留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻燃离子液体制备与应用研究进展

杨英 王兴龙 申纯宇 李翠利 汤建伟 刘咏 刘鹏飞 丁俊祥 申博 王保明

杨英, 王兴龙, 申纯宇, 等. 阻燃离子液体制备与应用研究进展[J]. 复合材料学报, 2024, 42(0): 1-21.
引用本文: 杨英, 王兴龙, 申纯宇, 等. 阻燃离子液体制备与应用研究进展[J]. 复合材料学报, 2024, 42(0): 1-21.
YANG Ying, WANG Xinglong, SHEN Chunyu, et al. Research progress in the preparation and application of flame retardant ionic liquids[J]. Acta Materiae Compositae Sinica.
Citation: YANG Ying, WANG Xinglong, SHEN Chunyu, et al. Research progress in the preparation and application of flame retardant ionic liquids[J]. Acta Materiae Compositae Sinica.

阻燃离子液体制备与应用研究进展

基金项目: 国家自然科学基金面上项目(22278381);河南省重点研发专项项目(231111320502);郑州大学青年骨干教师培养计划项目(2021ZDGGJS015)
详细信息
    通讯作者:

    王保明,博士,副教授,博士生导师,研究方向为结晶过程与功能材料制备 E-mail:ziqiangdere@126.com

  • 中图分类号: O6-1; TB332

Research progress in the preparation and application of flame retardant ionic liquids

Funds: National Natural Science Foundation of China (22278381); Henan Province Key R&D Special Project (2311111320502); Zhengzhou University Youth Backbone Teacher Training Program Project (2021ZDGGJS015)
  • 摘要: 随着高分子材料科学技术的发展,已被广泛应用的塑料、橡胶等高分子材料因其阻燃性能差,容易引发火灾而受到越来越多的关注。阻燃材料具有耐高温、减少燃烧物产生、降低火焰传播速度和烟雾量的特性,离子液体(Ionic Liquids, ILs)由于其高热稳定性和气相阻燃、抑制自由基等反应能力,具有有效抑制火焰蔓延的特性,成为了新型的阻燃材料。因其阴阳离子的结构可调控性、环境友好性等特点,逐渐应用于阻燃领域。简要介绍了离子液体的种类,制备方法以及其阻燃机制,接着围绕离子液体在聚合物、纺织物与电子材料等各种高分子材料中的阻燃应用进行了详细介绍,最后对离子液体在阻燃应用方面的发展做出了展望。

     

  • 图  1  阻燃离子液体概况

    Figure  1.  Overview of flame retardant ionic liquids

    图  2  VE[DEP]的合成路线图[21]

    Figure  2.  The synthesis roadmap of VE [DEP][21]

    图  3  SiMP 合成路线图[22]

    Figure  3.  The synthesis roadmap of SiMP [22]

    图  4  阻燃机制示意图[33]

    Figure  4.  Schematic diagram of flame retardant mechanism[33]

    图  5  TPP-PF6在EP复合材料中的阻燃机制[35]

    Figure  5.  Flame retardant mechanism of TPP-PF6 in EP composite materials[35]

    图  6  PLA复合膜的制备流程示意图[8]

    Figure  6.  Schematic diagram of PLA composite membrane preparation process [8]

    图  7  UL 94 测试 PVA 和 PL-20 的照片[8]

    Figure  7.  Photos of UL 94 test PVA and PL-20[8]

    图  8  EP和EP/[Dmim]Tos的放热率(a)总放热率(b)发烟率(c)和总发烟量(d)曲线[40]

    Figure  8.  Heat release rate (a)total heat release (b) smoke production rate (c) and total smoke release (d) curves of EP and EP/[Dmim]Tos.[40]

    图  9  棉花(a1),Cot/AEP/IL (b1)和Cot/AEP/IL/Cu (c1)的数码照片;棉花(a2, a3),Cot/AEP/IL (b2, b3)和Cot/AEP/IL/Cu (c2, c3)的SEM图像;Cot/AEP/IL/Cu (d)的元素映射谱[44]

    Figure  9.  The digital photos of Cotton (a1), Cot/AEP/IL (b1), and Cot/AEP/IL/Cu (c1); SEM images of Cotton (a2, a3), Cot/AEP/IL (b2, b3), and Cot/AEP/IL/Cu (c2, c3); element mapping spectra of Cot/AEP/IL/Cu (d)[44]

