Research progress of biochar and its composite materials prepared from plantation wastes
-
摘要: 我国种植业废弃物数量庞大,其资源化利用具有极其重要的意义,将种植业废弃物转化为生物炭是实现高效利用的一个重要途径。生物炭是由生物质原料在无氧或限氧环境下经过热转化过程得到的固体产物,因其具有高含碳量、高阳离子交换量、大比表面积和结构稳定等特点,在多个领域具有广泛应用。本文对生物炭的制备、改性以及生物炭基复合材料在不同领域的应用进行了系统地总结和归纳,并介绍了由生物炭制备的生物炭基复合材料在吸附、催化、缓释肥料、储能、传感以及电磁干扰(EMI)屏蔽等领域的重要应用价值。Abstract: The quantity of plantation waste in China is huge, its resource utilization is of great significance, and the conversion of plantation waste into biochar is an important way to realize efficient utilization. Biochar is a solid product obtained by thermal conversion of biomass raw materials in an oxygen-free or oxygen-limited environment, which has a wide range of applications in many fields due to its high carbon content, high cation exchange capacity, large specific surface area and stable structure. In this paper, the preparation and modification of biochar as well as the application of biochar-based composites in different fields are systematically summarized and generalized. Furthermore, the important application value of biochar-based composites prepared from biochar in the fields of adsorption, catalysis, slow-release fertilizers, energy storage, sensing, and electromagnetic interference (EMI) shielding are introduced.
-
Key words:
- Plantation waste /
- Biochar /
- Composites /
- Preparation and modification /
- Sustainable development
-
表 1 生物炭的制备方法及其优缺点
Table 1. Preparation methods of biochar and their advantages and disadvantages
生物炭的制备方法 优点 缺点 热解 -慢速热解生物炭产量较高;快速热解反应时间短,生物油产量高。
-热解过程可根据预期结果优化。
-热解对原料类型和运行条件灵活性强。-能耗高。
-慢速热解反应时间长。
-快速热解生物炭产量较低。气化 -产物生物炭具有更好的物化特性。
-产生各种高能值气体产品。-目标产物通常为气态,生物炭产量低。
-反应温度高,能耗高。水热炭化 -可直接处理含水量较高的原料。
-反应条件温和,节能环保。
-生物炭产量通常较高。-反应时间长,在封闭容器中反应,不够灵活。
-消耗水量大,产生大量复杂的水相。微波热解 -加热均匀、能量利用率高、反应时间短。
-相比传统热解,生物炭品质更高,比表面积和孔隙率更大,微孔分布均匀且非常干净。-若原料吸波能力低,则能量转化效率低。
-微波环境中,温度测量和控制非常困难。
-微波泄漏风险。表 2 生物炭改性方法比较
Table 2. Comparison of biochar modification methods
生物炭改性方法 特点 酸改性 -除去生物炭中的杂质。
-向生物炭表面引入酸性官能团,如—COOH、—C=O—和—COO—等。碱改性 -增加生物炭的比表面积。
-向生物炭表面引入含氧官能团,如—OH、—C—O—、—COOH和—C=O—等。氧化剂改性 -丰富生物炭中的含氧官能团,如—OH、—C—O—、—COOH和—C=O—等。 金属盐或金属氧化物改性 -增强生物炭的吸附性能。
-增强生物炭的催化性能。
-使生物炭具有磁性。碳质材料改性 -增加生物炭的比表面积。 水蒸气吹扫改性 -增加生物炭的比表面积。
-优化生物炭的孔隙结构。气体吹扫改性 -增加生物炭的比表面积和孔体积。
-在生物炭表面形成活性位点。球磨改性 -增加生物炭的比表面积。
-增强生物炭的吸附性能。
-增强生物炭的催化性能。 -
[1] YOGALAKSHMI K N, POORNIMA DEVI T, SIVASHANMUGAM P, et al. Lignocellulosic biomass-based pyrolysis: A comprehensive review[J]. Chemosphere, 2022, 286(2): 131824-131839. [2] 张德平, 白妙琴, 马文江, 等. 农业废弃物资源利用途径研究[J]. 合作经济与科技, 2024, 10(13): 22-23. doi: 10.3969/j.issn.1672-190X.2024.13.008Zhang Deping, Bai Miaoqin, Ma Wenjiang, et al. Research on ways to utilize agricultural waste resources[J]. CO-Oerativeconomy & Science, 2024, 10(13): 22-23(in Chinese). doi: 10.3969/j.issn.1672-190X.2024.13.008 [3] YUAN J D, WANG C J, TANG Z T, et al. Biochar derived from traditional Chinese medicine residues: An efficient adsorbent for heavy metal Pb(II)[J]. Arabian Journal of Chemistry, 2024, 17(3): 105606-105620. doi: 10.1016/j.arabjc.2024.105606 [4] YU S X, ZHANG W, DONG X W, et al. A review on recent advances of biochar from agricultural and forestry wastes: Preparation, modification and applications in wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111638-111656. doi: 