留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维/金属细观混杂薄壁吸能圆管设计与耐撞性能测试

刘丽霞 杨海洋 张众 祁俊峰 雷红帅

刘丽霞, 杨海洋, 张众, 等. 纤维/金属细观混杂薄壁吸能圆管设计与耐撞性能测试[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 刘丽霞, 杨海洋, 张众, 等. 纤维/金属细观混杂薄壁吸能圆管设计与耐撞性能测试[J]. 复合材料学报, 2024, 42(0): 1-11.
LIU Lixia, YANG Haiyang, ZHANG Zhong, et al. Mesoscopic hybrid design and crashworthiness properties of thin-walled energy-absorbing tubes[J]. Acta Materiae Compositae Sinica.
Citation: LIU Lixia, YANG Haiyang, ZHANG Zhong, et al. Mesoscopic hybrid design and crashworthiness properties of thin-walled energy-absorbing tubes[J]. Acta Materiae Compositae Sinica.

纤维/金属细观混杂薄壁吸能圆管设计与耐撞性能测试

详细信息
    通讯作者:

    雷红帅,博士,教授,博士生导师,研究方向为新型轻质多功能结构设计、制备与性能表征 E-mail: lei123 shuai@126.com

  • 中图分类号: TB332

Mesoscopic hybrid design and crashworthiness properties of thin-walled energy-absorbing tubes

  • 摘要: 随着交通事故和能源消耗等问题的日益突显,轻质薄壁吸能结构成为碰撞防护领域重要的研究方向。本研究考虑传统金属材料及复合材料的吸能特点,提出了一种纤维/金属交错铺层的细观混杂复合材料薄壁圆管设计方法。通过非均匀缠绕铺设和一体化成型方法,制备了混杂圆管试样。通过轴向压缩和落锤冲击实验,测试了结构准静态和动态力学响应。采用多种耐撞性能指标量化分析了力学响应曲线,并与金属试样进行了对比。结果表明:纤维/金属细观混杂设计可有效提高薄壁吸能结构的比吸能,降低吸能平台的载荷波动。准静态加载下,碳纤/铝混杂圆管比吸能提升了约54.3%,吸能效率增加至0.8。动态冲击下,玻纤/铝混杂圆管保持了准静态失效模式,比吸能提升了约24.7%,吸能效率保持在0.44。本研究验证了纤维/金属细观混杂铺层在碰撞防护领域的应用潜力,为轻质薄壁吸能结构设计提供了新思路与参考实例。

     

  • 图  1  薄壁吸能结构在各领域中的应用

    Figure  1.  Application of thin-walled energy-absorbing structures in various fields

    图  2  纤维/铝合金细观混杂圆管的一体成型制备

    Figure  2.  The integrated molding method of fiber/aluminum alloy mesoscopic hybrid tubes

    图  3  不同内径尺寸的均质材料和纤维/铝细观混杂圆管试样

    Figure  3.  Homogeneous and fiber/aluminmum alloy mesos mesoscopic hybrid tubes with different diameters

    图  4  准静态与动态冲击实验加载装置

    Figure  4.  Quasi-static and dynamic impact test loading devices

    图  5  典型载荷-位移曲线与耐撞性能指标对应关系

    Figure  5.  The correspondence between typical load-displacement curve and crashworthiness indices

    图  6  铝合金薄壁圆管的准静态压缩响应曲线

    Figure  6.  Quasi-state compression curves of aluminum tubes

    图  7  碳纤玻纤复合材料薄壁圆管的准静态压缩响应曲线

    Figure  7.  Quasi-state compression curves of carbon and glass fiber composite tubes

    图  8  复合材料薄壁圆管试样准静态压缩失效模式

    Figure  8.  The failure modes of composite tubes under quasi-state compression

    图  9  纤维/铝细观混杂薄壁圆管的准静态压缩响应曲线:(a)碳纤/铝混杂;(b)玻纤/铝混杂

    Figure  9.  Quasi-state compression curves of composite/aluminum hybrid tubes: (a) carbon fiber /aluminium hybrid; (b) glass fiber /aluminium hybrid