    图  10  (a) R-PU膜热分解后气产物的三维红外光谱;(b) FR-ILPU膜热分解后气体产物的三维红外光谱;(c) 膜在热降解过程中释放的总气体;(d) FR-ILPU分解后碳层表面位置A的SEM-EDX结果;(e) FR-ILPU分解后内碳层B位的SEM-EDX结果;(f) FR-ILPU膜阻燃机制示意图[47]

    Figure  10.  (a) The 3 D-infrared spectra of gas products after the thermal decomposition of R–PU membrane; (b) The 3 D-infrared spectra of gas products after the thermal decomposition of FR-ILPU membrane; (c) The total gas release of membranes during the thermal degradation; (d) SEM-EDX result for position A in the surface of carbon layer after the decomposition of FR-ILPU; (e) SEM-EDX result for position B of the inner carbon layer after the decomposition of FR-ILPU; (f) Schematic diagram of the flame retardant mechanism of FR-ILPU membrane[47]

    图  11  IIL-E在不同[Bmim]PF6含量下的热稳定性[48]

    Figure  11.  Thermal stability of IIL-E under different [Bmim]PF6 contents[48]

    图  12  (a) 阻燃聚氨酯/碳复合泡沫的制造。(b) IL催化PUF在水存在下形成的合理机制[51]

    Figure  12.  (a) Fabrication of FR polyurethane/carbon composite foam. (b) Plausible mechanism of IL-catalyzed PUF formation in the presence of water[51]

    图  13  FR/RL漆膜在马弗炉500℃燃烧1.5 h的表面(1)和截面(2)SEM图像[52]

    Figure  13.  SEM images of the surface(1) and cross(2) section of FR/RL lacquer film burned at 500℃ for 1.5 h in muffle furnace[52]

    表  1  阻燃离子液体类型

    Table  1.   Types of Flame retardant Ionic Liquids

    Type Chemical name Structural formula Application
    Phosphates L-Aspartic acid phosphate Polyvinyl alcohol[8]
    1,3-dimethylimidazolium methyl phosphate Cellulose[9]
    Silicon salts 1-Methylimidazole chloropropyl triethoxysilane Cellulose fabric[10]
    1-Pyridine chloropropyl triethoxysilane salt Cellulose fabric[10]
    Borates Tetrabutyl tetrafluoroborate phosphate salt Polylactic acid[11]
    Octyltriphenylphosphine chelated orthoborate Epoxy resin[12]
    Imidazole salts 1-Butyl-3-methylimidazole chloride salt Cellulose[13]
    1-Ethyl-3-methylimidazole chloride Polyurethane[14]
    Sulfonates 1-Butyl-3-methylimidazolium methanesulfonate Polyamide 6[15]
    1-Butyl-3-methylimidazolium methanesulfonate Polyamide 6[15]
    下载: 导出CSV

    表  2  不同类型阻燃离子液体参数

    Table  2.   Parameters of Different Types of Flame retardant Ionic Liquids

    Typemelting pointboiling pointFeatureDisadvantage
    Phosphates>150°C<200°CHigh thermal stability, strong solubility, and wide liquid phase rangeMay contain highly toxic phosphorus elements, resulting in higher preparation costs
    Silicon salts>200°C<300°CLow melting point, good electrochemical stabilityHas high viscosity, which is not conducive to fluidity and mixing.
    Borates>200°C<250°CHas strong acidity or alkalinity, good solubilityMay be too acidic or alkaline
    Imidazole salts<25°CAround 200°CHas high thermal stability and good solubilityMay have certain toxicity to organisms and high preparation cost
    Sulfonates>200°C<300°CHas high conductivity and good solubilityThe high solubility in water may lead to some electrolyte loss issues
    下载: 导出CSV

