Mesoscopic hybrid design and crashworthiness properties of thin-walled energy-absorbing tubes
-
摘要: 随着交通事故和能源消耗等问题的日益突显,轻质薄壁吸能结构成为碰撞防护领域重要的研究方向。本研究考虑传统金属材料及复合材料的吸能特点,提出了一种纤维/金属交错铺层的细观混杂复合材料薄壁圆管设计方法。通过非均匀缠绕铺设和一体化成型方法,制备了混杂圆管试样。通过轴向压缩和落锤冲击实验,测试了结构准静态和动态力学响应。采用多种耐撞性能指标量化分析了力学响应曲线,并与金属试样进行了对比。结果表明:纤维/金属细观混杂设计可有效提高薄壁吸能结构的比吸能,降低吸能平台的载荷波动。准静态加载下,碳纤/铝混杂圆管比吸能提升了约54.3%,吸能效率增加至0.8。动态冲击下,玻纤/铝混杂圆管保持了准静态失效模式,比吸能提升了约24.7%,吸能效率保持在0.44。本研究验证了纤维/金属细观混杂铺层在碰撞防护领域的应用潜力,为轻质薄壁吸能结构设计提供了新思路与参考实例。Abstract: With the increasing issues of traffic accidents and energy security, lightweight thin-walled energy-absorbing structures have emerged as a crucial subject in the field of collision protection. In this research, a novel design for thin-walled mesoscopic hybrid tubes with composite/metal interleaved layers was proposed, considering the mechanical characteristics of metal and composite materials. A series of hybrid samples were fabricated through a non-uniform winding method. The quasi-static and dynamic mechanical responses were tested through axial compression and drop-weight impact experiments. Various crashworthiness indices were utilized to quantitatively analyze the mechanical performances. The results demonstrate that the composite/metal mesoscopic hybrid design effectively enhances the specific energy absorption and reduces the load fluctuation. In the quasi-static loading state, the carbon fiber/aluminum hybrid tubes show an increase in specific energy absorption by approximately 54.3% compared with the aluminum and an energy efficiency improvement to 0.8. In the dynamic impact state, the glass fiber/aluminum hybrid tubes maintain the same failure modes with quasi-static. The specific energy absorption increases by approximately 24.7% and the energy efficiency maintains at 0.44. This research validates the application potential of composite/metal mesoscopic hybrid design in the field of collision protection, providing new insights and reference examples for the lightweight thin-walled energy-absorbing structures.
-
表 1 均质薄壁圆管与纤维/铝细观混杂结构的试样结构参数
Table 1. Specific structural parameters of homogeneous and mesoscopic hybrid tubes
Type Specimen number Height/
mmDiameter/
mmThickness/
mmMass/
gDensity/
(g·cm−3)Ply stacking sequence 6061-Al tubes Al-D41 80 41 2.00 55.93 2.56 - - Al-D56 80 56 2.00 74.33 Al-D76 80 76 2.00 99.77 Homogeneous tubes CF-D40 80 40 1.96 27.60 1.35 [CF]8 ■■■■■■■■ CF-D60 80 60 1.90 40.52 CF-D80 80 80 1.90 52.34 GF-D40 80 40 2.15 38.44 1.68 [GF]8 □□□□□□□□ GF-D60 80 60 2.20 57.27 GF-D80 80 80 2.20 77.24 Mesoscopic hybrid tubes CAC-D40 80 40 1.96 29.32 1.46 [CF2/Al/CF]S ■■Α■■Α■■ CAC-D60 80 60 1.90 43.84 CAC-D80 80 80 1.90 58.20 GAG-D40 80 40 1.93 37.65 1.88 [GF2/Al/GF]S □□Α□□Α□□ GAG-D60 80 60 1.92 56.25 GAG-D80 80 80 1.92 74.80 Notes: ■ represents carbon fiber composite; □ represents glass fiber composite; “A” represents aluminmum. 表 2 薄壁圆管试样的各类耐撞性指标汇总
Table 2. Summary of crashworthiness parameters for thin-walled tubes
Type Specimen number SEA/(kJ∙kg−1) PCF/kN MCF/kN CFE Al alloy Al-D41 35.58 58.35 33.48 0.57 Al-D56 32.31 77.71 40.78 0.53 Al-D76 28.48 108.34 48.36 0.47 CFRP CF-D40 58.11 48.74 27.02 0.56 CF-D60 55.85 61.23 38.54 0.64 CF-D80 54.11 88.23 48.61 0.56 CF/Al hybrid CAC-D40 54.91 33.69 26.87 0.80 CAC-D60 48.81 48.29 35.64 0.74 CAC-D80 41.62 70.27 40.24 0.57 GFRP GF-D40 50.72 83.84 33.49 0.40 GF-D60 50.45 125.82 50.17 0.40 GF-D80 46.73 176.31 61.93 0.35 GF/Al hybrid GAG-D40 43.03 50.38 27.00 0.54 GAG-D60 18.49 74.31 17.35 0.23 GAG-D80 12.30 79.91 15.38 0.20 Notes: SEA represents the specific energy absorption; PCF represents the peak crushing force; MCF represents the mean crushing force; CFE represents crushing force efficiency. 表 3 动态冲击下薄壁圆管试样的各类耐撞性指标汇总
