留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生螺旋结构复合材料动态断裂行为的实验研究和数值模拟

王瑜 武晓东 安连浩 王可

王瑜, 武晓东, 安连浩, 等. 仿生螺旋结构复合材料动态断裂行为的实验研究和数值模拟[J]. 复合材料学报, 2022, 39(12): 6157-6167. doi: 10.13801/j.cnki.fhclxb.20220112.003
引用本文: 王瑜, 武晓东, 安连浩, 等. 仿生螺旋结构复合材料动态断裂行为的实验研究和数值模拟[J]. 复合材料学报, 2022, 39(12): 6157-6167. doi: 10.13801/j.cnki.fhclxb.20220112.003
WANG Yu, WU Xiaodong, AN Lianhao, et al. Experimental study and numerical simulation of dynamic fracture behavior of biomimetic spiral structured composite[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6157-6167. doi: 10.13801/j.cnki.fhclxb.20220112.003
Citation: WANG Yu, WU Xiaodong, AN Lianhao, et al. Experimental study and numerical simulation of dynamic fracture behavior of biomimetic spiral structured composite[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6157-6167. doi: 10.13801/j.cnki.fhclxb.20220112.003

仿生螺旋结构复合材料动态断裂行为的实验研究和数值模拟

doi: 10.13801/j.cnki.fhclxb.20220112.003
基金项目: 国家自然科学基金(11702185);山西省高校创新科技资助计划(173230113-S)
详细信息
    通讯作者:

    武晓东,博士,副教授,硕士生导师,研究方向为复合材料动力学 E-mail:wuxiaodong@tyut.edu.cn

  • 中图分类号: O347.3

Experimental study and numerical simulation of dynamic fracture behavior of biomimetic spiral structured composite

  • 摘要: 通过三点弯动态冲击实验和数值模拟,研究了仿生螺旋结构复合材料的动态断裂韧性,该结构是基于Bouligand结构设计的仿生复合结构。首先使用软硬两种基体通过3D打印技术制备了8组不同角度的试样,使用改进的分离式Hopkinson杆完成了动态三点弯冲击实验,得到了试样的位移-载荷曲线、起裂时间和起裂功,并对试样最终断裂形态进行分析。随后在ABAQUS软件中完成了试样断裂全过程的数值模拟,对裂纹的萌生和扩展过程进行了分析。实验和数值模拟结果都表明螺旋角对试样的断裂韧性有很大的影响,在螺旋角度0°~75°的范围内,随着角度的增加试样的断裂韧性增强,而螺旋角度为90°时试样的断裂韧性急剧下降。实验过程中观察到试样在动态断裂过程中存在裂纹偏转现象。最后考察了裂纹偏转对动态断裂的影响机制,结果显示裂纹偏转改变了复合材料的局部断裂模式,增加了断裂面积,从而提升了材料的断裂韧性。

     

  • 图  1  仿生螺旋结构复合材料试样的结构和尺寸

    Figure  1.  Structure and size of bionic spiral structure composite material sample

    L—Length; S—Length of span; H—Height; W—Width; γ—Helical angle; h—Length of notch; d—Interlayer spacing

    图  2  改进的分离式Hopkinson杆系统原理图

    Figure  2.  Schematic diagram of the improved split Hopkinson rod system

    1—Bullet; 2—Incident rod; 3—Group I strain gauge; 4—Sample; 5—Group II strain gauge; 6—Fixture; 7—Strain gauge; 8—Oscilloscope; 9—Beam laser speedometer; v—Velocity

    图  3  II组应变片信号

    Figure  3.  Strain gauge signal of group II

    t1, t2—The moment when the two strain gauges respectively receive the stress wave

    图  4  起裂功

    Figure  4.  Crack initiation work

    U—Crack initiation work; P—Load; δ—Displacement; δt—Displacement at time t

    图  5  不同角度仿生螺旋结构复合材料试样的载荷-位移曲线

    Figure  5.  Load-displacement curves of sample of bionic spiral structure composite with different angles

    图  6  不同角度仿生螺旋结构复合材料试样的断裂功和起裂时间

    Figure  6.  Fracture work and initiation time of sample of bionic spiral structure composite with different angles

    图  7  不同角度仿生螺旋结构复合材料试样的裂纹扩展:(a) γ=0°;(b) γ=45°;(c) γ=60°;(d) γ=75°

    Figure  7.  Crack growth of sample of bionic spiral structure composite with different angles: (a) γ=0°; (b) γ=45°; (c) γ=60°; (d) γ=75°

