留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凝胶聚合物电解质在超级电容器中的研究现状与发展趋势

肖婉彤 雷西萍 赵新晨 张泽伟 于婷

肖婉彤, 雷西萍, 赵新晨, 等. 凝胶聚合物电解质在超级电容器中的研究现状与发展趋势[J]. 复合材料学报, 2024, 42(0): 1-17.
引用本文: 肖婉彤, 雷西萍, 赵新晨, 等. 凝胶聚合物电解质在超级电容器中的研究现状与发展趋势[J]. 复合材料学报, 2024, 42(0): 1-17.
XIAO Wantong, LEI Xiping, ZHAO Xinchen, et al. Research status and development trend of gel polymer electrolytes in supercapacitors[J]. Acta Materiae Compositae Sinica.
Citation: XIAO Wantong, LEI Xiping, ZHAO Xinchen, et al. Research status and development trend of gel polymer electrolytes in supercapacitors[J]. Acta Materiae Compositae Sinica.

凝胶聚合物电解质在超级电容器中的研究现状与发展趋势

基金项目: 基于仿生原理的输电线用新型防覆冰聚氨酯涂料技术与开发技术,陕西省科技厅重点研发项目(一般项目)(No.2023-YBGY-500)
详细信息
    通讯作者:

    雷西萍,博士,教授,博士生导师,研究方向为超级电容器 E-mail: leixiping123456@163.com

  • 中图分类号: TM53;TB332

Research status and development trend of gel polymer electrolytes in supercapacitors

Funds: Technology and development of new antiicing polyurethane coating for transmission lines based on bionic principle. Key R & D project of Shaanxi Provincial Science and Technology Department (No.2023-YBGY-500)
  • 摘要: 新型固态超级电容器具有更高的机械稳定性、易操作性和耐温耐候性,既无传统固态电解质易泄露、不便于携带的缺点,也无液态聚合物电解质易腐蚀、易爆炸的风险,是极具市场前景的高功率储能型超级电容器。固态超级电容器需要电解质离子流动性好、导电率高、活性好和机械稳定性高。凝胶聚合物电解质因其具有安全性高、稳定性好和天然无污染性等特点,是目前固态聚合物电解质中适配度最高的一种电解质。根据电解质基底来源不同可以分为天然型和合成型两类聚合物电解质,复合聚合物电解质主要由聚合物基体、添加剂和电解质盐组成。复合聚合物电解质在超级电容器中既充当了导电介质,也起着隔膜的作用。本文综述了不同聚合物电解质的特点,阐述了聚合物电解质对超级电容器储能及电化学性能的影响与作用机制,最后提出了构建高效储能系统所面临的挑战和未来发展的聚焦点。

     

  • 图  1  双电层电容器原理图

    Figure  1.  Principle of electric double layer capacitor

    图  2  凝胶聚合物电解质的分类

    Figure  2.  Classification of gel polymer electrolytes

    图  3  羟丙基甲基纤维素分子结构式

    Figure  3.  Structural formula of hydroxypropyl methyl cellulose molecule

    图  4  (a) 固态超级电容器(SSC)的装配过程示意图及基于SPI和HEC的交联原理图; (b) 在0.01赫兹到100千赫的频率范围内的能奎斯特图[18]

    Figure  4.  (a) Schematic illustration of the assembly process of Solid state supercapacitor(SSC) and schematic diagram of cross linked based on SPI and HEC; (b) Nyquist plots in a frequency range from 0.01 Hz to 100 kHz[18]

    图  5  CCS/PAM水凝胶电解质膜的制造示意图[21]

    Figure  5.  Schematic illustration of fabrication of the CCS/PAM hydrogel electrolyte membrane[21]

    图  6  壳聚糖的来源及其结构式[19]

    Figure  6.  Source and structural formula of chitosan[19]

    图  7  海藻酸钠分子结构式

    Figure  7.  Structural formula of Sodium alginate molecular

    图  8  水凝胶电解质的各项性能示意图[26]

    Figure  8.  Performance diagram of hydrogel electrolyte[26]

    图  9  基于CG/PAAm-7 Li/K 双网络水凝胶电解质的柔性超级电容器示意图[29]

    Figure  9.  Schematic illustration of the flexible supercapacitor based on CG/PAAm-7 Li/K DN hydrogel electrolyte[29]

