Preparation and characterization of tannic acid-ferric chloride-polyACG composite hydrogel microneedle patch
-
摘要: 皮肤是人体最大的器官,皮肤损伤后若不能及时愈合会形成慢性伤口,其中细菌感染是慢性难愈合创面面临的一大难题。水凝胶是一种具有三维网络结构的高分子材料,能够吸收伤口渗出液,保持伤口湿润,有助于加速愈合过程。但实际临床使用中,水凝胶敷料的抗菌性仍有待提升。本文以N-丙烯酰基-2-甘氨酸(ACG)为单体,通过引入单宁酸(TA)、FeCl3和羟基磷灰石(HAp),制备具有光热杀菌性能的水凝胶;进一步利用PDMS微针模具,构建具有微针结构的水凝胶,使其能够穿透皮肤角质层达到深层次的杀菌效果,并且不会产生强烈的疼痛感,促进创面愈合。本文研究了TA含量对复合水凝胶的韧性和黏附性能的影响,结果表明,当TA∶ACG为1∶20时,制备出的复合水凝胶具有高力学强度(790 kPa)、高拉伸性(
1043 %)和良好的黏附性(25.04 kPa)。水凝胶中FeCl3的含量会影响光热转换温度,当FeCl3∶TA为1∶25时,水凝胶在808 nm激光照射下2 min可以达到51℃。该研究利用TA与FeCl3的光热效应,制备临床伤口管理所需要的水凝胶敷料,并做成微针形状,展示出其在促愈合、载药输送、临床检测等领域的应用潜力。Abstract: Skin is the largest organ of body, and chronic wounds can inevitably form when the skin injuries do not be healed promptly, and bacterial infection is a major challenge for healing chronic wounds. Hydrogel, a three-dimensional network structure, can help accelerate wound healing by absorbing exudate and maintaining moisture of wounds. However, the antibacterial property of hydrogel dressings still need be highly improved. In this study, a photothermal antibacterial hydrogel was prepared by using N-acryloyl-2-glycine (ACG), tannic acid (TA), FeCl3, and hydroxyapatite (HAp). And subsequently exploiting a PDMS micro-needle mold to construct hydrogel microneedle patch which could penetrate the epidermis for deep-level antibacterial effects without causing strong pain. When TA∶ACG was fixed at 1∶20, the synthetic hydrogel exhibited high mechanical strength (790 kPa), long tensile strain (1043 %), and good adhesion (25.04 kPa). Additionally, when FeCl3∶TA was 1∶25, the hydrogel could reach 51°C under 808-nm laser irradiation for 2 minutes. As the proof of concept, this study demonstrates the hydrogel microneedle patch with photothermal effects can be utilized in clinical wound management, showing great potential for promoting wound healing, drug delivery, and clinical detection.-
Key words:
- hydrogel /
- tannic acid /
- photothermal conversion /
- microneedle /
- wound dressing
-
图 3 不同TA含量水凝胶的力学性能和PATH-3水凝胶的抗疲劳性: (a) 应力-应变拉伸曲线;(b) 韧性; (c) PATH-3分步拉伸曲线; (d) PATH – 3分步压缩曲线; (e) PATH-3分步循环压缩曲线; (f) 50 %应变循环压缩100次。
Figure 3. Mechanical properties of composited hydrogels with different mass ratio of TA and ACG, fatigue resistance of hydrogel PATH-3: (a) stress-strain tensile curve; (b) Resilience; (c) PATH-3 step-by-step tensile curve; (d) PATH-3 step-by-step compression curve; (e) PATH-3 step-by-step cyclic compression curve; (f) 50% strain cyclic compression 100 times.
图 9 PATH-Fe-2水凝胶对大肠杆菌和金黄色葡萄球菌的光热杀菌效果:(a) 大肠杆菌空白对照组;(b) 大肠杆菌实验组;(c) 金黄色葡萄球菌空白对照组;(d) 金黄色葡萄球菌实验组。
Figure 9. Photothermal sterilization effect of PATH-Fe-2 hydrogel on Escherichia coli and Staphylococcus aureus: (a). Escherichia coli blank control group; (b). Escherichia coli experimental group; (c). Staphylococcus aureus blank control group; (d) Staphylococcus aureus experimental group.