    图  10  纤维/铝混杂薄壁圆管的准静态压缩失效模式:(a)碳纤/铝混杂;(b)玻纤/铝混杂;(c)电子显微镜观察损伤形貌;(d)摄像机观察压缩失稳现象

    Figure  10.  Quasi-static compression failure mode of composite/aluminum hybrid tubes: (a) carbon fiber /aluminium hybrid; (b) glass fiber /aluminium hybrid; (c) SEM failure morphology; (d) structural buckling performance

    图  11  薄壁圆管试样的落锤冲击响应:(a)铝合金圆管;(b)碳纤复合材料圆管;(c)玻纤复合材料圆管;(d)碳纤/铝混杂圆管;(e)玻纤/铝混杂圆管

    Figure  11.  Impact response of thin-walled tubes: (a) aluminium alloy; (b) carbon fiber reinforced composite; (c) glass fiber reinforced composite; (d) carbon fiber /aluminium hybrid; (e) glass fiber /aluminium hybrid

    图  12  冲击载荷下各类薄壁圆管试样冲击载荷失效模式

    Figure  12.  Failure modes of various thin-walled tubes under impact load

    表  1  均质薄壁圆管与纤维/铝细观混杂结构的试样结构参数

    Table  1.   Specific structural parameters of homogeneous and mesoscopic hybrid tubes

    Type Specimen number Height/
    mm
    Diameter/
    mm
    Thickness/
    mm
    Mass/
    g
    Density/
    (g·cm−3)
    Ply stacking sequence
    6061-Al tubes Al-D41 80 41 2.00 55.93 2.56 - -
    Al-D56 80 56 2.00 74.33
    Al-D76 80 76 2.00 99.77
    Homogeneous tubes CF-D40 80 40 1.96 27.60 1.35 [CF]8 ■■■■■■■■
    CF-D60 80 60 1.90 40.52
    CF-D80 80 80 1.90 52.34
    GF-D40 80 40 2.15 38.44 1.68 [GF]8 □□□□□□□□
    GF-D60 80 60 2.20 57.27
    GF-D80 80 80 2.20 77.24
    Mesoscopic hybrid tubes CAC-D40 80 40 1.96 29.32 1.46 [CF2/Al/CF]S ■■Α■■Α■■
    CAC-D60 80 60 1.90 43.84
    CAC-D80 80 80 1.90 58.20
    GAG-D40 80 40 1.93 37.65 1.88 [GF2/Al/GF]S □□Α□□Α□□
    GAG-D60 80 60 1.92 56.25
    GAG-D80 80 80 1.92 74.80
    Notes: ■ represents carbon fiber composite; □ represents glass fiber composite; “A” represents aluminmum.
    下载: 导出CSV

    表  2  薄壁圆管试样的各类耐撞性指标汇总

    Table  2.   Summary of crashworthiness parameters for thin-walled tubes

    Type Specimen number SEA/(kJ∙kg−1) PCF/kN MCF/kN CFE
    Al alloy Al-D41 35.58 58.35 33.48 0.57
    Al-D56 32.31 77.71 40.78 0.53
    Al-D76 28.48 108.34 48.36 0.47
    CFRP CF-D40 58.11 48.74 27.02 0.56
    CF-D60 55.85 61.23 38.54 0.64
    CF-D80 54.11 88.23 48.61 0.56
    CF/Al hybrid CAC-D40 54.91 33.69 26.87 0.80
    CAC-D60 48.81 48.29 35.64 0.74
    CAC-D80 41.62 70.27 40.24 0.57
    GFRP GF-D40 50.72 83.84 33.49 0.40
    GF-D60 50.45 125.82 50.17 0.40
    GF-D80 46.73 176.31 61.93 0.35
    GF/Al hybrid GAG-D40 43.03 50.38 27.00 0.54
    GAG-D60 18.49 74.31 17.35 0.23
    GAG-D80 12.30 79.91 15.38 0.20
    Notes: SEA represents the specific energy absorption; PCF represents the peak crushing force; MCF represents the mean crushing force; CFE represents crushing force efficiency.
    下载: 导出CSV