    图  10  用于高可压缩和耐低温SC的双化学交联PVA基DN水凝胶电解质示意图[30]

    Figure  10.  Schematic illustration of a dual chemically cross linked PVA-based DN hydrogel electrolyte applied for highly compressible and low temperature tolerant supercapacitors[30]

    图  11  聚乙烯醇-纤维素水凝胶制备示意图[32]

    Figure  11.  Schematic diagram of PVA-Cellulose hydrogel preparation[32]

    图  12  (a) SPS/PAM复合材料的制备工艺;(b) 交流电渗透形成机制的示意图;(c) 损耗模量(G'')与角频率的关系;(d) 5μm有序SPS颗粒在不同浓度下水凝胶的应力-应变曲线[34]

    Figure  12.  (a) Fabrication process of SPS/PAM composites; (b) The schematic diagram illustrating the formation mechanism of AC electroosmosis; (c) Angular frequency dependence of the loss modulus (G''); (d) The stress-strain curves of hydrogels at different concentrations of ordered 5 μm SPS particles[34]

    图  13  SC-PGW-SINCH制备工艺示意图[44]

    Figure  13.  Schematic diagram of the SC-PGW-SINCH preparation process[44]

    图  14  (a) 低温、耐脱水和可拉伸电解质水凝胶的设计策略;(b) PAM/CNF/LiCl 50%水凝胶在25℃和−40℃下作为导线的示意图;(c) 在25℃、50% RH条件下将水凝胶保存150天后进行比较;(d) 不同温度下的CV曲线(扫描速率为10 mv /s)[50]

    Figure  14.  (a) Strategy used in the design of a conductive and stretchable electrolyte hydrogel with low temperature and dehydration tolerance;(b) Demonstration of PAM/CNF/LiCl 50% hydrogels functioning as conductive wires at 25℃ and −40℃; (c) visual comparison after holding the hydrogels for 150 days at 25℃ and 50% RH; (d) CV curves obtained at different temperatures (10 mV/s scan rate)[50]

    图  15  (a) 一体化超级电容器的制备方法;(b) 四种超级电容器在10 mA cm−2电流密度下的Nyquist阻抗图;(c) 不同弯曲程度下的试样弯曲图[55]

    Figure  15.  (a) Fabrication process of SPS/PAM composites; (b) Nyquist impedance plots of four kinds of SCs in 10 mA cm−2 current density;(c) corresponding samples with different angles[55]

    图  16  BOB阴离子的分解机制[56]

    Figure  16.  Decomposition mechanism of BOB anion[56]

    图  17  (a) 硼酸盐电解液和电极相互作用的示意图;(b) 不同硼酸盐有机电解质在-40℃至115℃范围内的离子电导率和粘度;LiBOB-0.1、LiBOB-0.5和LiBOB-1样品在115℃的双电极体系中的:(c) Ragone图;(d) 比电容和温度的关系;(e) 由6个串并联电池点亮的红色LED(1.8 V)[59]

    Figure  17.  (a) Schematic diagram of the interaction between borate electrolyte and electrode; (b) ionic conductivity and viscosity of different borate organic electrolyte electrolytes in the temperature range of -40 to 115℃; Electrochemical performance of LiBOB-0.1, LiBOB-0.5 and LiBOB-1 samples in two-electrode system at 115℃, respectively: (c) Ragone plots; (d) Specific capacitances versus temperature; (e) Specific capacitances versus temperature[59]

    图  18  GPE的制备工艺图和SC的组成图[63]

    Figure  18.  Preparation process diagram of GPEs and composition diagram of the SC[63]

    表  1  复合凝胶聚合物电解质实例

    Table  1.   Example of composite gel polymer electrolyte

    Base material Composite material Preparation method Strength of extension
    MPa
    Ionic conductivity s/m References
    CMC CA Double physical crosslinking 4.42 6.42 [66]
    PVA EG/H2O Double chemical crosslinking 15.5 0.48 [30]
    LiCl PVA Freeze-thaw cycle method 0.4 12.83 [51]
    BC PVA Freeze-thaw cycle method 0.41 13.89 [67]
    PAA GO Radical polymerization 6.1 16.81 [68]
    Notes:CMA is short for Carboxymethyl cellulose; CA is short for Carbonic anhydrase; PVA is short for Polyvinyl alcohol; EG is short for Ethylene glycol; BC is short for Bacterial cellulose; PAA is short for Polyacrylic acid; GO is short for Graphene oxide.
    下载: 导出CSV