表 1 PATH水凝胶配方表
Table 1. The formulation of PATH composited hydrogel
Sample ACG/g TA/g H2O/mL HAp/g I2959/g PATH-0 1 0 2.27 0.06 0.01 PATH-1 1 0.01 2.26 0.06 0.01 PATH-2 1 0.03 2.24 0.06 0.01 PATH-3 1 0.05 2.22 0.06 0.01 PATH-4 1 0.10 2.17 0.06 0.01 PAT 1 0.05 2.28 0 0.01 Notes:PATH: P, polymer; A, N-acryloyl-2-glycine (ACG); T, tannic acid (TA); H, hydroxyapatite (HAp). 表 2 PATH-Fe水凝胶配方表
Table 2. The formulation of PATH-Fe composited hydrogel
Sample ACG/g TA/g FeCl3·6H2O/g H2O/mL HAp/g I2959/g PATH-Fe-1 1 0.05 0.0025 2.22 0.06 0.01 PATH-Fe-2 1 0.05 0.0033 2.22 0.06 0.01 PATH-Fe-3 1 0.05 0.0042 2.22 0.06 0.01 -
[1] 王洋, 吕高金, 夏梦瑶, 等. 生物质基水凝胶功能材料的研究进展[J]. 中国造纸, 2023, 42(4): 123-131. doi: 10.11980/j.issn.0254-508X.2023.04.017WANG Yang, LV Gaojin, XIA Mengyao, et al. Research progress of biomass-based hydrogel functional materials[J]. China paper, 2023, 42(4): 123-131(in Chinese). doi: 10.11980/j.issn.0254-508X.2023.04.017 [2] MEHTA P, SHARMA M, DEVI M. Hydrogels: An overview of its classifications, properties, and applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023: 106145. [3] KAITH B S, SINGH A, SHARMA A K, et al. Hydrogels: synthesis, classification, properties and potential applications—a brief review[J]. Journal of Polymers and the Environment, 2021, 29(12): 3827-3841. doi: 10.1007/s10924-021-02184-5 [4] LIU J, WANG H, LIU T, et al. Multimodal Hydrogel-Based Respiratory Monitoring System for Diagnosing Obstructive Sleep Apnea Syndrome[J]. Advanced Functional Materials, 2022, 32(40): 2204686. doi: 10.1002/adfm.202204686 [5] WANG H, YI X, LIU T, et al. An integrally formed janus hydrogel for robust wet-tissue adhesive and anti-postoperative adhesion[J]. Advanced Materials, 2023, 35(23): 2300394. doi: 10.1002/adma.202300394 [6] ZHANG J, LIU T, LIU Z, et al. Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement[J]. Polymer, 2019, 173: 103-109. doi: 10.1016/j.polymer.2019.04.028 [7] 徐漓, 吴玉锋, 张元甲, 等. “双碳” 目标背景下广东农林废弃物综合利用技术进展[J]. 化工进展, 2023, 42(11): 5648.XU Li, WU Yufeng, ZHANG Yuanjia, et al. Progress of comprehensive utilization technology of agricultural and forestry waste in Guangdong under the background of ' double carbon ' target[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5648(in Chinese). [8] SONG B, LIANG H, SUN R, et al. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture[J]. International Journal of Biological Macromolecules, 2020, 144: 219-230. doi: 10.1016/j.ijbiomac.2019.12.082 [9] FAN H, WANG L, FENG X, et al. Supramolecular hydrogel formation based on tannic acid[J]. Macromolecules, 2017, 50(2): 666-676. doi: 10.1021/acs.macromol.6b02106 [10] ANDREAS A, WINATA Z G, SANTOSO S P, et al. Biocomposite hydrogel beads from glutaraldehyde-crosslinked phytochemicals in alginate for effective removal of methylene blue[J]. Journal of Molecular Liquids, 2021, 329: 115579. doi: 10.1016/j.molliq.2021.115579 [11] 石闪闪, 何国庆. 单宁酸及其应用研究进展[J]. 食品工业科技, 2012, 33(4): 410-412.SHI Shanshan, HE Guoqing. Research progress on tannic acid and its application[J]. Technology of Food Industry, 2012, 33(4): 410-412(in Chinese). [12] MO J, DAI Y, ZHANG C, et al. Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions[J]. Materials Horizons, 2021, 8(12): 3409-3416. doi: 10.1039/D1MH01324F [13] LIU J, WANG H, OU R, et al. Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration[J]. Chemical Engineering Journal, 2021, 426: 130722. doi: 10.1016/j.cej.2021.130722 [14] 段茹雪, 唐春怡, 左华江, 等. 