留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单宁酸-氯化铁-聚ACG复合水凝胶微针贴片的制备与性能表征

赵喜阳 康希彤 刘焕生 刘涛 王清文

赵喜阳, 康希彤, 刘焕生, 等. 单宁酸-氯化铁-聚ACG复合水凝胶微针贴片的制备与性能表征[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 赵喜阳, 康希彤, 刘焕生, 等. 单宁酸-氯化铁-聚ACG复合水凝胶微针贴片的制备与性能表征[J]. 复合材料学报, 2024, 42(0): 1-9.
ZHAO Xiyang, KANG Xitong, LIU Huansheng, et al. Preparation and characterization of tannic acid-ferric chloride-polyACG composite hydrogel microneedle patch[J]. Acta Materiae Compositae Sinica.
Citation: ZHAO Xiyang, KANG Xitong, LIU Huansheng, et al. Preparation and characterization of tannic acid-ferric chloride-polyACG composite hydrogel microneedle patch[J]. Acta Materiae Compositae Sinica.

单宁酸-氯化铁-聚ACG复合水凝胶微针贴片的制备与性能表征

基金项目: 广东省基础与应用基础面上项目 (2023A1515012167)
详细信息
    通讯作者:

    刘涛,博士,副教授,硕士生导师,研究方向为生物质基功能材料 E-mail: liutao@scau.edu.cn

  • 中图分类号: O63;TB332

Preparation and characterization of tannic acid-ferric chloride-polyACG composite hydrogel microneedle patch

Funds: GuangDong Basic and Applied Basic Research Foundation (2023A1515012167)
  • 摘要: 皮肤是人体最大的器官,皮肤损伤后若不能及时愈合会形成慢性伤口,其中细菌感染是慢性难愈合创面面临的一大难题。水凝胶是一种具有三维网络结构的高分子材料,能够吸收伤口渗出液,保持伤口湿润,有助于加速愈合过程。但实际临床使用中,水凝胶敷料的抗菌性仍有待提升。本文以N-丙烯酰基-2-甘氨酸(ACG)为单体,通过引入单宁酸(TA)、FeCl3和羟基磷灰石(HAp),制备具有光热杀菌性能的水凝胶;进一步利用PDMS微针模具,构建具有微针结构的水凝胶,使其能够穿透皮肤角质层达到深层次的杀菌效果,并且不会产生强烈的疼痛感,促进创面愈合。本文研究了TA含量对复合水凝胶的韧性和黏附性能的影响,结果表明,当TA∶ACG为1∶20时,制备出的复合水凝胶具有高力学强度(790 kPa)、高拉伸性(1043%)和良好的黏附性(25.04 kPa)。水凝胶中FeCl3的含量会影响光热转换温度,当FeCl3∶TA为1∶25时,水凝胶在808 nm激光照射下2 min可以达到51℃。该研究利用TA与FeCl3的光热效应,制备临床伤口管理所需要的水凝胶敷料,并做成微针形状,展示出其在促愈合、载药输送、临床检测等领域的应用潜力。

     

  • 图  1  搭接剪切测试水凝胶黏附性能示意图

    Figure  1.  Schematic representation of the adhesion properties of hydrogels under lap shear test

    图  2  DMSO-d6中聚合单体ACG的核磁氢谱图

    Figure  2.  1H NMR spectrum of N-acryloyl 2-glycine in DMSO-d6

    图  3  不同TA含量水凝胶的力学性能和PATH-3水凝胶的抗疲劳性: (a) 应力-应变拉伸曲线;(b) 韧性; (c) PATH-3分步拉伸曲线; (d) PATH – 3分步压缩曲线; (e) PATH-3分步循环压缩曲线; (f) 50 %应变循环压缩100次。

    Figure  3.  Mechanical properties of composited hydrogels with different mass ratio of TA and ACG, fatigue resistance of hydrogel PATH-3: (a) stress-strain tensile curve; (b) Resilience; (c) PATH-3 step-by-step tensile curve; (d) PATH-3 step-by-step compression curve; (e) PATH-3 step-by-step cyclic compression curve; (f) 50% strain cyclic compression 100 times.

    图  4  不同FeCl3含量水凝胶的温度随光照时间变化过程

    Figure  4.  The temperature change process of hydrogels with different FeCl3 content with laser irradiation time

    图  5  (a) 不同FeCl3含量水凝胶的温度-时间变化趋势图;(b) PATH-Fe-2水凝胶不同光照距离温度-时间变化趋势图

    Figure  5.  (a) Temperature-time trend diagram of hydrogels with different FeCl3 contents ; (b) Temperature-time trend diagram of PATH-Fe-2 hydrogel with different light distances

    图  6  PATH-Fe-2水凝胶对不同基材的黏附性能

    Figure  6.  Adhesion of PATH-Fe-2 hydrogels to different substrates

    图  7  不同TA含量和加入FeCl3后水凝胶的黏附性能:(a) 180°搭接剪切测试曲线;(b) 黏附强度。

    Figure  7.  Adhesion properties of hydrogels with different TA content and adding FeCl3: (a). 180 ° lap shear test curve; (b). Adhesion strength.