    表  2  基于不同电解质的固态超级电容器性能对比统计表(不含氧化还原添加剂) [72]

    Table  2.   Statistical table of solid supercapacitors based on different electrolytes ( without redox additive ) [72]

    Electrolyte Working voltage Specific capacitance/(F/g) Conductivity/(S/cm) Energy density/
    (Wh/kg)
    Power density/ Cycling stability/
    Hydrogel 1.6 V >100 The highest <20 <10 Better
    Organogel 4 V 100-200 Higher 18-25 <10 Ordinary
    Ionic gel
    6 V 100-200 Higher Ordinary Ordinary Ordinary
    Inorganic matter Less <30 Lower Lower Lower Worse
    下载: 导出CSV
  • [1] ZHAO N, YOU F. Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition[J]. Applied Energy, 2020, 279: 115889. doi: 10.1016/j.apenergy.2020.115889
    [2] ZHANG Y, ZHOU C gang, YANG J, et al. Advances and challenges in improvement of the electrochemical performance for lead-acid batteries: A comprehensive review[J]. Journal of Power Sources, 2022, 520: 230800. doi: 10.1016/j.jpowsour.2021.230800
    [3] YANG J, LI G, PAN Z, et al. All-Solid-State High-Energy Asymmetric Supercapacitors Enabled by Three-Dimensional Mixed-Valent MnOx Nanospike and Graphene Electrodes[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22172.
    [4] 陈英放, 李媛媛, 邓梅根. 超级电容器的原理及应用[J]. 电子元件与材料, 2008, (4): 6. doi: 10.3969/j.issn.1001-2028.2008.04.002

    CHEN Yingfang, ;LI Yuanyuan, DENG Meigen. Principles and applications of supercapacitors[J]. Electronic Componente and Materials, 2008, (4): 6 (in Chinese). doi: 10.3969/j.issn.1001-2028.2008.04.002
    [5] 任齐都. P(MMA-VdF)基凝胶聚合物电解质的研究[D]. 中国科学院研究生院(青海盐湖研究所 ), 2005.

    REN Qidu. Studies on P(MMA-Vdf) Based Gel Polymer blend electrolyte [D]. Graduate University of Chinese Academy of Sciences(Qinghai Salt Lake Research Institute), 2005 (in Chinese).
    [6] ZHONG C, DENG Y, HU W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484. doi: 10.1039/C5CS00303B
    [7] ZHOU Y, WAN C, YANG Y, et al. Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics[J]. Advanced Functional Materials, 2018, 29: 1806220.
    [8] SEKHON S S. Conductivity behaviour of polymer gel electrolytes: Role of polymer[J]. Bulletin of Materials Science, 2003, 26(3): 321. doi: 10.1007/BF02707454
    [9] QIN G, WU C, SONG X, et al. Multifunctional enhanced energy density integrated supercapacitor based on self-healing redox-mediated gel polymer electrolyte[J]. Fuel, 2024, 357: 130033. doi: 10.1016/j.fuel.2023.130033
    [10] LI L, WANG M, WANG J, et al. Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(16): 8033. doi: 10.1039/D0TA01883J
    [11] YU X, JIANG Z, YUAN R, et al. A Review of the Relationship between Gel Polymer Electrolytes and Solid Electrolyte Interfaces in Lithium Metal Batteries[J]. Nanomaterials, 2023, 13(11): 1789. doi: 10.3390/nano13111789
    [12] 屈晨滢, 侯朝霞, 王晓慧, 等. 凝胶聚合物电解质在固态超级电容器中的研究进展[J]. 储能科学与技术, 2020, 9(3): 776.

    QU Chenying, HOU Zhaoxia, WANG Xiaohui, et al. Research progress of gel polymer elec trolytes on solid supercapacitors[J]. Energy Storage Science and Technology, 2020, 9(03): 776-783(in Chinese).
    [13] 杨乐意, 刘乔, 陈重一. 聚合物水凝胶电解质基超级电容器-聚合物构效关系[J]. 化学通报, 2022, 85(12): 1410.