Table 3. Summary of crashworthiness parameters for thin-walled tubes under dynamic impact
Type Specimen number SEA/(kJ∙kg−1) PCF/kN MCF/kN CFE Al alloy Al-D41 36.13 83.46 42.27 0.51 Al-D56 34.39 89.68 43.31 0.48 Al-D76 31.55 125.09 48.03 0.38 CFRP CF-D40 46.11 62.94 21.44 0.35 CF-D60 46.20 79.07 31.88 0.42 CF-D80 40.18 105.22 36.10 0.35 CF/Al hybrid CAC-D40 40.24 45.96 16.69 0.43 CAC-D60 39.20 73.21 28.62 0.40 CAC-D80 36.78 106.11 35.56 0.34 GFRP GF-D40 49.10 76.03 32.42 0.43 GF-D60 43.25 81.54 43.01 0.53 GF-D80 43.19 116.76 57.24 0.50 GF/Al hybrid GAG-D40 45.05 62.99 28.27 0.44 GAG-D60 17.75 83.03 16.66 0.32 GAG-D80 13.81 94.23 17.26 0.23 Notes: SEA represents the specific energy absorption; PCF represents the peak crushing force; MCF represents the mean crushing force; CFE represents crushing force efficiency. -
[1] 许中志. 中国城市公共交通特点现状及发展趋势[J]. 人民公交, 2022, 154(10) : 10-19.XU Z Characteristics and development trend of urban public transport in China[J]. Public Transport, 2022, 154(10) : 10-19 (in Chinese). [2] 余同希, 卢国兴. 材料与结构的能量吸收 [M]. 北京: 化学工业出版社, 2006.YU T, LU G. Energy absorption of materials and structures [M]. Beijing: Chemical Industry Publisher, 2006 (in Chinese). [3] LIU Q, SHEN H, WU Y, et al. Crash responses under multiple impacts and residual properties of CFRP and aluminum tubes[J]. Composite Structures, 2018, 194: 87-103. doi: 10.1016/j.compstruct.2018.04.001 [4] YANG X, MA J, WEN D, et al. Crashworthy design and energy absorption mechanisms for helicopter structures: A systematic literature review[J]. Progress in Aerospace Sciences, 2020, 114: 100618. doi: 10.1016/j.paerosci.2020.100618 [5] ZHOU J, JIA S, QIAN J, et al. Improving the buffer energy absorption characteristics of movable lander-numerical and experimental studies[J]. Materials, 2020, 13(15): 3340. doi: 10.3390/ma13153340 [6] GOEL M D, MATSAGAR V A. Blast-resistant design of structures[J]. Practice Periodical on Structural Design Construction, 2014, 19(2): 04014007. doi: 10.1061/(ASCE)SC.1943-5576.0000188 [7] FANG H, MAO Y, LIU W, et al. Manufacturing and evaluation of Large-scale Composite Bumper System for bridge pier protection against ship collision[J]. Composite Structures, 2016, 158: 187-198. doi: 10.1016/j.compstruct.2016.09.013 [8] 吕睿, 任毅如. C型CFRP薄壁结构轴向吸能特性及其触发机制[J]. 复合材料学报, 2023, 40(10): 5948-5957.LV R, REN Y. Axial energy absorption characteristics and trigger mechanism of C-channel CFRP thin-walled structures[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5948-5957 (in Chinese). [9] 朱国华, 竺森森, 胡珀, 等. CFRP薄壁结构多尺度建模及耐撞性分析[J]. 