite/polyurethane porous composites[J]. Acta Materiae Compositae Sinica,2014,31(6):1476-1480(in Chinese).
    [12] LV J H, SUN B, JIN J, et al. Mechanical and slow-released property of poly(acrylamide) hydrogel reinforced by diatomite[J]. Materials Science and Engineering:C,2019,99(2):315-321.
    [13] SHA D, ZHENG R, WANG B L, et al. Superhydrophilic polyvinyl alcohol-formaldehyde composite sponges with hierachical pore structure for oil/water emulsion separation[J]. Reactive and Functional Polymers,2021,165(1):104975.
    [14] ZHANG X F, CHANG L, YANG Z J, et al. Facile synthesis of ultrathin metal-organic framework nanosheets for lewis acid catalysis[J]. Nano research,2019,12(2):437-440. doi: 10.1007/s12274-018-2235-1
    [15] WANG Y, LI L J, YAN L T, et al. Bottom-up fabrication of ultrathin 2 D Zr Metal-Organic framework nanosheets through a facile continuous microdroplet flow reaction[J]. Journal of the American Chemical Society,2018,30(9):3048-3059.
    [16] LI Q Y, LIU K, JIANGT, et al. Injectable and self-healing chitosan-based hydrogel with MOF-loaded α-lipoic acid promotes diabetic wound healing[J]. Materials Science and Engineering:C,2021,131(45):112519.
    [17] LI H, ZHU L, ZHANG J Q, et al. High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks[J]. Applied Surface Science,2019,476(15):61-69.
    [18] GAO D Y, LIU Z, CHENG Z L. 2 D Ni-Fe MOF nanosheets reinforced poly(vinyl alcohol) hydrogels with enhanced mechanical and tribological performance[J]. Colloids and Surfaces A:Physicochemical and Engineering aspects,2021,610(5):125934.
    [19] LEE T H, JI S R, YE S Y, et al. High-performance polyamide thin-film nanocomposite membranes containing ZIF-8/CNT hybrid nanofillers for reverse osmosis desalination[J]. Industrial & Engineering Chemistry Research,2020,59(12):5324-5332.
    [20] MENG X, LIU Z M, DENG C, et al. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal[J]. Journal of Hazardous Materials,2016,320(15):495-503.
    [21] LI F L, WANG P, TANG X Q, et al. Large-scale, bottom-Up synthesis of binary metal-organic framework nanosheets for efficient water oxidation[J]. Angewandate Chemie-International Edition,2019,58(21):7051-7056. doi: 10.1002/anie.201902588
    [22] XIA Y J, JIANG X Y, ZHANG J, et al. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application[J]. Applied Surface Science,2017,396(PT.2):1760-1764.
    [23] GIUSEPPE C, GIUSEPPE L, STEFANA M, et al. Nanohydrogel formation within the halloysite lumen for triggered and sustained release[J]. ACS Applied Materials & Interfaces,2018,10(9):8265-8273.
    [24] ZHOU L, HE Y, SHI H, et al. One-pot route to synthesize HNTs@PVDF membrane for rapid and effective separation of emulsion-oil and dyes from waste water[J]. Journal of Hazardous Materials,2019,380(15):120865.
    [25] CHEN J R, SHI X T, REN L, et al. Graphene Oxide/PVA inorganic/organic interpenetrating hydrogels with excellent mechanical properties and biocompatibility[J]. Carbon,2017,111(1):18-27.
    [26] SABIA K, SAREEN S, ASHWINI P, et al. Effects of reinforcement of sodium alginate functionalized halloysite clay nanotubes on thermo-mechanical properties and biocompatibility of poly (vinyl alcohol) nanocomposites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2021,118:104441. doi: 10.1016/j.jmbbm.2021.104441
    [27] HUI Y, GE S, LIU Q F, et al. A facile route for the fabrication of a superhydrophilic and underwater superoleophobic phosphorylated PVA-coated mesh for both oil/water immiscible mixture and emulsion separation[J]. [J]Applied Surface Science,2021,537(30):147986.
    [28] LI J, GUAN P, ZHANG Y, et al. A diatomite coated mesh with switchable wettability for on-demand oil/water separation and methylene blue adsorption[J]. Separation and Purification Technology,2017,174(1):275-281.
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 录用日期:  2022-04-16
  • 修回日期:  2022-04-08
  • 网络出版日期:  2022-05-11

目录

    /

    返回文章
    返回