留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维碳纳米管/硅藻土基多孔陶瓷复合材料的制备及其光热水蒸发性能

李梦涵 魏娜 徐瑞琪 杨泽钰 崔洪芝

李梦涵, 魏娜, 徐瑞琪, 等. 三维碳纳米管/硅藻土基多孔陶瓷复合材料的制备及其光热水蒸发性能[J]. 复合材料学报, 2023, 40(8): 4577-4586. doi: 10.13801/j.cnki.fhclxb.20221121.001
引用本文: 李梦涵, 魏娜, 徐瑞琪, 等. 三维碳纳米管/硅藻土基多孔陶瓷复合材料的制备及其光热水蒸发性能[J]. 复合材料学报, 2023, 40(8): 4577-4586. doi: 10.13801/j.cnki.fhclxb.20221121.001
LI Menghan, WEI Na, XU Ruiqi, et al. Preparation of carbon nanotubes/diatomite based porous ceramic composites and its photothermal evaporation performance[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4577-4586. doi: 10.13801/j.cnki.fhclxb.20221121.001
Citation: LI Menghan, WEI Na, XU Ruiqi, et al. Preparation of carbon nanotubes/diatomite based porous ceramic composites and its photothermal evaporation performance[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4577-4586. doi: 10.13801/j.cnki.fhclxb.20221121.001

三维碳纳米管/硅藻土基多孔陶瓷复合材料的制备及其光热水蒸发性能

doi: 10.13801/j.cnki.fhclxb.20221121.001
基金项目: 国家自然科学基金(52002228;51772176;51971121)
详细信息
    通讯作者:

    魏娜,博士,讲师,硕士生导师,研究方向为太阳能海水淡化 E-mail: weina@sdust.edu.cn

  • 中图分类号: TB34;TB333

Preparation of carbon nanotubes/diatomite based porous ceramic composites and its photothermal evaporation performance

Funds: National Natural Science Foundation of China (52002228; 51772176; 51971121)
  • 摘要: 界面型光蒸汽转化技术为从海水和废水中提取淡水提供了一种高效、可持续的策略,以有效应对水资源短缺危机。本文以天然硅藻土为主要原料、CaCO3为造孔剂,采用注浆成型工艺,制备硅藻土基多孔陶瓷,并将多壁碳纳米管与海藻酸钠混合凝胶涂覆到陶瓷表面,制备出碳纳米管/硅藻土基多孔陶瓷复合材料。结果表明:硅藻土基多孔陶瓷具有三维连通的多孔结构,孔径主要分布在10~30 µm。当CaCO3质量分数为50wt%时,孔隙率可达73.2%。得益于多孔结构的多重散射效应及亲水性、碳纳米管优异的光热转换能力,一个太阳光强下,蒸发器蒸发速率和能量转化效率最高可达2.07 kg·m−2·h−1和95.6%,对于海水和废水可实现接近100%的离子截留率,并具有良好的循环稳定性,在海水淡化领域具有广阔的应用潜力。

     

  • 图  1  三维碳纳米管/硅藻土基多孔陶瓷复合材料的制备流程图

    SC/CNTs—Carbon nanotubes/diatomite based porous ceramic composites

    Figure  1.  Schematic illustration of the fabrication process of 3D diatomite based porous ceramic/carbon nanotubes composites

    图  2  硅藻土基多孔陶瓷(SC)的XRD图谱

    Figure  2.  XRD pattern of diatomite based porous ceramics (SC)

    图  3  硅藻土粉末 ((a)~(c)) 及SC-5样品 ((d)~(f)) 的SEM图像

    Figure  3.  SEM images of diatomite powder ((a)-(c)) and SC-5 sample ((d)-(f))

    图  4  SC-5的TG和DTG曲线

    Figure  4.  TG and DTG curves of SC-5

    图  5  所制备样品孔隙率(a)、孔径分布(b)、质量损失曲线(c)及蒸发速率和蒸发效率图(d)

    dV/dlgD—Rate of change in pore volume between pore segments

    Figure  5.  Samples prepared porosity (a), pore size distribution (b), mass change curves (c) and evaporation rates and efficiency (d)

    图  6  多壁碳纳米管 (a) 及SC-5/CNTs-45 ((b), (c)) 形貌图像;((d)~(f)) SC-5/CNTs和SC-5的紫外-可见-近红外图谱

    Figure  6.  SEM images of samples prepared multi-walled carbon nanotubes (a) and SC-5/CNTs-45 ((b), (c)); ((d)-(f)) UV-Vis-NIR spectrum of SC-5/CNTs and SC-5