    图  8  仿生螺旋结构复合材料有限元模型

    Figure  8.  Finite element model of bionic spiral structure composite

    图  9  仿生螺旋结构复合材料拉伸应力-应变曲线

    Figure  9.  Tensile stress-strain curves of bionic spiral structure composite

    图  10  仿生螺旋结构复合材料压缩应力-应变曲线

    Figure  10.  Compressive stress-strain curves of bionic spiral structure composite

    图  11  仿生螺旋结构复合材料和硬质基体纯材料的实验和数值模拟的时间-载荷对比

    Figure  11.  Time-load comparison of experimental and numerical simulation of bionic spiral structure composite and hard matrix pure material

    图  12  螺旋角75°仿生复合材料试样的实验和模拟裂纹扩展对比

    Figure  12.  Comparison of experimental and simulated crack growth of biomimetic composite samples with a helix angle of 75°

    图  13  数值模拟中不同角度仿生螺旋结构复合材料试样的时间-载荷曲线

    Figure  13.  Numerical simulation of time-load curves of sample of bionic spiral structure composite with different angles

    图  14  不同角度仿生螺旋结构复合材料试样的裂纹扩展过程

    Figure  14.  Crack growth process of sample of bionic spiral structure composite with different angles

    Δ—Displacement

    图  15  不同角度仿生螺旋结构复合材料试样的起裂时间(T)

    Figure  15.  Crack initiation time (T) of sample of bionic spiral structure composite with different angles

    图  16  螺旋角75°仿生螺旋结构复合材料试样的裂纹扩展

    Figure  16.  Crack growth of sample of bionic spiral structure composite with a helix angle of 75°

    图  17  不同角度仿生螺旋结构复合材料试样的断裂失效体积和断裂能

    Figure  17.  Fracture failure volume and fracture energy of sample of bionic spiral structure composite with different angles

    图  18  螺旋角75°仿生螺旋结构复合材料的应力分布:(a) 拉伸应力;(b) 剪应力

    Figure  18.  Stress distribution of sample of bionic spiral structure composite with a helix angle of 75°: (a) Tensile stress; (b) Shear stress

    图  19  螺旋角90°仿生螺旋结构复合材料的应力分布:(a) 拉伸应力;(b) 剪应力

    Figure  19.  Stress distribution of sample of bionic spiral structure composite with a helix angle of 90°: (a) Tensile stress; (b) Shear stress

    图  20  螺旋角75°仿生螺旋结构复合材料的层间裂纹扩展

    Figure  20.  Interlaminar crack growth of sample of bionic spiral structure composite with a helix angle of 75°

    图  21  螺旋角75°仿生螺旋结构复合材料各层层间的时间-剪应力曲线

    Figure  21.  Time-shear stress curves between each layer of the bionic spiral structure composite with a helix angle of 75°

    图  22  螺旋角75°仿生螺旋结构复合材料各层层间的时间-拉伸应力曲线

    Figure  22.  Time-tensile stress curves between each layer of the bionic spiral structure composite with a helix angle of 75°

    表  1  软质基体Tango Plus和硬质基体VeroWhite Plus材料参数

    Table  1.   Material parameters of soft Tango Plus and stiff VeroWhite Plus

    MaterialVeroWhite PlusTango Plus
    Density/(g·cm−3)1.181.13
    Energy dissipation ratio/%33.4±2.499.5±3.7
    Flexural stiffness/(kN·mm−1)1.08±0.110.0167±0.0064
    Response time/ms0.48±0.12~2000
    Maximum force at break/kN1.76±0.780.109±0.059
    Maximum displacement/mm1.57±0.3127.3±3.1
    Maximum velocity without failure/(m·s−1)3.453.40
    Maximum energy without failure $ m{V}_{\mathrm{i}\mathrm{n}\mathrm{i}}^{2}/2 $/J1.991.95
    Minimum velocity with failure/(m·s−1)3.503.62
    Energy absorption with failure $\left(\dfrac{m{V}_{\mathrm{i}\mathrm{n}\mathrm{i} }^{2} }{2}-\dfrac{m{V}_{\mathrm{r}\mathrm{e}\mathrm{s} }^{2} }{2}\right)$/J1.952.19
    Notes: Vini—Initial velocity; Vres—Speed of fracture.
    下载: 导出CSV