    图  8  PATH-Fe-MNs水凝胶形貌图

    Figure  8.  The morphology of PATH-Fe-MNs hydrogel

    图  9  PATH-Fe-2水凝胶对大肠杆菌和金黄色葡萄球菌的光热杀菌效果:(a) 大肠杆菌空白对照组;(b) 大肠杆菌实验组;(c) 金黄色葡萄球菌空白对照组;(d) 金黄色葡萄球菌实验组。

    Figure  9.  Photothermal sterilization effect of PATH-Fe-2 hydrogel on Escherichia coli and Staphylococcus aureus: (a). Escherichia coli blank control group; (b). Escherichia coli experimental group; (c). Staphylococcus aureus blank control group; (d) Staphylococcus aureus experimental group.

    表  1  PATH水凝胶配方表

    Table  1.   The formulation of PATH composited hydrogel

    Sample ACG/g TA/g H2O/mL HAp/g I2959/g
    PATH-0 1 0 2.27 0.06 0.01
    PATH-1 1 0.01 2.26 0.06 0.01
    PATH-2 1 0.03 2.24 0.06 0.01
    PATH-3 1 0.05 2.22 0.06 0.01
    PATH-4 1 0.10 2.17 0.06 0.01
    PAT 1 0.05 2.28 0 0.01
    Notes:PATH: P, polymer; A, N-acryloyl-2-glycine (ACG); T, tannic acid (TA); H, hydroxyapatite (HAp).
    下载: 导出CSV

    表  2  PATH-Fe水凝胶配方表

    Table  2.   The formulation of PATH-Fe composited hydrogel

    Sample ACG/g TA/g FeCl3·6H2O/g H2O/mL HAp/g I2959/g
    PATH-Fe-1 1 0.05 0.0025 2.22 0.06 0.01
    PATH-Fe-2 1 0.05 0.0033 2.22 0.06 0.01
    PATH-Fe-3 1 0.05 0.0042 2.22 0.06 0.01
    下载: 导出CSV
  • [1] 王洋, 吕高金, 夏梦瑶, 等. 生物质基水凝胶功能材料的研究进展[J]. 中国造纸, 2023, 42(4): 123-131. doi: 10.11980/j.issn.0254-508X.2023.04.017

    WANG Yang, LV Gaojin, XIA Mengyao, et al. Research progress of biomass-based hydrogel functional materials[J]. China paper, 2023, 42(4): 123-131(in Chinese). doi: 10.11980/j.issn.0254-508X.2023.04.017
    [2] MEHTA P, SHARMA M, DEVI M. Hydrogels: An overview of its classifications, properties, and applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023: 106145.
    [3] KAITH B S, SINGH A, SHARMA A K, et al. Hydrogels: synthesis, classification, properties and potential applications—a brief review[J]. Journal of Polymers and the Environment, 2021, 29(12): 3827-3841. doi: 10.1007/s10924-021-02184-5
    [4] LIU J, WANG H, LIU T, et al. Multimodal Hydrogel-Based Respiratory Monitoring System for Diagnosing Obstructive Sleep Apnea Syndrome[J]. Advanced Functional Materials, 2022, 32(40): 2204686. doi: 10.1002/adfm.202204686
    [5] WANG H, YI X, LIU T, et al. An integrally formed janus hydrogel for robust wet-tissue adhesive and anti-postoperative adhesion[J]. Advanced Materials, 2023, 35(23): 2300394. doi: 10.1002/adma.202300394
    [6] ZHANG J, LIU T, LIU Z, et al. Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement[J]. Polymer, 2019, 173: 103-109. doi: 10.1016/j.polymer.2019.04.028
    [7] 徐漓, 吴玉锋, 张元甲, 等. “双碳” 目标背景下广东农林废弃物综合利用技术进展[J]. 化工进展, 2023, 42(11): 5648.

    XU Li, WU Yufeng, ZHANG Yuanjia, et al. Progress of comprehensive utilization technology of agricultural and forestry waste in Guangdong under the background of ' double carbon ' target[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5648(in Chinese).
    [8] SONG B, LIANG H, SUN R, et al. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture[J]. International Journal of Biological Macromolecules, 2020, 144: 219-230. doi: 10.1016/j.ijbiomac.2019.12.082
    [9] FAN H, WANG L, FENG X, et al. Supramolecular hydrogel formation based on tannic acid[J]. Macromolecules, 2017, 50(2): 666-676. doi: 10.1021/acs.macromol.6b02106
    [10] ANDREAS A, WINATA Z G, SANTOSO S P, et al. Biocomposite hydrogel beads from glutaraldehyde-crosslinked phytochemicals in alginate for effective removal of methylene blue[J]. Journal of Molecular Liquids, 2021, 329: 115579. doi: 10.1016/j.molliq.2021.115579
    [11] 石闪闪, 何国庆. 单宁酸及其应用研究进展[J]. 食品工业科技, 2012, 33(4): 410-412.