10.1016/j.jece.2023.111638 [5] ERCAN B, ALPER K, UCAR S, et al. Comparative studies of hydrochars and biochars produced from lignocellulosic biomass via hydrothermal carbonization, torrefaction and pyrolysis[J]. Journal of the Energy Institute, 2023, 109(1): 101298-101305. [6] WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production, 2019, 227(1): 1002-1022. [7] PAN X Q, GU Z P, CHEN W M, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review[J]. Science of The Total Environment, 2021, 754(3): 142104-142120. [8] LIANG L P, XI F F, TAN W S, et al. Review of organic and inorganic pollutants removal by biochar and biochar-based composites[J]. Biochar, 2021, 3(3): 255-281. doi: 10.1007/s42773-021-00101-6 [9] SINGH P, RAWAT S, JAIN N, et al. A review on biochar composites for soil remediation applications: Comprehensive solution to contemporary challenges[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110635-110651. doi: 10.1016/j.jece.2023.110635 [10] LYU H H, ZHANG Q R, SHEN B X. Application of biochar and its composites in catalysis[J]. Chemosphere, 2020, 240(2): 124842-124852. [11] LUO D, WANG L Y, NAN H Y, et al. Phosphorus adsorption by functionalized biochar: a review[J]. Environmental Chemistry Letters, 2023, 21(1): 497-524. doi: 10.1007/s10311-022-01519-5 [12] MARCIŃCZYK M, OLESZCZUK P. Biochar and engineered biochar as slow- and controlled-release fertilizers[J]. Journal of Cleaner Production, 2022, 339(9): 130685-130698. [13] TRIPATHI M, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 55(2): 467-481. [14] VIJAYARAGHAVAN K. Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications[J]. Environmental Technology Reviews, 2019, 8(1): 47-64. doi: 10.1080/21622515.2019.1631393 [15] YOU S M, OK Y S, CHEN S S, et al. A critical review on sustainable biochar system through gasification: Energy and environmental applications[J]. Bioresource Technology, 2017, 246(2): 242-253. [16] RODRIGUEZ CORREA C, HEHR T, VOGLHUBER-SLAVINSKY A, et al. Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140(2): 137-147. [17] YANG J T, ZHANG Z M, WANG J Y, et al. Pyrolysis and hydrothermal carbonization of biowaste: A comparative review on the conversion pathways and potential applications of char product[J]. Sustainable Chemistry and Pharmacy, 2023, 33(2): 101106-101122. [18] NGUYEN T A H, BUI T H, GUO W S, et al. Valorization of the aqueous phase from hydrothermal carbonization of different feedstocks: Challenges and perspectives[J]. Chemical Engineering Journal, 2023, 472(3): 144802-144812. [19] FOONG S Y, LIEW R K, YANG Y F, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions[J]. Chemical Engineering Journal, 2020, 389(4): 124401-124420. [20] LI J, DAI J J, LIU G Q, et al. Biochar from microwave pyrolysis of biomass: A review[J]. Biomass and Bioenergy, 2016, 94(5): 228-244. [21] CHEN Z W, WANG M F, JIANG E C, et al. Pyrolysis of Torrefied Biomass[J]. Trends in Biotechnology, 2018, 36(12): 1287-1298. doi: 10.1016/j.tibtech.2018.07.005 [22] XU Y G, BAI T X, YAN Y B, et al. Enhanced removal of hexavalent chromium by different acid-modified biochar derived from corn straw: behavior and mechanism[J]. Water Science & Technology, 2020, 81(10): 2270-2280. [23] CHEN M, WANG F, ZHANG D L, et al. Effects of acid modification