Preparation of carbon nanotubes/diatomite based porous ceramic composites and its photothermal evaporation performance
-
摘要:
目的 界面型光蒸汽转化技术为从海水和废水中提取淡水提供了一种高效、可持续的策略,以有效应对水资源短缺危机。本文通过高温烧结法制备硅藻土基多孔陶瓷,并在多孔陶瓷表面涂覆一层海藻酸钠(SA)/多壁碳纳米管(CNTs)薄膜以提高光吸收能力,探究其海水淡化和污水处理性能。 方法 三维光热蒸发器由于热损失和光反射的减少以及蒸发面积和吸光面积的扩大,表现出了优异的蒸发性能。本文采用注浆成型工艺,利用高温烧结法制备三维硅藻土基多孔陶瓷,通过添加不同含量的造孔剂(CaCO)来调控大孔结构,以提高其蒸汽通量。高的光吸收率是提高能量转换效率的关键,为了进一步提高其吸光及光热转换能力,在硅藻土基多孔陶瓷表面涂覆一层海藻酸钠/多壁碳纳米管薄膜,改变海藻酸钠与多壁碳纳米管的比例,探究三维碳纳米管/硅藻土基多孔陶瓷复合材料的光热海水淡化和污水处理效果。 结果 硅藻土基多孔陶瓷在没有添加CaCO时,主要成分为无定型的SiO相,而随着造孔剂CaCO含量的掺入,逐渐生成了CaSiO,随着CaCO含量的进一步增加,CaSiO与周围过量的CaO进一步发生反应生成CaSiO。硅藻土颗粒存在被液相包覆的迹象,且样品表面均存在微米级的孔形貌,证明了在烧结过程中,硅藻土发生了晶相转变,存在CaCO的分解、CO的逸出及CaSiO的生成等多种化学反应。随着CaCO含量的增加,样品的孔隙率逐渐升高。SC-5样品孔隙率可达73.2%,且具有超亲水性。所制备的SC-5/CNTs-45复合材料可以实现89.1%的光吸收率。蒸发速率以及光热转换效率分别可达2.07 kg·m·h和95.6%。淡化前后海水中Na、K、Ca和Mg的浓度由9075.66、441.03、345.55和1188.21 mg·L分别下降到4.39、1.27、1.17和0.50 mg·L,离子截留率分别可达99.95%、99.71%、99.66%、99.96%,净化后水体主要离子浓度均达到了世界卫生组织对饮用水的离子浓度标准。用SC-5/CNTs-45净化罗丹明B有机溶液,净化后的罗丹明B溶液失去了特征吸收峰,证明SC-5/CNTs-45样品对罗丹明B有机染料溶液具有良好的净化效果。 结论 以硅藻土为主要原料,CaCO作为造孔剂,采用高温烧结法,成功制备出具有不同孔结构的硅藻土基多孔陶瓷。所制备的硅藻土基多孔陶瓷主要物相为SiO及CaSiO,具有超亲水性,随着造孔剂含量的增加,孔隙率逐渐增大。将多壁碳纳米管和海藻酸钠凝胶的混合物均匀涂覆在多孔陶瓷的表面形成一层薄膜,结合多孔结构的多重散射特性及碳纳米管高效的光热性能,样品光吸收率最高可达89.1%,在一个光强下蒸发速率可达2.07 kg·m·h,光热转换效率为95.9%,对海水中几种主要离子具有超过99%的离子截留率,且对有机染料具有优良的净化作用,表现出了显著的海水淡化效果和污水处理能力,且具有良好的循环稳定性。 Abstract: Interface solar steam generation technology provides an efficient and sustainable strategy for extracting fresh water from seawater and wastewater, which can effectively solve the current water crisis. In present work, diatomite based porous ceramics were prepared by grouting molding process by using natural diatomite as the main raw material and CaCO3 as the pore forming agent. Then, carbon nanotube / diatomite based porous ceramic composites were prepared successfully by surface modification of the diatomite based porous ceramics coating with the multi walled carbon nanotubes and sodium alginate mixed gel. Characterizations confirm that the diatomite based porous ceramics have a three-dimensional connected porous structure, and the pore size is mainly 10-30 µm. When the mass fraction of CaCO3 is 50%, the porosity can reach 73.2%. Owing to the multiple scattering effect and hydrophilicity of the porous structure and the excellent photothermal conversion ability of carbon nanotubes, the evaporator show excellent properties. Under one solar intensity, the evaporation rate and energy conversion efficiency of the evaporator are up to 2.07 kg·m−2·h−1 and 95.6%, respectively and maintains good cycle stability. Additionally, the ion rejection rate of seawater and wastewater for the evaporator can achieve nearly 100%. It shows broad application potential in the field of seawater desalination. -
图 8 (a)不同比例复合材料的质量损失曲线; SC-5/CNTs-45水蒸发性能(b)不同光强的质量损失曲线; (c)不同海水浓度速率图; (d)循环测试图; (e)淡化前后海水主要离子浓度; (f)净化罗丹明b前后紫外-可见吸收光谱
Figure 8. (a) Mass change curve of composites with different proportions; The Evaporation performance of SC-5/CNTs-45 (b) Mass change curve under different solar intensities; (c) The evaporation rates under different salinity concentrations; (d) The cyclic curve; (e) Seawater concentration of main ions before and after purification; (f) UV-Vis absorption spectra before and after purification of RhB