    表  2  硬质基体和软质基体力学性能

    Table  2.   Mechanical parameters of stiff matrix and soft matrix

    MaterialStiffSoft
    Density/(g·mm3)1.21.1
    Young’s modulus/MPa3000300
    Poisson’s ratio0.30.3
    Failure stress/MPa1000
    Failure strain/MPa01.4
    下载: 导出CSV
  • [1] BOULIGAND Y. Twisted fibrous arrangements in biological materials and cholesteric mesophases[J]. Tissue Cell,1972,4(2):189-217. doi: 10.1016/S0040-8166(72)80042-9
    [2] NALEWAY S E, TAYLOR J R A, PORTER M M, et al. Structure and mechanical properties of selected protective systems in marine organisms[J]. Materials Science and Engineering: C,2016,59:1143-1167. doi: 10.1016/j.msec.2015.10.033
    [3] 邵浩彬, 朱军, 周琦, 等. 三角帆蚌贝壳的微结构及尺寸变化特征[J]. 复合材料学报, 2019, 36(10):97-103.

    SHAO Haobin, ZHU Jun, ZHOU Qi, et al. Characteristics of microstructure and size change of the shell of hyriopsis cumingii[J]. Acta Materiae Compositae Sinica,2019,36(10):97-103(in Chinese).
    [4] 武晓东, 张海广, 王瑜, 等. 冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应[J]. 高压物理学报, 2020, 34(6):61-68.

    WU Xiaodong, ZHANG Haiguang, WANG Yu, et al. Dynamic mechanical response of voronoi structure of imitated shell nacre under impact load[J]. Chinese Journal of High Pressure Physics,2020,34(6):61-68(in Chinese).
    [5] NIKOLOV S, PETROV M, LYMPERAKIS L. Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: The example of lobster cuticle[J]. Advanced Materials (FRG),2010,22(4):519-526. doi: 10.1002/adma.200902019
    [6] BOßELMANN F, ROMANO P, FABRITIUS H. The compo-sition of the exoskeleton of two crustacea: The American lobster homarus americanus and the edible crab cancer pagurus[J]. Thermochimica Acta,2008,1(2):65-68.
    [7] CHEN P Y E A. Structure and mechanical properties of crab exoskeletons (article)[J]. Acta Biomaterialia,2008,4(3):587-596. doi: 10.1016/j.actbio.2007.12.010
    [8] YANG R A D, ZAHERI A A B, GAO W A B E, et al. Afm identification of beetle exocuticle: Bouligand structure and nanofiber anisotropic elastic properties[J]. Advanced Functional Materials,2017,27(6):1603993. doi: 10.1002/adfm.201603993
    [9] ZIMMERMANN E Z E, GLUDOVATZ B G B, SCHAIBLE E S E, et al. Mechanical adaptability of the bouligand-type structure in natural dermal armour[J]. Nature Communications,2013,4:2634. doi: 10.1038/ncomms3634
    [10] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer[J]. Science,2012,336(6086):1275-1280. doi: 10.1126/science.1218764
    [11] SHANG J S, NGERN N H H, TAN V B C. Crustacean-inspired helicoidal laminates[J]. Composites Science and Technology,2016,128:222-232. doi: 10.1016/j.compscitech.2016.04.007
    [12] 张洪艳, 王海泉, 杨少明. 聚氨酯基螺旋碳纤维复合材料的制备及力学性能研究[J]. 化工新型材料, 2021, 49(3):95-98.

    ZHANG Hongyan, WANG Haiquan, YANG Shaoming. Preparation and mechanical property of tpu based spiral carbon fiber composite[J]. New Chemical Materials,2021,49(3):95-98(in Chinese).
    [13] 韩奇钢, 石绍迁, 徐凯强, 等. 仿螳螂虾鳌结构/功能的玄武岩纤维增强复合材料碟簧研究[J]. 塑性工程学报, 2020, 27(10):77-82. doi: 10.3969/j.issn.1007-2012.2020.10.012

    HAN Qigang, SHI Shaoqian, XU Kaiqiang, et al. Study on basalt fiber reinforced composite disc spring of bionic structure/function of dactyl club of mantis shrimp[J]. Journal of Plasticity Engineering,2020,27(10):77-82(in Chinese). doi: 10.3969/j.issn.1007-2012.2020.10.012
    [14] 陈昊宇, 殷莎, 胡建星, 等. 航天器冲击防护用热塑性仿生复合材料的弯曲性能研究[J]. 航天器环境工程, 2019, 36(2):151-155. doi: 10.12126/see.2019.02.008