    图  7  (a) 纯海水、SC-5与SC-5/CNTs-45的表面温度曲线;(b) SC-5/CNTs-45表面与内部的温度曲线;(c) SC-5与SC-5/CNTs-45的温度热像图

    Figure  7.  (a) Surface temperature curves of pure seawater, SC-5 and SC-5/CNTs-45; (b) Surface and internal temperature curves of SC-5/CNTs-45; (c) Surface temperature images of SC-5 and SC-5/CNTs-45

    图  8  (a)不同比例复合材料的质量损失曲线;SC-5/CNTs-45水蒸发性能:(b)不同光强的质量损失曲线;(c)不同海水浓度速率图;(d)循环测试图;(e)淡化前后海水主要离子浓度;(f)净化罗丹明b前后紫外-可见吸收光谱

    yave—Average evaporation rate of cyclic evaporation experiment

    Figure  8.  (a) Mass change curves of composites with different proportions; Evaporation performance of SC-5/CNTs-45: (b) Mass change curves under different solar intensities; (c) Evaporation rates under different salinity concentrations; (d) Cyclic curve; (e) Seawater concentration of main ions before and after purification; (f) UV-Vis absorption spectra before and after purification of Rhodamine B

    表  1  硅藻土基多孔陶瓷的原料用量

    Table  1.   Raw material amount of diatomite based porous ceramics

    Sample Diatomite/g CMC/g Isobam-104/g Deionized water/mL CaCO3/g
    SC-0 8.4 0.02 0.24 12 0
    SC-1 8.4 0.02 0.24 12 2.07
    SC-2 8.4 0.02 0.24 12 4.14
    SC-3 8.4 0.02 0.24 12 6.21
    SC-4 8.4 0.02 0.24 12 8.28
    SC-5 8.4 0.02 0.24 12 10.35
    Note: CMC—Sodium carboxymethylcellulose.
    下载: 导出CSV

    表  2  碳纳米管(CNTs)/硅藻土基多孔陶瓷复合材料的用量

    Table  2.   Amount of carbon nanotubes (CNTs)/diatomite based porous ceramics

    Sample Diatomite/g CMC/g Isobam-104/g Deionized water/mL CaCO3/g CNTs/mg
    SC-5/CNTs-15 8.4 0.02 0.24 12 0 15
    SC-5/CNTs-30 8.4 0.02 0.24 12 2.07 30
    SC-5/CNTs-45 8.4 0.02 0.24 12 4.14 45
    SC-5/CNTs-60 8.4 0.02 0.24 12 6.21 60
    下载: 导出CSV

    表  3  本工作与相关研究在一个光强下性能对比

    Table  3.   Comparison the performance of this work with related studies under one solar intensity

    SampleEvaporation rate/(kg·m−2·h−1)Evaporation efficiency/%Ref.
    Our work2.0795.9
    Cotton-CNT fabric1.5989.6[7]
    Graphene oxide/CNTs1.5887.5[8]
    All-carbon nanotube hybrid films1.3787.4[34]
    Cellulose/carbon nanotubes membrane1.6089[35]
    CNT@dialdehyde microcrystalline cellulose membrane1.5890.86[36]
    Porous Ni mesh/CNTs2.1394.3[37]
    Hydroxyapatite nanowires/CNT photothermal paper1.3183.2[38]
    下载: 导出CSV
  • [1] 王笑影, 褚文娣, 葛梦妮, 等. 巯基接枝氧化石墨烯/聚酰胺复合膜制备及反渗透脱盐性能[J]. 复合材料学报, 2021, 38(8):2479-2488. doi: 10.13801/j.cnki.fhclxb.20201030.008