on the structure and adsorption NH4+-N properties of biochar[J]. Renewable Energy, 2021, 169(12): 1343-1350. [24] SINGH J, VERMA M. Waste derived modified biochar as promising functional material for enhanced water remediation potential[J]. Environmental Research, 2024, 245(5): 117999-118016. [25] LIU S C, XIE Z L, ZHU Y T, et al. Adsorption characteristics of modified rice straw biochar for Zn and in-situ remediation of Zn contaminated soil[J]. Environmental Technology & Innovation, 2021, 22(5): 101388-101399. [26] TANG Y, LI Y, ZHAN L, et al. Removal of emerging contaminants (bisphenol A and antibiotics) from kitchen wastewater by alkali-modified biochar[J]. Science of the Total Environment, 2022, 805(10): 150158-150167. [27] ZHANG Y, ZHENG Y L, YANG Y C, et al. Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions[J]. Bioresource Technology, 2021, 337(7): 125432-125438. [28] QI G D, PAN Z F, ZHANG X Y, et al. Novel pretreatment with hydrogen peroxide enhanced microwave biochar for heavy metals adsorption: Characterization and adsorption performance[J]. Chemosphere, 2024, 346(6): 140580-140588. [29] HUANG Z J, FANG X, WANG S, et al. Effects of KMnO4 pre- and post-treatments on biochar properties and its adsorption of tetracycline[J]. Journal of Molecular Liquids, 2023, 373(3): 121257-121267. [30] NGUYEN D L T, BINH Q A, NGUYEN X C, et al. Metal salt-modified biochars derived from agro-waste for effective congo red dye removal[J]. Environmental Research, 2021, 200(5): 111492-111502. [31] ZHOU L L, JIANG Y, ZHANG G Y, et al. Pyrolysis-catalysis of medical waste over metal-doping porous biochar to co-harvest jet fuel range hydrocarbons and H2-rich fuel gas[J]. Journal of Analytical and Applied Pyrolysis, 2023, 175(5): 106157-106167. [32] DONG J, SHEN L F, SHAN S D, et al. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution[J]. Science of the Total Environment, 2022, 806(6): 151442-151453. [33] PREMARATHNA K S D, RAJAPAKSHA A U, SARKAR B, et al. Biochar-based engineered composites for sorptive decontamination of water: A review[J]. Chemical Engineering Journal, 2019, 372(2): 536-550. [34] GAO Y R, FANG Z, LIN W H, et al. Large-flake graphene-modified biochar for the removal of bisphenol S from water: rapid oxygen escape mechanism for synthesis and improved adsorption performance[J]. Environmental Pollution, 2023, 317(7): 120847-120856. [35] ŠVÁBOVÁ M, BIčÁKOVÁ O, VOROKHTA M. Biochar as an effective material for acetone sorption and the effect of surface area on the mechanism of sorption[J]. Journal of Environmental Management, 2023, 348(8): 119205-119213. [36] PANWAR N L, PAWAR A. Influence of activation conditions on the physicochemical properties of activated biochar: a review[J]. Biomass Conversion and Biorefinery, 2022, 12(3): 925-947. doi: 10.1007/s13399-020-00870-3 [37] RAWAT S, BOOBALAN T, SATHISH M, et al. Utilization of CO2 activated litchi seed biochar for the fabrication of supercapacitor electrodes[J]. Biomass and Bioenergy, 2023, 171(1): 106747-106755. [38] ZHUANG Z C, WANG L, TANG J C. Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions[J]. Journal of Hazardous Material, 2021, 406(6): 124676-124717. [39] LUO Z R, YAO B, YANG X, et al. Novel insights into the adsorption of organic contaminants by biochar: A review[J]. Chemosphere, 2022, 287(7): 132113-132129. [40] GAO L, LI Z H, YI W M, et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105602-105615. doi: 10.1016/j.jece.2021.105602 [41] WANG X Q, GUO Z Z, HU Z, et al. Adsorption of phenanthrene from aqueous solutions by biochar derived from an ammoniation-hydrothermal method[J]. Science of the Total Environment, 2020, 733(3): 139267-139274. [42] WU X C, QUAN W X, CHEN Q, et al. Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar[J]. Molecules, 2024, 29(5): 1005-1033. doi: 10.3390/molecules29051005 [43] LI B T, JING F Y, HU Z Q, et al. Simultaneous recovery of nitrogen and phosphorus from biogas slurry by Fe-modified biochar[J]. Journal of Saudi Chemical Society, 2021, 25(4): 101213-101224. doi: 10.1016/j.jscs.2021.101213 [44] QIN J L, CHEN Q C, SUN M X, et al. Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1, 3-dichloropropene degradation[J]. Chemical Engineering Journal, 2017, 330(1): 804-812. [45] DUAN L S, LIU X H, ZHANG H D, et al. A novel way for hydroxyl radicals generation: Biochar-supported zero-valent iron composite activates oxygen to generate hydroxyl radicals[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108132-108139. doi: 10.1016/j.jece.2022.108132 [46] DEVI P, DALAI A K, CHAURASIA S P. Activity and stability of biochar in hydrogen peroxide based oxidation system for degradation of naphthenic acid[J]. Chemosphere, 2020, 241(1): 125007-125015. [47] CAI S, WANG T H, WU C Y, et al. Efficient degradation of norfloxacin using a novel biochar-supported CuO/Fe3O4 combined with peroxydisulfate: Insights into enhanced contribution of nonradical pathway[J]. Chemosphere, 2023, 329(9): 138589-138599. [48] JIANG P, ZHOU L, HAN Y F, et al. Utilizing waste corn straw to photodegrade methyl orange and methylene blue: Photothermal effect of biochar enhances photodegradation efficiency[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112914-112922. doi: 10.1016/j.jece.2024.112914 [49] LUO Y D, ZHENG A F, LI J D, et al. Integrated adsorption and photodegradation of tetracycline by bismuth oxycarbonate/biochar nanocomposites[J]. Chemical Engineering Journal, 2023, 457(7): 141228-141241. [50] SIM D H H, TAN I A W, LIM L L P, et al. Encapsulated biochar-based sustained release fertilizer for precision agriculture: A review[J]. Journal of Cleaner Production, 2021, 303(3): 127018-127035. [51] ZHAO C, XU J F, BI H W, et al. A slow-release fertilizer of urea prepared via biochar-coating with nano-SiO2-starch-polyvinyl alcohol: Formulation and release simulation[J]. Environmental Technology & Innovation, 2023, 32(2): 103264-103278. [52] SIM D H H, TAN I A W, LIM L L P, et al. Synthesis of tapioca starch/palm oil encapsulated urea-impregnated biochar derived from peppercorn waste as a sustainable controlled-release fertilizer[J]. Waste Management, 2024, 173(3): 51-61. [53] AN X F, WU Z S, YU J Z, et al. Copyrolysis of Biomass, Bentonite, and Nutrients as a New Strategy for the Synthesis of Improved Biochar-Based Slow-Release Fertilizers[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3181-3190. [54] DING M T, MA Z W, SU H, et al. Preparation of porous biochar and its application in supercapacitors[J]. New Journal of Chemistry, 2022, 