    SHI Shanshan, HE Guoqing. Research progress on tannic acid and its application[J]. Technology of Food Industry, 2012, 33(4): 410-412(in Chinese).
    [12] MO J, DAI Y, ZHANG C, et al. Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions[J]. Materials Horizons, 2021, 8(12): 3409-3416. doi: 10.1039/D1MH01324F
    [13] LIU J, WANG H, OU R, et al. Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration[J]. Chemical Engineering Journal, 2021, 426: 130722. doi: 10.1016/j.cej.2021.130722
    [14] 段茹雪, 唐春怡, 左华江, 等. 纤维素/单宁酸复合材料的应用研究进展[J]. 现代化工, 2022, 42(10): 81-85.

    DUAN Ruxue, TANG Chunyi, ZUO Huajiang, et al. Research progress on application of cellulose / tannic acid composites[J]. Modern Chemical Industry, 2022, 42(10): 81-85(in Chinese).
    [15] 刘玉美, 毋彤, 陈振娅, 等. 非天然氨基酸及非天然蛋白合成的研究进展[J]. 生物加工过程, 2022, 20(2): 182-94. doi: 10.3969/j.issn.1672-3678.2022.02.007

    LIU Yvmei, WU Tong, CHEN Zhenya, et al. Research progress on synthesis of unnatural amino acids and unnatural proteins[J]. Biological processing, 2022, 20(2): 182-94(in Chinese). doi: 10.3969/j.issn.1672-3678.2022.02.007
    [16] GAO F, ZHANG Y, LI Y, et al. Sea cucumber-inspired autolytic hydrogels exhibiting tunable high mechanical performances, repairability, and reusability[J]. ACS Applied materials & interfaces, 2016, 8(14): 8956-8966.
    [17] CHEN X, CUI C, LIU Y, et al. A robust poly (N-acryloyl-2-glycine)-based sponge for rapid hemostasis[J]. Biomaterials Science, 2020, 8(13): 3760-3771. doi: 10.1039/D0BM00770F
    [18] NONOYAMA T, WADA S, KIYAMA R, et al. Double-network hydrogels strongly bondable to bones by spontaneous osteogenesis penetration[J]. Advanced Materials, 2016, 28(31): 6740-6745. doi: 10.1002/adma.201601030
    [19] CUI C, SUN Y, NIE X, et al. A Coenzyme-Based Deep Eutectic Supramolecular Polymer Bioadhesive[J]. Advanced Functional Materials, 2023, 33(49): 2307543. doi: 10.1002/adfm.202307543
    [20] LIU P Y, MIAO Z H, LI K, et al. Biocompatible Fe3+–TA coordination complex with high photothermal conversion efficiency for ablation of cancer cells[J]. Colloids and Surfaces B: Biointerfaces, 2018, 167: 183-190. doi: 10.1016/j.colsurfb.2018.03.030
    [21] YU Z, SUN J, DENG H, et al. Skin-permissible NIR-actuated hyperthermia using a photothermally responsive hydrogel membrane for the effective treatment of antibiotic-resistant bacterial infection[J]. Biomaterials Science, 2022, 10(4): 960-969. doi: 10.1039/D1BM01819A
    [22] YAO J, HE Q, ZHENG X, et al. An Injectable Hydrogel System with Mild Photothermal Effects Combined with Ion Release for Osteosarcoma-Related Bone Defect Repair[J]. Advanced Functional Materials, 2024: 2315217.
    [23] KIM M Y, JUNG B, PARK J H. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin[J]. Biomaterials, 2012, 33(2): 668-678. doi: 10.1016/j.biomaterials.2011.09.074
    [24] HAN M, YANG H, LU X, et al. Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal cord repair[J]. Nano letters, 2022, 22(15): 6391-6401. doi: 10.1021/acs.nanolett.2c02259
    [25] AI-KASASBEH R, BRADY A J, COURTENAY A J, et al. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches[J]. Drug Delivery and Translational Research, 2020, 10: 690-705. doi: 10.1007/s13346-020-00727-2
    [26] OH N G, HWANG S Y, NA Y H. Fabrication of a PVA-Based hydrogel microneedle patch[J]. ACS Omega, 2022, 7(29): 25179-25185. doi: 10.1021/acsomega.2c01993
    [27] TURNER J G, WHITE L R, ESTRELA P, et al. Hydrogel-forming microneedles: current advancements and future trends[J]. Macromolecular Bioscience, 2021, 21(2): 2000307. doi: 10.1002/mabi.202000307
    [28] YANG Q, WANG Y, LIU T, et al. Microneedle array encapsulated with programmed DNA hydrogels for rapidly sampling and sensitively sensing of specific microRNA in dermal interstitial fluid[J]. ACS Nano, 2022, 16(11): 18366-18375. doi: 10.1021/acsnano.2c06261
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-24
  • 修回日期:  2024-08-09
  • 录用日期:  2024-08-09
  • 网络出版日期:  2024-08-31

目录

    /

    返回文章
    返回