    表  3  阻燃离子液体在聚合物上的应用

    Table  3.   Application of flame retardant ionic liquids on polymers

    Ionic liquidPolymer matrixIonic liquid composite methodIonic liquid addition amountFlame retardant effect parameters (LOI)Flame retardant mechanismReference
    L-Aspartic acid phosphatePolyvinyl alcohol(PVA)Graft20 wt%30.1%The main consumption effect[8]
    1-(3-Triethoxysilylpropyl)-3-methylimidazolium ChlorideHigh density polyethylene(HDPE)Blending1 wt%27.6%The main carbonization effect[38]
    1-ethyl-3-(diethoxyphosphoryl)-propylimidazolium bromidePolyurethane elastomer(IFR/TPU)Blending10 wt%30.1%The main carbonization effect[39]
    1-methyl-3-((6-oxidodibenzo[c,e][1,2]oxaphosphinin-6-yl)methyl)-1 H-imidazol-3-ium 4-methylbenzenesulfonateEpoxy resin(EP)Blending4 wt%32.5%The main consumption effect[40]
    1-methylimidazole - 3-bromopropylamine hydrobromideEpoxy resin(EP)Blending3 wt%29.8%The main consumption effect[41]
    下载: 导出CSV

    表  4  阻燃离子液体在纺织品上的应用

    Table  4.   Application of flame retardant ionic liquids in textiles

    Ionic liquid Polymer matrix Ionic liquid composite method Ionic liquid addition amount Flame retardant effect parameters (LOI) Flame retardant mechanism Reference
    Hexafluorophosphate N-Hexylpyridinium Polyacrylate PA, polyurethane PU, and latex Blending 2 wt% 29.3% The main carbonization effect [43]
    1-aminopropyl-3-methylimidazolium hexafluorophosphate Cotton fabric Graft 5 wt% 28.5% The main carbonization effect [44]
    1,3-dimethylimidazolium methylphosphonate
    1-ethyl-3-methylimidazolium methylphosphonate
    Cellulose Graft 5 wt% 32.5% The main carbonization effect [9]
    下载: 导出CSV

    表  5  阻燃离子液体在电子材料上的应用

    Table  5.   Application of flame retardant ionic liquids in electronic materials

    Ionic liquid Polymer matrix Ionic liquid composite method Ionic liquid addition amount Flame retardant effect parameters (LOI) Flame retardant mechanism Reference
    N-methylimidazole tetrafluoroborate diethylene glycol ether Polyurethane PU Graft 15 wt% 32.3% The main consumption effect [47]
    1-butyl-3-menthylimidazolium-hexafluorophosphate Commercial organic electrolytes Blending 5 wt% 30.2% The main consumption effect [48]
    POSS-Imidazoli ionic liquids Polyionic liquid Copolymerization 2 wt% 33.5% The main consumption effect [49]
    下载: 导出CSV

    表  6  阻燃离子液体在其他材料上的应用

    Table  6.   Application of flame retardant ionic liquids on other materials

    Ionic liquid Polymer matrix Ionic liquid composite method Ionic liquid addition amount Flame retardant effect parameters (LOI) Flame retardant mechanism Reference
    1-Butyl-3 methylimidazole hexasodium fluorophosphate Epoxy resin(EP) Graft 15 wt% 37% The main carbonization effect [50]
    1-butyl-3-methylimidazolium dibutylphosphate Polyurethane foam(PUF) Blending 4.9 wt% 30.4% The main carbonization effect [51]
    tetrabutylphosphonium tetrafluoroborate Raw lacquer Blending 10 wt% 28.6% The main consumption effect [52]
    下载: 导出CSV
  • [1] 韩申杰, 张恩浩, 卢芸. 建筑用生物质基纤维素保温气凝胶研究进展[J]. 复合材料学报, 2024, 41(1): 108-120.

    HAN Shenjie, ZHANG Enhao, LU Yun. Research progress of biomass-based cellulose insulation aerogel for building[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 108-120(in Chinese).
    [2] 倪清, 来锦波, 彭东岳, 等. 离子液体萃取分离烃类化合物的研究进展[J]. 化工进展, 2022, 41(2): 619-627.