    YANG Leyi, LIU Qiao, CHEN Chongyi. Polymer Structure-Performance Relationship of Polymeric Hydrogel Electrolyte-Based Supercapacitor[J]. Chemistry, 2022, 85(12): 1410-1418(in Chinese).
    [14] OPREA M, VOICU S I. Recent advances in composites based on cellulose derivatives for biomedical applications[J]. Carbohydrate Polymers, 2020, 247: 116683. doi: 10.1016/j.carbpol.2020.116683
    [15] ZHANG Y, QIN H, ALFRED M, et al. Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions[J]. Energy Storage Materials, 2021, 42: 88. doi: 10.1016/j.ensm.2021.07.026
    [16] LIN X, WANG M, ZHAO J, et al. Super-tough and self-healable all-cellulose-based electrolyte for fast degradable quasi-solid-state supercapacitor[J]. Carbohydrate Polymers, 2023, 304: 120502. doi: 10.1016/j.carbpol.2022.120502
    [17] LI K, LI P, SUN Z, et al. All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability[J]. Green Energy and Environment, 2023, 8: 1091. doi: 10.1016/j.gee.2022.01.002
    [18] XUN Z, NI S, GAO Z, et al. Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor[J]. Polymers, 2019, 11(11): 1895. doi: 10.3390/polym11111895
    [19] 盛海亮. 壳聚糖基凝胶电解质的制备及其在超级电容器中的应用研究[D]. 贵州大学, 2024.