表 1 本工作与相关研究在一个光强下性能对比
Table 1. Comparison the performance of this work with related studies under one solar intensity
Sample Evaporation rate/(kg·m−2·h−1) Evaporation efficiency/% Our work 2.07 95.9 Cotton-CNT fabric[7] 1.59 89.6 Graphene oxide/CNTs[8] 1.58 87.5 All-carbon nanotube hybrid films[34] 1.37 87.4 Cellulose/Carbon Nanotubes Membrane[35] 1.60 89 CNT@Dialdehyde microcrystalline cellulose membrane[36] 1.58 90.86 Porous Ni mesh/CNTs[37] 2.13 94.3 Hydroxyapatite nanowires/CNT photothermal paper[38] 1.31 83.2 -
[1] 王笑影, 褚文娣, 葛梦妮, 等. 巯基接枝氧化石墨烯/聚酰胺复合膜制备及反渗透脱盐性能[J]. 复合材料学报, 2021, 38(8):2479-2488. doi: 10.13801/j.cnki.fhclxb.20201030.008WANG Xiaoying, CHU Wendi, GE Mengni, et al. Fabrication of sulfhydryl grafted graphene oxide/polyamide composite membranes for reverse osmosis desalination[J]. Acta Materiae Compositae Sinica,2021,38(8):2479-2488(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201030.008 [2] BAE K, KU B J, KIM Y, et al. Black diatom colloids toward efficient photothermal converters for solar-to-steam generation[J]. ACS Applied Materials & Interfaces,2019,11(4):4531-4540. [3] XU R Q, WEI N, LI Z K, et al. Construction of hierarchical 2 D/2 D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation[J]. Journal Of Colloid And Interface Science,2021,584(2):125-133. [4] SHARON H, REDDY K S. A review of solar energy driven desalination technologies[J]. Renewable and Sustainable Energy Reviews,2015,41(1):1080-1118. [5] XU W C, HU X Z, ZHUANG S D, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials,2018,8(14):1702884. doi: 10.1002/aenm.201702884 [6] ZHOU L, LI X Q, NI G W, et al. The revival of thermal utilization from the Sun: interfacial solar vapor generation[J]. National Science Review,2019,6(3):562-578. doi: 10.1093/nsr/nwz030 [7] KOU H, LIU Z X, ZHU B, et al. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight[J]. Desalination,2019,462(7):29-38. [8] LI L, ZANG L L, ZHANG S C, et al. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination[J]. Journal Of The Taiwan Institute Of Chemical Engineers,2020,111(6):191-197. [9] ZHANG P P, LIAO Q H, YAO H Z, et al. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun[J]. Journal of Materials Chemistry A,2018,6(31):15303-15309. doi: 10.1039/C8TA05412F [10] YANG J L, PANG Y S, HUANG W X, et al. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano,2017,11(6):5510-5518. doi: 10.1021/acsnano.7b00367 [11] CHEN L, WANG H Y, KURAVI S, et al. Low-cost and reusable carbon black based solar evaporator for effective water desalination[J]. Desalination,2020,483(6):114412. [12] JIAO S P, LIU M, LI Y, et al. Emerging hydrovoltaic technology based on carbon black and porous carbon materials: A mini review[J]. Carbon,2022,193(6):339-355. [13] MU S L, NAN J J, SHI C Y, et al. A flexible polymer nanofiber-Gold nanoparticle composite film for solar-thermal seawater desalination[J]. Macromolecular Rapid