    NI Qing, LAI Jinbo, PENG Dongyue, et al. Progress in extraction separation of hydrocarbons by ionic liquids[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 619-627(in Chinese).
    [3] LUO Q, SHEN H, ZHOU G, et al. A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components[J]. Carbohydrate Polymers, 2023, 303: 120449-120449. doi: 10.1016/j.carbpol.2022.120449
    [4] SONI R, VERMA R, KUMAR GARG R, et al. Progress in aerospace materials and ablation resistant Coatings: A focused review[J]. Optics & Laser Technology, 2024, 177: 111160.
    [5] VAN DER VEEN Ike, DE BOER Jacob. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067
    [6] 王文庆, 李佳錡, 王锐. 功能性离子液体在聚合物阻燃中的应用[J]. 科技导报, 2022, 40(04): 118-128.

    WANG Wenqing , LI Jiaqi, WANG Rui . Application of functionalized ionic liquid in flame retardant polymers[J]. Technology Review , 2022, 40(04): 118-128. (in Chinese)
    [7] 刘建连. 双阳离子型离子液体的制备、热力学特性和阻燃性能研究[D]. 西安: 西北大学, 2021.

    LIU Jianlian . Study on preparation, thermodynamic properties and flame retardance of geminal dicationic ionic liquids[D]. Xian: Northwest University, 2021(in Chinese).
    [8] LIU Meng, CHENG Guojun, TANG Zhongfeng, et al. Flame retardancy performance and mechanism of polyvinyl alcohol films grafted amino acid ionic liquids with high transparency and excellent flexibility[J]. Polymer Degradation and Stability, 2022, 205: 110133. doi: 10.1016/j.polymdegradstab.2022.110133
    [9] KAREN AL Hokayem, ROLAND EL Hage, LENKA Svecova, et al. Flame retardant- functionalized cotton cellulose using phosphonate-based ionic liquids[J]. Molecules, 2020, 25(7): 1629. doi: 10.3390/molecules25071629
    [10] AICHA Boukhriss, SAID Gmouh, HASSAN Hannach, et al. Treatment of cotton fabrics by ionic liquid with PF6 − anion for enhancing their flame retardancy and water repellency[J]. Cellulose, 2016, 23(5): 3355-3364. doi: 10.1007/s10570-016-1016-9
    [11] JIA Yunwan, ZHAO Xi, TENG Fu, et al. Synergy effect between quaternary phosphonium ionic liquid and ammonium polyphosphate toward flame retardant PLA with improved toughness[J]. Composites Part B: Engineering, 2020, 197: 108192. doi: 10.1016/j.compositesb.2020.108192
    [12] GUO Yongliang, CHEN Xiaodong, CUI Jinfeng, et al. Effect of ionic liquid octyltriphenylphosphonium-chelated orthoborates on flame retardance of epoxy[J]. Polymers for Advanced Technologies, 2020, 32(4): 1579-1596.
    [13] WANG Yuanyuan, XIE Tingting, ZHANG Jiayi, et al. Green fabrication of an ionic liquid-activated lignocellulose flame-retardant composite[J]. Industrial Crops and Products, 2022, 178: 114602. doi: 10.1016/j.indcrop.2022.114602
    [14] CZŁONKA Sylwia, STRĄKOWSKA Anna, STRZELEC Krzysztof, et al. Melamine, silica, and ionic liquid as a novel flame retardant for rigid polyurethane foams with enhanced flame retardancy and mechanical properties[J]. Polymer Testing, 2020, 87: 106511. doi: 10.1016/j.polymertesting.2020.106511
    [15] HE Qiuxia, TANG Liang, FU Teng, et al. Novel phosphorus-containing halogen-free ionic liquids: effect of sulfonate anion size on physical properties, biocompatibility, and flame retardancy[J]. RSC Advances, 2016, 6(57): 52485-52494. doi: 10.1039/C6RA09515A
    [16] 邱惠惠, 罗康碧, 李沪萍, 等. 磁性离子液体的制备与应用研究进展[J]. 材料导报, 2015, 29(13): 67-71.

    QIU Huihui, LUO Kangbi, , LI Huping, et al. Research progress on preparation and application of magnetic lonic liquids[J]. Materials Reports, 2015, 29(13): 67-71(in Chinese).
    [17] 蒋平平, 李晓婷, 冷炎, 等. 离子液体制备及其化工应用进展[J]. 化工进展, 2014, 33(11): 2815-2828.