    CHEN Haoyu, YIN Sha, HU Jianxing, et al. Bending properties of thermoplastic bioinspired helicoidal laminated composites used in impact protection of spacecraft[J]. Spacecraft Environment Engineering,2019,36(2):151-155(in Chinese). doi: 10.12126/see.2019.02.008
    [15] ZHANG X, LUAN Y, LI Y, et al. Bioinspired design of lightweight laminated structural materials and the intralayer/interlayer strengthening and toughening mechanisms induced by the helical structure[J]. Composite Structures,2021,276:114575. doi: 10.1016/j.compstruct.2021.114575
    [16] AMORIM L, SANTOS A, NUNES J P, et al. Quasi static mechanical study of vacuum bag infused bouligand inspired composites[J]. Polymer Testing,2021,100:107261. doi: 10.1016/j.polymertesting.2021.107261
    [17] 戎志丹, 王亚利, 孟亚奎. 超高性能水泥基复合材料抗多次冲击性能[J]. 东南大学学报(自然科学版), 2020, 50(2):320-326. doi: 10.3969/j.issn.1001-0505.2020.02.016

    RONG Zhidan, WANG Yali, MENG Yakui. Multiple impact resistance of ultra-high performance cement-based composites[J]. Journal of Southeast University (Natural Science Edition),2020,50(2):320-326(in Chinese). doi: 10.3969/j.issn.1001-0505.2020.02.016
    [18] 宁子轩, 王琳, 程兴旺, 等. 分离式霍普金森压杆加载下不同组织Ti-6321钛合金的动态响应行为[J]. 兵工学报, 2021, 42(4):862-870. doi: 10.3969/j.issn.1000-1093.2021.04.020

    NING Zixuan, WANG Lin, CHENG Xingwang, et al. Dynamic response behaviors of Ti-6321 titanium alloys with different microstructures under split hopkinson pressure bar loading[J]. Acta Armamentarii,2021,42(4):862-870(in Chinese). doi: 10.3969/j.issn.1000-1093.2021.04.020
    [19] 胡年明, 朱锡, 侯海量, 等. 基于霍普金森压杆气凝胶及其复合材料抗冲击性能试验研究[J]. 海军工程大学学报, 2017, 29(5):43-47.

    HU Nianming, ZHU Xi, HOU Hailiang, et al. An experimental research on anti-impact ability of aerogel and its composite based on hopkinson bar[J]. Journal of Naval University of Engineering,2017,29(5):43-47(in Chinese).
    [20] SUKSANGPANYA N, YARAGHI N A, PIPES R B, et al. Crack twisting and toughening strategies in bouligand architectures[J]. International Journal of Solids and Structures,2018,150:83-106. doi: 10.1016/j.ijsolstr.2018.06.004
    [21] YANG R, ZAHERI A, GAO W, et al. AFM identification of beetle exocuticle: Bouligand structure and nanofiber anisotropic elastic properties[J]. Advanced Functional Materials,2017,27(6):1603993.
    [22] KÖRBELIN J, GORALSKI P, KÖTTER B, et al. Damage tolerance and notch sensitivity of bio-inspired thin-ply bouligand structures[J]. Composites Part C: Open Access,2021,5:100146. doi: 10.1016/j.jcomc.2021.100146
    [23] TOMASZ Ł, ALEXIS R. Constitutive relations under impact loadings[M]. Vienna: Springer, 2014.
    [24] WU X, MENG X, ZHANG H. An experimental investigation of the dynamic fracture behavior of 3D printed nacre-like composites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,112:104068. doi: 10.1016/j.jmbbm.2020.104068
    [25] 孟祥生, 武晓东, 张海广. 3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟[J]. 高压物理学报, 2020, 34(4):136-144.

    MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical simulation on interlaminar fracture toughness of 3D printed mortar laminated composites[J]. Chinese Journal of High Pressure Physics,2020,34(4):136-144(in Chinese).
    [26] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites[J]. Advanced Materials,2017,29(28):1700060. doi: 10.1002/adma.201700060
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  601
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 修回日期:  2021-12-19
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-01-13
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回