Communications,2020,41(24):2000390. doi: 10.1002/marc.202000390 [14] ZHANG Y, WANG Y, YU B, et al. Hierarchically structured black gold film with ultrahigh porosity for solar steam generation[J]. Advanced Materials,2022,34(4):2200108. [15] LIU F, LIANG W D, HE J X, et al. Fabrication of Ag nanoparticles doped hypercrosslinked polymers monoliths for solar desalination[J]. Polymer,2021,231(9):124115. [16] XIAO S N, ZHAO X W, LIU S Y, et al. rGO-CuOx composites reduced by solid-phase microwave thermal shock for high-efficient seawater desalination and purification[J]. Advanced Sustainable Systems,2022:2100500. [17] TAO F J, ZHANG Y L, YIN K, et al. Copper sulfide-based plasmonic photothermal membrane for high-efficiency solar vapor generation[J]. ACS Applied Materials & Interfaces,2018,10(41):35154-35163. [18] GUO Z Z, WANG G, MING X, et al. PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization[J]. ACS Applied Materials & Interfaces,2018,10(29):24583-24589. [19] 魏天琪, 李秀强, 李金磊, 等. 界面光蒸汽转化研究进展[J]. 科学通报, 2018, 63(14):1405-1416.WEI Tianqi, LI Xiuqiang, LI Jinlei, et al. Interfacial solar vapor generation[J]. Chinese Science Bulletin,2018,63(14):1405-1416(in Chinese). [20] WANG Y C, ZHANG L B, WANG P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation[J]. ACS Sustainable Chemistry & Engineering,2016,4(3):1223-1230. [21] HAN L, LI F L, DENG X G, et al. Foam-gelcasting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures[J]. Journal of the European Ceramic Society,2017,37(7):2717-2725. doi: 10.1016/j.jeurceramsoc.2017.02.032 [22] 侯雪艳, 文华, 赵海涛, 等. 表面疏水修饰增强改性硅藻土调湿性能及其对聚氨酯膜透湿性的影响[J]. 复合材料学报, 2023:40. doi: 10.13801/j.cnki.fhclxb.20220414.001HOU Xuyan, WEN Hua, ZHAO Haitao, et al. Modified diatomite with enhanced moisture-regulating by surface hydrophobicity and its effect on water vapor permeability of polyurethane film[J]. Acta Materiae Compositae Sinica,2023:40(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220414.001 [23] HAO L P, GAO W Y, YAN S, et al. Preparation and characterization of porous ceramics with low-grade diatomite and oyster shell[J]. Materials Chemistry and Physics,2019,235(9):121741. [24] 王卿, 鲍崇高, 李世佳, 等. 硅藻土光固化成型浆料和多孔陶瓷的制备[J]. 硅酸盐通报, 2022, 41(4):1416-1422. doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204036WANG Qing, BAO Chonggao, LI Shijia, et al. Fabrication of diatomite slurries and diatomite porous ceramics based on stereo lithography apparatus[J]. Bulletin of the Chinese Ceramic Society,2022,41(4):1416-1422(in Chinese). doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204036 [25] BI Y B, ZHANG H J, WANG H F, et al. Facile preparation of reduced GO modified porous ceramics with hierarchical pore structure as a highly efficient and durable sorbent material[J]. Journal of the European Ceramic Society,2020,40(5):2106-2112. doi: 10.1016/j.jeurceramsoc.2020.01.008 [26] DENG L L, DU P X, YU W B, et al. Novel hierarchically porous allophane/diatomite nanocomposite for benzene adsorption[J]. Applied Clay Science,2019,168(2):155-163. [27] 杨勤桃, 农接亮, 解庆林, 等. 改性硅藻土在污水处理中的应用研究进展[J]. 