    表  3  动态冲击下薄壁圆管试样的各类耐撞性指标汇总

    Table  3.   Summary of crashworthiness parameters for thin-walled tubes under dynamic impact

    Type Specimen number SEA/(kJ∙kg−1) PCF/kN MCF/kN CFE
    Al alloy Al-D41 36.13 83.46 42.27 0.51
    Al-D56 34.39 89.68 43.31 0.48
    Al-D76 31.55 125.09 48.03 0.38
    CFRP CF-D40 46.11 62.94 21.44 0.35
    CF-D60 46.20 79.07 31.88 0.42
    CF-D80 40.18 105.22 36.10 0.35
    CF/Al hybrid CAC-D40 40.24 45.96 16.69 0.43
    CAC-D60 39.20 73.21 28.62 0.40
    CAC-D80 36.78 106.11 35.56 0.34
    GFRP GF-D40 49.10 76.03 32.42 0.43
    GF-D60 43.25 81.54 43.01 0.53
    GF-D80 43.19 116.76 57.24 0.50
    GF/Al hybrid GAG-D40 45.05 62.99 28.27 0.44
    GAG-D60 17.75 83.03 16.66 0.32
    GAG-D80 13.81 94.23 17.26 0.23
    Notes: SEA represents the specific energy absorption; PCF represents the peak crushing force; MCF represents the mean crushing force; CFE represents crushing force efficiency.
    下载: 导出CSV
  • [1] 许中志. 中国城市公共交通特点现状及发展趋势[J]. 人民公交, 2022, 154(10) : 10-19.

    XU Z Characteristics and development trend of urban public transport in China[J]. Public Transport, 2022, 154(10) : 10-19 (in Chinese).
    [2] 余同希, 卢国兴. 材料与结构的能量吸收 [M]. 北京: 化学工业出版社, 2006.

    YU T, LU G. Energy absorption of materials and structures [M]. Beijing: Chemical Industry Publisher, 2006 (in Chinese).
    [3] LIU Q, SHEN H, WU Y, et al. Crash responses under multiple impacts and residual properties of CFRP and aluminum tubes[J]. Composite Structures, 2018, 194: 87-103. doi: 10.1016/j.compstruct.2018.04.001
    [4] YANG X, MA J, WEN D, et al. Crashworthy design and energy absorption mechanisms for helicopter structures: A systematic literature review[J]. Progress in Aerospace Sciences, 2020, 114: 100618. doi: 10.1016/j.paerosci.2020.100618
    [5] ZHOU J, JIA S, QIAN J, et al. Improving the buffer energy absorption characteristics of movable lander-numerical and experimental studies[J]. Materials, 2020, 13(15): 3340. doi: 10.3390/ma13153340
    [6] GOEL M D, MATSAGAR V A. Blast-resistant design of structures[J]. Practice Periodical on Structural Design Construction, 2014, 19(2): 04014007. doi: 10.1061/(ASCE)SC.1943-5576.0000188
    [7] FANG H, MAO Y, LIU W, et al. Manufacturing and evaluation of Large-scale Composite Bumper System for bridge pier protection against ship collision[J]. Composite Structures, 2016, 158: 187-198. doi: 10.1016/j.compstruct.2016.09.013
    [8] 吕睿, 任毅如. C型CFRP薄壁结构轴向吸能特性及其触发机制[J]. 复合材料学报, 2023, 40(10): 5948-5957.

    LV R, REN Y. Axial energy absorption characteristics and trigger mechanism of C-channel CFRP thin-walled structures[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5948-5957 (in Chinese).
    [9] 朱国华, 竺森森, 胡珀, 等. CFRP薄壁结构多尺度建模及耐撞性分析[J]. 复合材料学报, 2023, 40(6): 3626-3639.