纤维素/单宁酸复合材料的应用研究进展[J]. 现代化工, 2022, 42(10): 81-85.DUAN Ruxue, TANG Chunyi, ZUO Huajiang, et al. Research progress on application of cellulose / tannic acid composites[J]. Modern Chemical Industry, 2022, 42(10): 81-85(in Chinese). [15] 刘玉美, 毋彤, 陈振娅, 等. 非天然氨基酸及非天然蛋白合成的研究进展[J]. 生物加工过程, 2022, 20(2): 182-94. doi: 10.3969/j.issn.1672-3678.2022.02.007LIU Yvmei, WU Tong, CHEN Zhenya, et al. Research progress on synthesis of unnatural amino acids and unnatural proteins[J]. Biological processing, 2022, 20(2): 182-94(in Chinese). doi: 10.3969/j.issn.1672-3678.2022.02.007 [16] GAO F, ZHANG Y, LI Y, et al. Sea cucumber-inspired autolytic hydrogels exhibiting tunable high mechanical performances, repairability, and reusability[J]. ACS Applied materials & interfaces, 2016, 8(14): 8956-8966. [17] CHEN X, CUI C, LIU Y, et al. A robust poly (N-acryloyl-2-glycine)-based sponge for rapid hemostasis[J]. Biomaterials Science, 2020, 8(13): 3760-3771. doi: 10.1039/D0BM00770F [18] NONOYAMA T, WADA S, KIYAMA R, et al. Double-network hydrogels strongly bondable to bones by spontaneous osteogenesis penetration[J]. Advanced Materials, 2016, 28(31): 6740-6745. doi: 10.1002/adma.201601030 [19] CUI C, SUN Y, NIE X, et al. A Coenzyme-Based Deep Eutectic Supramolecular Polymer Bioadhesive[J]. Advanced Functional Materials, 2023, 33(49): 2307543. doi: 10.1002/adfm.202307543 [20] LIU P Y, MIAO Z H, LI K, et al. Biocompatible Fe3+–TA coordination complex with high photothermal conversion efficiency for ablation of cancer cells[J]. Colloids and Surfaces B: Biointerfaces, 2018, 167: 183-190. doi: 10.1016/j.colsurfb.2018.03.030 [21] YU Z, SUN J, DENG H, et al. Skin-permissible NIR-actuated hyperthermia using a photothermally responsive hydrogel membrane for the effective treatment of antibiotic-resistant bacterial infection[J]. Biomaterials Science, 2022, 10(4): 960-969. doi: 10.1039/D1BM01819A [22] YAO J, HE Q, ZHENG X, et al. An Injectable Hydrogel System with Mild Photothermal Effects Combined with Ion Release for Osteosarcoma-Related Bone Defect Repair[J]. Advanced Functional Materials, 2024: 2315217. [23] KIM M Y, JUNG B, PARK J H. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin[J]. Biomaterials, 2012, 33(2): 668-678. doi: 10.1016/j.biomaterials.2011.09.074 [24] HAN M, YANG H, LU X, et al. Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal cord repair[J]. Nano letters, 2022, 22(15): 6391-6401. doi: 10.1021/acs.nanolett.2c02259 [25] AI-KASASBEH R, BRADY A J, COURTENAY A J, et al. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches[J]. Drug Delivery and Translational Research, 2020, 10: 690-705. doi: 10.1007/s13346-020-00727-2 [26] OH N G, HWANG S Y, NA Y H. Fabrication of a PVA-Based hydrogel microneedle patch[J]. ACS Omega, 2022, 7(29): 25179-25185. doi: 10.1021/acsomega.2c01993 [27] TURNER J G, WHITE L R, ESTRELA P, et al. Hydrogel-forming microneedles: current advancements and future trends[J]. Macromolecular Bioscience, 2021, 21(2): 2000307. doi: 10.1002/mabi.202000307 [28] YANG Q, WANG Y, LIU T, et al. Microneedle array encapsulated with programmed DNA hydrogels for rapidly sampling and sensitively sensing of specific microRNA in dermal interstitial fluid[J]. ACS Nano, 2022, 16(11): 18366-18375. doi: 10.1021/acsnano.2c06261
计量
- 文章访问数: 22
- HTML全文浏览量: 15
- 被引次数: 0