    JIANG Pingping, LI Xiaoting, , LENG Yan, et al. Progress in preparation and chemical application of lonic liquids[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2815-2828(in Chinese).
    [18] 刘宝友, 张佩文. 离子液体的进展——绿色制备及在环境修复中的应用研究[J]. 有机化学, 2018, 38(12): 3176-3188. doi: 10.6023/cjoc201805010

    LIU Baoyou, ZHANG Peiwen. Progress of ionic liquids—green preparation and application research in environmental remediation[J]. Chinese Journal of Organic Chemistry, 2018, 38(12): 3176-3188(in Chinese). doi: 10.6023/cjoc201805010
    [19] BHOWMICK Sourav, FILIPPOV Andrei, KHAN Inayat Ali, et al. Physical and electrochemical properties of new structurally flexible imidazolium phosphate ionic liquids[J]. Physical Chemistry Chemical Physics, 2022, 24(38): 23289-23300. doi: 10.1039/D2CP03022E
    [20] 郑炳云, 傅明连, 彭黎波, 等. 溴化1-乙烯基-3-烷基咪唑离子液体/环氧丙烯酸酯阻燃涂层性能研究[J]. 涂料工业, 2019, 49(1): 13-17+32. doi: 10.12020/j.issn.0253-4312.2019.1.13

    ZHENG Bingyun, FU Minglian, PENG Libo, et al. Properties of flame retardant coatings based on 1-Vinyl-3-alkylimidazole bromide lonic liquid/epoxy acrylate[J]. Paint & Coatings Industry, 2019, 49(1): 13-17+32(in Chinese). doi: 10.12020/j.issn.0253-4312.2019.1.13
    [21] 李彩霞. 聚离子液体阻燃剂的合成及其阻燃机制研究[D]. 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2022.

    LI Caixia. Synthesis and mechanism of poly(ionic liquid) flame retardants[D]. Ningbo: University of Chinese Academy of Sciences(Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences), 2022(in Chinese).
    [22] 李歆. 基于离子液体的膨胀阻燃体系构建及应用研究[D]. 太原: 中北大学, 2021.

    LI Xin. Construction and application of intumescent flame retardant system based on ionic liquids[D]. Taiyuan: North University of China, 2021(in Chinese).
    [23] XIAO Fei, WU Kun, LUO Fubin, et al. An efficient phosphonate-based ionic liquid on flame retardancy and mechanical property of epoxy resin[J]. Journal of Materials Science, 2017, 52(24): 13992-14003. doi: 10.1007/s10853-017-1483-x
    [24] WAN Mei, SHEN Jiahui, SUN Chunfeng, et al. Ionic liquid modified graphene oxide for enhanced flame retardancy and mechanical properties of epoxy resin[J]. Journal of Applied Polymer Science, 2021, 138(31): 50757. doi: 10.1002/app.50757
    [25] FENG Tingting, WANG Yaxuan, DONG Huixin, et al. Ionic liquid modified boron nitride nanosheets for interface engineering of epoxy resin nanocomposites: improving thermal stability, flame retardancy, and smoke suppression[J]. Polymer Degradation and Stability, 2022, 199: 109899. doi: 10.1016/j.polymdegradstab.2022.109899
    [26] CAI Wei, HU Yixin, PAN Ying, et al. Self-assembly followed by radical polymerization of ionic liquid for interfacial engineering of black phosphorus nanosheets: enhancing flame retardancy, toxic gas suppression and mechanical performance of polyurethane[J]. Journal of Colloid and Interface Science, 2020, 561: 32-45. doi: 10.1016/j.jcis.2019.11.114
    [27] 徐子策, 尚垒, 敖玉辉. 含磷离子液体/石墨烯环氧复合材料力学及阻燃性能的研究[J]. 化工新型材料, 2022, 50(6): 112-116.