复合材料学报, 2023, 40(6): 3626-3639.ZHU G, ZHU S, HU P, et al. Multi-scale modeling and crashworthiness analysis of CFRP thin-walled structures[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3626-3639 (in Chinese). [10] YAO R, PANG T, ZHANG B, et al. On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects[J]. Thin-Walled Structures, 2023, 189: 110734. doi: 10.1016/j.tws.2023.110734 [11] YANG H, REN Y, YAN L. Multi-cell designs for improving crashworthiness of metal tube under the axial crushing load[J]. International Journal of Crashworthiness, 2022, 28(3): 365-377. [12] GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes[J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103-2123. doi: 10.1016/S0020-7403(01)00031-5 [13] ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, (1): 10-15. [14] ABRAMOWICZ W, JONES N. Dynamic axial crushing of circular tubes[J]. International Journal of Impact Engineering, 1984, 2(3): 263-281. doi: 10.1016/0734-743X(84)90010-1 [15] SINGACE A, ELSOBKY H, STRUCTURES. Further experimental investigation on the eccentricity factor in the progressive crushing of tubes[J]. International journal of solids structures, 1996, 33(24): 3517-3538. doi: 10.1016/0020-7683(95)00195-6 [16] SINGACE A A. Axial crushing analysis of tubes deforming in the multi-lobe mode[J]. International Journal of Mechanical Sciences, 1999, 41(7): 865-890. doi: 10.1016/S0020-7403(98)00052-6 [17] HANSSEN A C, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler[J]. International Journal of Impact Engineering, 2000, 24(5): 475-507. doi: 10.1016/S0734-743X(99)00170-0 [18] RICCIARDI M R, PAPA I, LOPRESTO V, et al. Experimental characterization of the crashworthiness of carbon fiber reinforced epoxy composites[J]. Progress in Aerospace Sciences, 2024, : 101003. [19] 赵云, 杨波, 陶子伟, 等. 纤维增强树脂基防弹复合材料吸能机制及损伤模式研究进展[J]. 复合材料学报, 2024, 42: 1-23.ZHAO Y, YANG B, TAO Z, et al. Research progress on energy absorption mechanism and damage mode of fiber reinforced resin based bulletproof composites[J]. Acta Materiae Compositae Sinica, 2024, 42 1-23 (in Chinese). [20] HULL D. A unified approach to progressive crushing of fibre-reinforced composite tubes[J]. Composites Science and Technology, 1991, 40(4): 377-421. doi: 10.1016/0266-3538(91)90031-J [21] FARLEY G L, JONES R M. Crushing characteristics of composite tubes with" near-elliptical" cross sections[J]. Journal of Composite Materials, 1992, 26(12): 1741-1751. doi: 10.1177/002199839202601203 [22] MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. Analysis of failure mechanisms observed in axial collapse of thin-walled circular fibreglass composite tubes[J]. Thin-Walled Structures, 1996, 24(4): 335-352. doi: 10.1016/0263-8231(95)00042-9 [23] MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. Analytical modelling of the static and dynamic axial collapse of thin-walled fibreglass composite conical shells[J]. International Journal of Impact Engineering, 1997, 19(5-6): 477-492. doi: 10.1016/S0734-743X(97)00007-9 [24] GARNER D M, ADAMS D O. Test methods for composites crashworthiness: A review[J]. Journal of Advanced Materials, 2008, 40(4): 5-26. [25] MENG J, ZHENG H, WEI Y, et al. Leakage performance of CFRP laminate under cryogenic temperature: Experimental and simulation study[J]. Composites Science and Technology, 2022, 226. [26] ABDULLAH N A Z, SANI M S M, SALWANI M S, et al. A review on crashworthiness studies of crash box structure[J]. Thin-Walled Structures, 2020, 153: 106795. doi: 10.1016/j.tws.2020.106795 [27] HEN I, SAKOV A, KAFKAFI N, et al. The dynamics of spatial behavior: how can robust smoothing techniques help?[J]. J Neurosci Methods, 2004, 133(1-2): 161-172. doi: 10.1016/j.jneumeth.2003.10.013
计量
- 文章访问数: 48
- HTML全文浏览量: 33
- 被引次数: 0