化工新型材料, 2022, 50(1):298-302. doi: 10.19817/j.cnki.issn1006-3536.2022.01.060YANG Qintao, Nong Jieliang, Xie Qinglin, et al. Research progress on application of modified diatomite in wastewater treatment[J]. New Chemical Materials,2022,50(1):298-302(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2022.01.060 [28] HU Z B, ZHENG S L, JIA M Z, et al. Preparation and characterization of novel diatomite/ground calcium carbonate composite humidity control material[J]. Advanced Powder Technology,2017,28(5):1372-1381. doi: 10.1016/j.apt.2017.03.005 [29] JIANG F, ZHANG L L, JIANG Z, et al. Diatomite-based porous ceramics with high apparent porosity: Pore structure modification using calcium carbonate[J]. Ceramics International,2019,45(5):6085-6092. doi: 10.1016/j.ceramint.2018.12.082 [30] ZHENG R J, REN Z J, GAO H M, et al. Effects of calcination on silica phase transition in diatomite[J]. Journal of Alloys and Compounds,2018,757:364-371. doi: 10.1016/j.jallcom.2018.05.010 [31] 卢尚青, 吴素芳. 碳酸钙热分解进展[J]. 化工学报, 2015, 66(8):2895-2902. doi: 10.11949/j.issn.0438-1157.20150670LU Shangqing, WU Sufang. Advances in calcium carbonate thermal decomposition[J]. Journal of Chemical Industry and Engineering(China),2015,66(8):2895-2902(in Chinese). doi: 10.11949/j.issn.0438-1157.20150670 [32] XIAO J X, GUO Y, LUO W Q, et al. A scalable, cost-effective and salt-rejecting MoS2/SA@melamine foam for continuous solar steam generation[J]. Nano Energy,2021,87(9):106213. [33] HU W J H, XIE L, ZENG H B. Novel sodium alginate-assisted MXene nanosheets for ultrahigh rejection of multiple cations and dyes[J]. Journal of Colloid and Interface Science,2020,568(5):36-45. [34] YU Y L, CHEN S, JIA Y, et al. Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification[J]. Carbon,2020,169:134-141. doi: 10.1016/j.carbon.2020.06.089 [35] YANG Z Y, ZANG L L, DOU T W, et al. Asymmetric cellulose/carbon nanotubes membrane with interconnected pores fabricated by droplet method for solar-driven interfacial evaporation and desalination[J]. Membranes,2022,12(4):369. doi: 10.3390/membranes12040369 [36] ZHU R F, WANG D, LIU Y M, et al. Bifunctional superwetting carbon nanotubes/cellulose composite membrane for solar desalination and oily seawater purification[J]. Chemical Engineering Journal,2022,433:133510. doi: 10.1016/j.cej.2021.133510 [37] LI Q, ZHANG S Q, WEI N, et al. Porous Ni/CNTs composite membrane as solar absorber for highly efficient solar steam generation[J]. Solar Energy Materials and Solar Cells,2022,243:111815. doi: 10.1016/j.solmat.2022.111815 [38] XIONG Z C, ZHU Y J, QIN D D, et al. Flexible fire-resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy-driven water purification[J]. Small,2018,14(50):1803387. doi: 10.1002/smll.201803387 [39] GLEN AKRIDGE D. Methods for calculating brine evaporation rates during salt production[J]. Journal of Archaeological Science.,2008,35(6):1453-1462. doi: 10.1016/j.jas.2007.10.013 [40] WEI N, LI Z K, LI Q, et al. Scalable and low-cost fabrication of hydrophobic PVDF/WS2 porous membrane for highly efficient solar steam generation[J]. Journal of Colloid and Interface Science,2021,588(4):369-377. -