46(45): 21788-21797. doi: 10.1039/D2NJ03455G [55] KHEDULKAR A P, PANDIT B, DANG V D, et al. Agricultural waste to real worth biochar as a sustainable material for supercapacitor[J]. Science of the Total Environment, 2023, 869(9): 161441-161459. [56] RAHMAN M Z, EDVINSSON T, KWONG P. Biochar for electrochemical applications[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 23(3): 25-30. [57] SALIMI P, VERCRUYSSE W, CHAUQUE S, et al. Lithium-Metal-Free Sulfur Batteries with Biochar and Steam-Activated Biochar-Based Anodes from Spent Common Ivy[J]. Energy & Environmental Materials, 2024, 0(1): e12758-e12768. [58] CAI W Z, TONG X, YAN X M, et al. Direct carbon solid oxide fuel cells powered by rice husk biochar[J]. International Journal of Energy Research, 2022, 46(4): 4965-4974. doi: 10.1002/er.7489 [59] GU X F, YAN X M, ZHOU M Y, et al. High efficiency electricity and gas cogeneration through direct carbon solid oxide fuel cell with cotton stalk biochar[J]. Renewable Energy, 2024, 226(6): 120471-120484. [60] BATAILLOU G, LEE C, MONNIER V, et al. Cedar Wood-Based Biochar: Properties, Characterization, and Applications as Anodes in Microbial Fuel Cell[J]. Applied Biochemistry and Biotechnology, 2022, 194(9): 4169-4186. doi: 10.1007/s12010-022-03997-3 [61] JIANG J W, ZHANG S X, LI S N, et al. Magnetized manganese-doped watermelon rind biochar as a novel low-cost catalyst for improving oxygen reduction reaction in microbial fuel cells[J]. Science of the Total Environment, 2022, 802(2): 149989-150001. [62] LI Y X, XU R, WANG H B, et al. Recent Advances of Biochar-Based Electrochemical Sensors and Biosensors[J]. Biosensors, 2022, 12(6): 377-396. doi: 10.3390/bios12060377 [63] VALENGA M G P, GEVAERD A, MARCOLINO-JUNIOR L H, et al. Biochar from sugarcane bagasse: Synthesis, characterization, and application in an electrochemical sensor for copper (II) determination[J]. Biomass and Bioenergy, 2024, 184(4): 107206-107214. [64] CHOU C M, DAI Y D, YUAN C, et al. Preparation of an electrochemical sensor utilizing graphene-like biochar for the detection of tetracycline[J]. Environmental Research, 2023, 236(6): 116785-116791. [65] KALINKE C, DE OLIVEIRA P R, MARCOLINO-JÚNIOR L H, et al. Nanostructures of Prussian blue supported on activated biochar for the development of a glucose biosensor[J]. Talanta, 2024, 274(4): 126042-126050. [66] SOBHAN A, JIA F, KELSO L C, et al. A Novel Activated Biochar-Based Immunosensor for Rapid Detection of E. coli O157: H7[J]. Biosensors, 2022, 12(10): 908-921. doi: 10.3390/bios12100908 [67] AKGÜL G, DEMIR B, GÜNDOğDU A, et al. Biochar-iron composites as electromagnetic interference shielding material[J]. Materials Research Express, 2020, 7(1): 015604-015611. doi: 10.1088/2053-1591/ab5d76 [68] YIN P F, ZHANG L M, SUN P, et al. Apium-derived biochar loaded with MnFe2O4@C for excellent low frequency electromagnetic wave absorption[J]. Ceramics International, 2020, 46(9): 13641-13650. doi: 10.1016/j.ceramint.2020.02.150 [69] WANG H, XU R M, DONG L J, et al. Development of biodegradable and low-cost electromagnetic shielding composite by waste porous biochar and poly (butylene succinate)[J]. Polymer Composites, 2023, 44(9): 6049-6070. doi: 10.1002/pc.27546
计量
- 文章访问数: 33
- HTML全文浏览量: 16
- 被引次数: 0