    XU Zice, SHANG Lei, AO Yuhui. Study on the Mechanical and flame retardant properties of phosphorus-containing lLs/GO/EP composite[J]. New Chemical Materials, 2022, 50(6): 112-116(in Chinese).
    [28] GAO Ming, WANG Jiyu, GAO Yilin, et al. Ionic liquids modified MXene as a flame retardant synergist for the unsaturated polyester resin[J]. Journal of Vinyl and Additive Technology, 2024, 30(2): 530-542. doi: 10.1002/vnl.22066
    [29] JIANG Juncheng, DUAN Weijia, WEI Qian, et al. Development of quantitative structure-property relationship (QSPR) models for predicting the thermal hazard of ionic liquids: A review of methods and models[J]. Journal of Molecular Liquids, 2020, 301: 112471. doi: 10.1016/j.molliq.2020.112471
    [30] PAN Kai, LIU Hui, WANG Zhijun, et al. Insights into ionic liquids for flame retardant: A study based on bibliometric mapping[J]. Safety, 2023, 9(3): 49. doi: 10.3390/safety9030049
    [31] WANG Xin, HU Yuan, SONG Lei, et al. Comparative study on the synergistic effect of POSS and graphene with melamine phosphate on the flame retardance of poly(butylene succinate)[J]. Thermochimica Acta, 2012, 543: 156-164. doi: 10.1016/j.tca.2012.05.017
    [32] WEI Lijuan, ZHANG Xiang, MIN Fusong, et al. A flame-retardant and transparent epoxy resin based on phosphorus-containing ionic liquid and its mechanical, thermal and flame-retardant properties[J]. Reactive and Functional Polymers, 2024, 197: 105854. doi: 10.1016/j.reactfunctpolym.2024.105854
    [33] 徐子策. 含磷离子液体改性石墨烯环氧树脂体系阻燃性能的研究[D]. 长春: 长春工业大学, 2021.

    XU Zice. Study on flame retardancy of phosphorus-containing ionic liquid and graphene epoxy resin system [D]. Changchun: Changchun University Of Technology, 2021(in Chinese).
    [34] ZHANG Zeqi, BI Xue, ZHANG Wenchao, et al. A novel phosphorus/nitrogen-containing vinyl imidazolium ionic liquid for improving flame retardancy and mechanical properties of vinyl ester resin, and its carbon fiber composites[J]. Composites Part A: Applied Science and Manufacturing, 2024, 180: 108092. doi: 10.1016/j.compositesa.2024.108092
    [35] OU Mingyu, LIAN Richeng, CUI Jiahui, et al. Co-curing preparation of flame retardant and smoke-suppressive epoxy resin with a novel phosphorus-containing ionic liquid[J]. Chemosphere, 2023, 311: 137061-137061. doi: 10.1016/j.chemosphere.2022.137061
    [36] 张璐, 刘杰, 娄生辉, 等. 季膦萘磺酸盐离子液体与甲基膦酸二甲酯协同阻燃环氧树脂[J]. 高等学校化学学报, 2024, 45(4): 17-26.

    ZHANG Lu, LIU Jie, LOU Shenghui, et al. Synergistic Flame-retardant Epoxy Resin Using Quaternary Phosphate Naphthalene Sulfonate Ionic Liquid and Dimethyl Methylphosphonate[J]. Chemical Journal of Chinese Universities, 2024, 45(4): 17-26(in Chinese).
    [37] EL MESSOUDI Mohamed, BOUKHRISS Aicha, BENTIS Aziz, et al. Flame retardant finishing of cotton fabric based on ionic liquid compounds containing boron prepared with the sol-gel method[J]. Journal of Coatings Technology and Research, 2022, 19(5): 1609-1619 doi: 10.1007/s11998-022-00633-x
    [38] LI Xin, LIANG Dong, HU Zhiyong, et al. Synergistic effects of polyoxometalate-based ionic liquid-doped sepiolite in intumescent flame-retardant high-density polyethylene[J]. Polymers for Advanced Technologies, 2021, 32(5): 2240-2251. doi: 10.1002/pat.5258
    [39] 高野, 张胜, 谷晓昱, 孙军, 李洪飞. 磷钼酸基离子液体和水滑石对膨胀阻燃热塑性聚氨酯弹性体复合材料性能的影响[J]. 复合材料学报, 2022, 39(2): 568-576.