    SHENG Hailiang. Preparation of chitosan-based gel electrolyte and its application in supercapacitors [D]. Guiyang: guizhou university, 2024(in Chinese).
    [20] YANG H, LIU Y, KONG L, et al. Biopolymer-based carboxylated chitosan hydrogel film crosslinked by HCl as gel polymer electrolyte for all-solid-sate supercapacitors[J]. Journal of Power Sources, 2019, 426: 47. doi: 10.1016/j.jpowsour.2019.04.023
    [21] WANG X, ZHANG Q, ZHAO L, et al. A renewable hydrogel electrolyte membrane prepared by carboxylated chitosan and polyacrylamide for solid-state supercapacitors with wide working temperature range[J]. Journal of Power Sources, 2023, 560: 232704. doi: 10.1016/j.jpowsour.2023.232704
    [22] GUO M, YAN J, YANG X, et al. A transparent glycerol-hydrogel with stimuli-responsive actuation induced unexpectedly at subzero temperatures[J]. Journal of Materials Chemistry A, 2021, 9(12): 7935. doi: 10.1039/D1TA00112D
    [23] ZHANG Q, ZHAO L, YANG H, et al. Alkali-tolerant polymeric gel electrolyte membrane based on cross-linked carboxylated chitosan for supercapacitors[J]. Journal of Membrane Science, 2021, 629.
    [24] ZENG J, WEI L, GUO X. Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from kelp[J]. Journal of Materials Chemistry A, 2017, 5(48): 25282. doi: 10.1039/C7TA08095F
    [25] RUTHES J G A, DELLER A E, PAMETÉ E, et al. Hydrogel-Based Flexible Energy Storage Using Electrodes Based on Polypyrrole and Carbon Threads[J]. Advanced Materials Interfaces, 2023, 10(27): 2300373. doi: 10.1002/admi.202300373
    [26] TIAN J, SUN Z, SHI C, et al. Rapid fabrication of tough sodium alginate/MXene/poly(vinyl alcohol) dual-network hydrogel electrolytes for flexible all-solid-state supercapacitors[J]. International Journal of Biological Macromolecules, 2023, 248: 125937. doi: 10.1016/j.ijbiomac.2023.125937
    [27] LIN T, LI S, HU Y, et al. Ultrastretchable and adhesive agarose/Ti3C2Tx-crosslinked-polyacrylamide double-network hydrogel for strain sensor[J]. Carbohydrate Polymers, 2022, 290: 119506. doi: 10.1016/j.carbpol.2022.119506
    [28] ERLANGGA I F, PRADANAWATI S A, PRAMATA A D, et al. Corn Starch-Sodium Acetat Composite Material from Industrial Waste Fly Ash for Solid Electrolyte Polymer Ionic Conductivity in Supercapacitor Application[J]. Engineering Chemistry, 2024, 5: 19.
    [29] WU S, LOU D, WANG H, et al. Corrigendum to “One-pot synthesis of anti-freezing carrageenan/polyacrylamide double-network hydrogel electrolyte for low-temperature flexible supercapacitors” [Chem. Eng. J. 435 (2022) 135057][J]. Chemical Engineering Journal, 2022, 438: 135521. doi: 10.1016/j.cej.2022.135521
    [30] LIU Z, ZHANG J, LIU J, et al. Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes[J]. Journal of Materials Chemistry A, 2020, 8(13): 6219. doi: 10.1039/C9TA12424A
    [31] SÁNCHEZ-VALDEZ A G, DE LA PARRA-ARCINIEGA S M, SÁNCHEZ-CERVANTES E M, et al. Neutral pH Na2SO4/glycerol/PVA polymer hydrogel electrolyte prepared at room temperature for activated carbon supercapacitors[J]. Journal of Solid State Electrochemistry, 2023, 27(11): 2917. doi: 10.1007/s10008-023-05631-6
    [32] ZHANG R, WU C, YAO C, et al. Preparation of PVA based multifunctional hydrogel electrolyte reinforced by phosphoric acid-dissolved-cellulose and its application in quasi-solid supercapacitors[J]. Cellulose, 2024, 31(2): 1071. doi: 10.1007/s10570-023-05661-3
    [33] LI Y, LIU X, YANG Y, et al. A stretchable and self-healable conductive hydrogels based on gelation/polyacrylamide/polypyrrole for all-in-one flexible supercapacitors with high capacitance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128145. doi: 10.1016/j.colsurfa.2021.128145
    [34] ZHANG Y, YAN C, LI J, et al. Ordered sulfonated polystyrene particle chains organized through AC electroosmosis as reinforcing phases in Polyacrylamide hydrogels[J]. Journal of Colloid and Interface Science, 2024, 662: 1063. doi: 10.1016/j.jcis.2024.02.089
    [35] WANG X, BHADAURIYA S, ZHANG R, et al. Nanoimprint Directed Assembly of Associating Polymer-Grafted Nanoparticles for Polymer Thin Films with Enhanced Stability[J]. ACS Applied Polymer Materials, 2019, 1(12): 3242. doi: 10.1021/acsapm.9b00569
    [36] RAFIDI N, BASHIR S, HINA M, et al. Renewable and soft dynamic supercapacitors based on poly (acrylamide) hydrogel electrolytes and porous carbon electrodes[J]. Polymer Bulletin, 2023, 80(2): 1285. doi: 10.1007/s00289-021-04032-x
    [37] CHAN C Y, WANG Z, JIA H, et al. Recent advances of hydrogel electrolytes in flexible energy storage devices[J]. Journal of Materials Chemistry A, 2021, 9(4): 2043. doi: 10.1039/D0TA09500A
    [38] HU M, WANG J, LIU J, et al. An intrinsically compressible and stretchable all-in-one configured supercapacitor[J]. Chemical Communications, 2018, 54(48): 6200. doi: 10.1039/C8CC03375G
    [39] ZHANG X, PEI Z, WANG C, et al. Flexible Zinc-Ion Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics[J]. Small, 2019, 15(47): 1903817. doi: 10.1002/smll.201903817
    [40] LIAO H, ZHOU F, ZHANG Z, et al. A self-healable and mechanical toughness flexible supercapacitor based on polyacrylic acid hydrogel electrolyte[J]. Chemical Engineering Journal, 2019, 357: 428. doi: 10.1016/j.cej.2018.09.153
    [41] ABUBSHAIT H A, SAAD M, IQBAL S, et al. Co-doped zinc oxide nanoparticles embedded in Polyvinylalcohol Hydrogel as solar light derived photocatalyst disinfection and removal of coloured pollutants[J]. Journal of molecular structure, 2023, 1271: 134100. doi: 10.1016/j.molstruc.2022.134100
    [42] IQBAL S, JAVED M, QAMAR M A, et al. Synthesis of Cu-ZnO/Polyacrylic Acid Hydrogel as Visible-Light-Driven Photocatalyst for Organic Pollutant Degradation[J]. ChemistrySelect, 2022, 7(1): e202103694. doi: 10.1002/slct.202103694
    [43] XIN Y, YU Z, SOOMRO R A, et al. Facile Synthesis of Polyacrylic Acid/Graphene Oxide Composite Hydrogel Electrolyte for High-Performance Flexible Supercapacitors[J]. Coatings, 2023, 13(2): 382. doi: 10.3390/coatings13020382
    [44] GAO C, GAO Z, WEI Y, et al. Flexible Wood Enhanced Poly(acrylic acid-co-acrylamide)/Quaternized Gelatin Hydrogel Electrolytes for High-Energy-Density Supercapacitors[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2951.
    [45] 王虹, 刘毅, 孙晓君, 等. 聚乙烯醇/聚丙烯酸凝胶聚合物电解质的研究[J]. 辽东学院学报(自然科学版), 2009, 16(4): 295.