    ZHU G, ZHU S, HU P, et al. Multi-scale modeling and crashworthiness analysis of CFRP thin-walled structures[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3626-3639 (in Chinese).
    [10] YAO R, PANG T, ZHANG B, et al. On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects[J]. Thin-Walled Structures, 2023, 189: 110734. doi: 10.1016/j.tws.2023.110734
    [11] YANG H, REN Y, YAN L. Multi-cell designs for improving crashworthiness of metal tube under the axial crushing load[J]. International Journal of Crashworthiness, 2022, 28(3): 365-377.
    [12] GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes[J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103-2123. doi: 10.1016/S0020-7403(01)00031-5
    [13] ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, (1): 10-15.
    [14] ABRAMOWICZ W, JONES N. Dynamic axial crushing of circular tubes[J]. International Journal of Impact Engineering, 1984, 2(3): 263-281. doi: 10.1016/0734-743X(84)90010-1
    [15] SINGACE A, ELSOBKY H, STRUCTURES. Further experimental investigation on the eccentricity factor in the progressive crushing of tubes[J]. International journal of solids structures, 1996, 33(24): 3517-3538. doi: 10.1016/0020-7683(95)00195-6
    [16] SINGACE A A. Axial crushing analysis of tubes deforming in the multi-lobe mode[J]. International Journal of Mechanical Sciences, 1999, 41(7): 865-890. doi: 10.1016/S0020-7403(98)00052-6
    [17] HANSSEN A C, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler[J]. International Journal of Impact Engineering, 2000, 24(5): 475-507. doi: 10.1016/S0734-743X(99)00170-0
    [18] RICCIARDI M R, PAPA I, LOPRESTO V, et al. Experimental characterization of the crashworthiness of carbon fiber reinforced epoxy composites[J]. Progress in Aerospace Sciences, 2024, : 101003.
    [19] 赵云, 杨波, 陶子伟, 等. 纤维增强树脂基防弹复合材料吸能机制及损伤模式研究进展[J]. 复合材料学报, 2024, 42: 1-23.

    ZHAO Y, YANG B, TAO Z, et al. Research progress on energy absorption mechanism and damage mode of fiber reinforced resin based bulletproof composites[J]. Acta Materiae Compositae Sinica, 2024, 42 1-23 (in Chinese).
    [20] HULL D. A unified approach to progressive crushing of fibre-reinforced composite tubes[J]. Composites Science and Technology, 1991, 40(4): 377-421. doi: 10.1016/0266-3538(91)90031-J
    [21] FARLEY G L, JONES R M. Crushing characteristics of composite tubes with" near-elliptical" cross sections[J]. Journal of Composite Materials, 1992, 26(12): 1741-1751. doi: 10.1177/002199839202601203
    [22] MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. Analysis of failure mechanisms observed in axial collapse of thin-walled circular fibreglass composite tubes[J]. Thin-Walled Structures, 1996, 24(4): 335-352. doi: 10.1016/0263-8231(95)00042-9
    [23] MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. Analytical modelling of the static and dynamic axial collapse of thin-walled fibreglass composite conical shells[J]. International Journal of Impact Engineering, 1997, 19(5-6): 477-492. doi: 10.1016/S0734-743X(97)00007-9
    [24] GARNER D M, ADAMS D O. Test methods for composites crashworthiness: A review[J]. Journal of Advanced Materials, 2008, 40(4): 5-26.
    [25] MENG J, ZHENG H, WEI Y, et al. Leakage performance of CFRP laminate under cryogenic temperature: Experimental and simulation study[J]. Composites Science and Technology, 2022, 226.
    [26] ABDULLAH N A Z, SANI M S M, SALWANI M S, et al. A review on crashworthiness studies of crash box structure[J]. Thin-Walled Structures, 2020, 153: 106795. doi: 10.1016/j.tws.2020.106795
    [27] HEN I, SAKOV A, KAFKAFI N, et al. The dynamics of spatial behavior: how can robust smoothing techniques help?[J]. J Neurosci Methods, 2004, 133(1-2): 161-172. doi: 10.1016/j.jneumeth.2003.10.013
  • 加载中
计量
  • 文章访问数:  48
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-07-30
  • 录用日期:  2024-08-19
  • 网络出版日期:  2024-09-07

目录

    /

    返回文章
    返回