    GAO Ye, ZHANG Sheng, GU Xiaoyu, et al. Influence of phosphomolybdic acid-based ionic liquid and layered double hydroxide on the properties of intumescent flame-retardant thermoplastic polyurethane elastomer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 568-576(in Chinese).
    [40] SHI Yuequan, FU Teng, XU Yingjun, et al. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance[J]. Chemical Engineering Journal, 2018, 354: 208-219. doi: 10.1016/j.cej.2018.08.023
    [41] HUANG Rong, GUO Xiuyan, MA Shiyue, et al. Novel phosphorus-nitrogen-containing ionic liquid modified metal-organic framework as an effective flame retardant for epoxy resin[J]. Polymers (Basel), 2020, 12(1): 1-16.
    [42] 王雅萱. 离子液体-过渡金属改性对位芳纶纳米纤维及其阻燃棉织物的研究[D]. 青岛: 青岛科技大学, 2023.

    WANG Yaxuan . The modification of para-aramid nanofibers by using ionic liquid-transition metai and the application in flame-retardant cotton fabric[D]. Qingdao: Qingdao University of Science and Technology , 2023(in Chinese).
    [43] LATIFI Souhayla, BOUKHRISS Aicha, SAOIABI Sanaa, et al. Flame retardant coating of textile fabrics based on ionic liquids with self-extinguishing, high thermal stability and mechanical properties[J]. Polymer Bulletin, 2022, 80(8): 9253-9274.
    [44] WANG Yaxuan, REN Jinyong, OU Mingyu, et al. Flame-retardant and antibacterial properties of cotton fabrics treated by epichlorohydrin-modified aramid nanofibers, ionic liquid, and cu ion[J]. Polymer Degradation and Stability, 2023, 212: 110347 . doi: 10.1016/j.polymdegradstab.2023.110347
    [45] 屈贞财. 离子液体在阻燃领域的研究进展[J]. 高分子通报, 2020, (6): 16-25.

    QU Zhencai. Research progress of lonic liquids in the field of flame retardancy[J]. Polymer Bulletin, 2020, (6): 16-25(in Chinese).
    [46] 陈佳, 刘学清, 刘志宏, 等. 锂离子电池高安全性阻燃聚合物电解质研究进展[J]. 江汉大学学报(自然科学版), 2021, 49(6): 20-28.

    CHEN Jia, LIU Xueqing, LIU Zhihong, et al. Research progress of high-safety flame-retardant polymer electrolytes for lithium-ion batteries[J]. Journal of Jianghan University (Natural Science Edition), 2021, 49(6): 20-28(in Chinese).
    [47] CHEN Jia, RONG Li, LIU Xueqing, et al. Enhancement of flame retardancy of solid polymer electrolyte based on phosphorus-containing ionic liquid polyurethane membrane for safe lithium batteries[J]. Polymer, 2023, 269: 125759. doi: 10.1016/j.polymer.2023.125759
    [48] ZHU Yucheng, SHEN Hao, JI Hao, et al. Application of 1-butyl-3-menthylimidazolium- hexafluorophosphate as flame retardant in electrolyte of lithium ion battery[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: 104837. doi: 10.1016/j.jlp.2022.104837
    [49] CHEN Xiaohong, LIANG Ling, HU Weida, et al. POSS hybrid poly(ionic liquid) ionogel solid electrolyte for flexible lithium batteries[J]. Journal of Power Sources, 2022, 542: 231766. doi: 10.1016/j.jpowsour.2022.231766
    [50] LI Xiongwei, FENG Yuezhan, CHEN Chao, et al. Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(41): 20500-20512. doi: 10.1039/C8TA08008A
    [51] GEBREKRSTOS WELDEMHRET Teklebrahan, LEE Dong-Wee, TAE PARK Yong, et al. Ionic liquid-catalyzed synthesis of carbon/polyurethane triboelectric nanocomposites with excellent flame retardancy and oil leak detection[J]. Chemical Engineering Journal, 2022, 450: 137982. doi: 10.1016/j.cej.2022.137982
    [52] 吴坤林, 张美艳, 刘明华, 等. 离子液体基氮-膦阻燃剂对生漆的阻燃作用[J]. 闽江学院学报, 2022, 43(2): 93-104.

    WU Kunlin, ZHANG Meiyan, LIU Minghua, et al. Flame retardant effect of ionic liquid nitrophosphine flame retardant on raw lacquer[J]. Journal of Minjiang University, 2022, 43(2): 93-104(in Chinese).
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-31
  • 修回日期:  2024-07-05
  • 录用日期:  2024-07-20
  • 网络出版日期:  2024-08-03

目录

    /

    返回文章
    返回