    WANG Hong, LIU Yi, SUN Xiaojun, et al. Preparation of poly (vinyl alcohol) / polyacrylic late hydrogel polymer electrolyte[J]. Journal of Eastern Liaoning University (Natural Science), 2009, 16(4): 295-297+324(in Chinese).
    [46] 唐广军, 孙本惠. 聚偏氟乙烯膜的亲水性改性研究进展[J]. 化工进展, 2004(5): 480.

    TANG Guangjun, SUN Benhui. Ad vances on hydrophilic modification of poly (vinylidene fluoride) membranes[J]. Chemical Industry And Engineering Progress, 2004(5): 480-485(in Chinese).
    [47] SONG R, JIN H, LI X, et al. A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes[J]. Journal of Materials Chemistry A, 2015, 3(29): 14963. doi: 10.1039/C5TA03349G
    [48] YANG C, SUN M, WANG X, et al. A Novel Flexible Supercapacitor Based on Cross-Linked PVDF-HFP Porous Organogel Electrolyte and Carbon Nanotube Paper@π-Conjugated Polymer Film Electrodes[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2067.
    [49] 孙元军, 庞志强, 董翠华, 等. 纤维素基水凝胶作为柔性超级电容器电解质的研究进展 [J/OL]. 中国造纸学报, 2023, 38(3): 24.

    SUN Yuanjun, PANG Zhiqiang, Dong Cuihua, et al. Research progress of cellulose-based hydrogels as electrolytes for flexible supercapacitors[J/OL]. Transactions of China Pulp and Paper, 2023, (03): 24-29(in Chinese).
    [50] GE W, CAO S, YANG Y, et al. Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions[J]. Chemical Engineering Journal, 2021, 408: 127306. doi: 10.1016/j.cej.2020.127306
    [51] YIN J, WEI K, ZHANG J, et al. MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature[J]. Cell Reports Physical Science, 2022, 3(5).
    [52] HOU X, ZHANG Q, WANG L, et al. Low-Temperature-Resistant Flexible Solid Supercapacitors Based on Organohydrogel Electrolytes and Microvoid-Incorporated Reduced Graphene Oxide Electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12432.
    [53] FIC K, LOTA G, MELLER M, et al. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors[J]. Energy & Environmental Science, 2012, 5(2): 5842.
    [54] Development and assessment of an innovative gel electrolyte using polyvinyl alcohol, lithium sulfate, and 1-butyl-3-methylimidazolium trifluoromethanesulfonate for advanced supercapacitor performance[J]. Journal of Energy Storage, 2024, 92: 112040.
    [55] YONG Z, WANG S, WANG X, et al. An all-in-one flexible supercapacitor based on redox ionogel electrolyte with high cycle performance[J]. Journal of Alloys and Compounds, 2022, 893: 162197. doi: 10.1016/j.jallcom.2021.162197
    [56] HERNÁNDEZ G, MOGENSEN R, YOUNESI R, et al. Fluorine-Free Electrolytes for Lithium and Sodium Batteries[J]. Batteries & Supercaps, 2022, 5(6): e202100373.
    [57] ZHOU Q, FU C, LI R, et al. Poly (Vinyl Ethylene Carbonate)-Based Dual-Salt Gel Polymer Electrolyte Enabling High Voltage Lithium Metal Batteries[J]. SSRN Electronic Journal, 2022. DOI: 10.2139/ssrn.4001219.
    [58] NGUYEN H V T, LEE K K. Tetraethylphosphonium tetrafluoroborate electrolyte for paving the way to construct high-power and high-voltage supercapacitors[J]. Journal of Energy Storage, 2024, 96: 112640. doi: 10.1016/j.est.2024.112640
    [59] 陈丹丹. 硼掺杂多孔碳材料及硼酸盐有机电解质在超级电容器中应用研究[D]. 合肥工业大学, 2022.

    CHEN Dandan. Study on the application of boron-doped Porouscarbon materials and borate organic electrolytes in supercapacitors[D]. Hefei: Hefei University of Technology, 2022(in Chinese).
    [60] YANG J, KANG X, JIAO J, et al. Ternary Ionic-Liquid-Based Electrolyte Enables Efficient Electro-reduction of CO2 over Bulk Metal Electrodes[J]. Journal of the American Chemical Society, 2023. DOI: 10.1021/jacs.3c03259.
    [61] BAI Y, YANG C, YUAN B, et al. A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors[J]. Journal of Energy Chemistry, 2023, 76: 41. doi: 10.1016/j.jechem.2022.09.015
    [62] SUN X, LIU H. Insight of super-capacitive properties of flexible gel polymer electrolyte containing butyl imidazole ionic liquids with different anions based on PVDF-HFP[J]. Journal of Polymer Research, 2024, 31(2): 53. doi: 10.1007/s10965-024-03907-7
    [63] SUN X, LIU H. Insight of super-capacitive properties of flexible gel polymer electrolyte containing butyl imidazole ionic liquids with different anions based on PVDF-HFP[J]. Journal of Polymer Research, 2024, 31(2): 53. doi: 10.1007/s10965-024-03907-7
    [64] PAL P, GHOSH A. Solid-state gel polymer electrolytes based on ionic liquids containing imidazolium cations and tetrafluoroborate anions for electrochemical double layer capacitors: Influence of cations size and viscosity of ionic liquids[J]. Journal of Power Sources, 2018, 406: 128. doi: 10.1016/j.jpowsour.2018.10.051
    [65] RATHNAYAKE R M L L, PERERA K S, VIDANAPATHIRANA K P. Preparation and characterization of 1-ethyl-3-methylimidazolium chloride–based gel polymer electrolyte in electrochemical double-layer capacitors[J]. Journal of Solid State Electrochemistry, 2020, 24(10): 2333. doi: 10.1007/s10008-020-04756-2
    [66] LIN X, WANG M, ZHAO J, et al. Super-tough and self-healable all-cellulose-based electrolyte for fast degradable quasi-solid-state supercapacitor[J]. Carbohydrate Polymers, 2023, 304: 120502. doi: 10.1016/j.carbpol.2022.120502
    [67] TAO X yu, MA W bin, HAN X dong, et al. Preparation and application of self-healing polyvinyl alcohol/bacterial cellulose hydrogel electrolyte[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 304. doi: 10.1016/S1872-5813(21)60179-2
    [68] 辛悦. 聚丙烯酸基柔性超级电容器的制备与性能研究[D]. 北京化工大学, 2024.

    XIN Yue. Preparation and properties of polyacrylic acid based flexible supercapacitors[D]. Beijing: Beijing University of Chemical Technology, 2024(in Chinese).
    [69] KHOMENKO V, RAYMUNDO-PIÑERO E, BÉGUIN F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium[J]. Journal of Power Sources, 2006, 153(1): 183. doi: 10.1016/j.jpowsour.2005.03.210
    [70] ZHOU Q, GRIFFIN A, QIAN J, et al. Mechanically Strong and Tough Organohydrogels for Wide Temperature Tolerant, Flexible Solid-State Supercapacitors[J]. Advanced Functional Materials, 2024 : 2405962.
    [71] SHENG H, ZHU A, ZHANG L, et al. Use of an [EMIM][OAc]/GVL-based organic electrolyte solvent to engineer chitosan into a nanocomposite organic ionogel electrolyte for flexible supercapacitors[J]. Green Chemistry, 2023, 25(8): 3046.
    [72] 陈斌, 吕彦伯, 谌可炜, 等. 固态超级电容器电解质的分类与研究进展[J]. 高电压技术, 2019, 45(3): 929.

    CHEN Bin, LU Yanbo, CHEN Kewei, et al. Research progress of solid-state supercapacitors electrolytes and its classifications[J]. High Voltage Engineering, 2019, 45(3): 929 (in Chinese).
  • 加载中
计量
  • 文章访问数:  91
  • HTML全文浏览量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-02
  • 修回日期:  2024-09-04
  • 录用日期:  2024-09-07
  • 网络出版日期:  2024-09-23

目录

    /

    返回文章
    返回