    WANG Xiaoying, CHU Wendi, GE Mengni, et al. Fabrication of sulfhydryl grafted graphene oxide/polyamide composite membranes for reverse osmosis desalination[J]. Acta Materiae Compositae Sinica,2021,38(8):2479-2488(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201030.008
    [2] BAE K, KU B J, KIM Y, et al. Black diatom colloids toward efficient photothermal converters for solar-to-steam generation[J]. ACS Applied Materials & Interfaces,2019,11(4):4531-4540.
    [3] XU R Q, WEI N, LI Z K, et al. Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation[J]. Journal of Colloid and Interface Science,2021,584(2):125-133.
    [4] SHARON H, REDDY K S. A review of solar energy driven desalination technologies[J]. Renewable and Sustainable Energy Reviews,2015,41(1):1080-1118.
    [5] XU W C, HU X Z, ZHUANG S D, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials,2018,8(14):1702884. doi: 10.1002/aenm.201702884
    [6] ZHOU L, LI X Q, NI G W, et al. The revival of thermal utilization from the sun: Interfacial solar vapor generation[J]. National Science Review,2019,6(3):562-578. doi: 10.1093/nsr/nwz030
    [7] KOU H, LIU Z X, ZHU B, et al. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight[J]. Desalination,2019,462(7):29-38.
    [8] LI L, ZANG L L, ZHANG S C, et al. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination[J]. Journal of the Taiwan Institute of Chemical Engineers,2020,111(6):191-197.
    [9] ZHANG P P, LIAO Q H, YAO H Z, et al. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun[J]. Journal of Materials Chemistry A,2018,6(31):15303-15309. doi: 10.1039/C8TA05412F
    [10] YANG J L, PANG Y S, HUANG W X, et al. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano,2017,11(6):5510-5518. doi: 10.1021/acsnano.7b00367
    [11] CHEN L, WANG H Y, KURAVI S, et al. Low-cost and reusable carbon black based solar evaporator for effective water desalination[J]. Desalination,2020,483(6):114412.
    [12] JIAO S P, LIU M, LI Y, et al. Emerging hydrovoltaic technology based on carbon black and porous carbon materials: A mini review[J]. Carbon,2022,193(6):339-355.
    [13] MU S L, NAN J J, SHI C Y, et al. A flexible polymer nanofiber-gold nanoparticle composite film for solar-thermal seawater desalination[J]. Macromolecular Rapid Communications,2020,41(24):2000390. doi: 10.1002/marc.202000390
    [14] ZHANG Y, WANG Y, YU B, et al. Hierarchically structured black gold film with ultrahigh porosity for solar steam generation[J]. Advanced Materials,2022,34(4):2200108.
    [15] LIU F, LIANG W D, HE J X, et al. Fabrication of Ag nanoparticles doped hypercrosslinked polymers monoliths for solar desalination[J]. Polymer,2021,231(9):124115.
    [16] XIAO S N, ZHAO X W, LIU S Y, et al. rGO-CuOx composites reduced by solid-phase microwave thermal shock for high-efficient seawater desalination and purification[J]. Advanced Sustainable Systems,2022,6(5):2100500.
    [17] TAO F J, ZHANG Y L, YIN K, et al. Copper sulfide-based plasmonic photothermal membrane for high-efficiency solar vapor generation[J]. ACS Applied Materials & Interfaces,2018,10(41):35154-35163.
    [18] GUO Z Z, WANG G, MING X, et al. PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization[J]. ACS Applied Materials & Interfaces,2018,10(29):24583-24589.
    [19] 魏天琪, 李秀强, 李金磊, 等. 界面光蒸汽转化研究进展[J]. 科学通报, 2018, 63(14):1405-1416.

    WEI Tianqi, LI Xiuqiang, LI Jinlei, et al. Interfacial solar vapor generation[J]. Chinese Science Bulletin,2018,63(14):1405-1416(in Chinese).
    [20] WANG Y C, ZHANG L B, WANG P. Self-floating carbon nano-tube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation[J]. ACS Sustainable Chemistry & Engineering,2016,4(3):1223-1230.
    [21] HAN L, LI F L, DENG X G, et al. Foam-gelcasting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures[J]. Journal of the European Ceramic Society,2017,37(7):2717-2725. doi: 10.1016/j.jeurceramsoc.2017.02.032
    [22] 侯雪艳, 文华, 赵海涛, 等. 表面疏水修饰增强改性硅藻土调湿性能及其对聚氨酯膜透湿性的影响[J]. 复合材料学报, 2023, 40(2):929-939. doi: 10.13801/j.cnki.fhclxb.20220414.001

    HOU Xueyan, WEN Hua, ZHAO Haitao, et al. Modified diatomite with enhanced moisture-regulating by surface hydrophobicity and its effect on water vapor permeability of polyurethane film[J]. Acta Materiae Compositae Sinica,2023,40(2):929-939(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220414.001
    [23] HAO L P, GAO W Y, YAN S, et al. Preparation and characterization of porous ceramics with low-grade diatomite and oyster shell[J]. Materials Chemistry and Physics,2019,235(9):121741.
    [24] 王卿, 鲍崇高, 李世佳, 等. 硅藻土光固化成型浆料和多孔陶瓷的制备[J]. 硅酸盐通报, 2022, 41(4):1416-1422. doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204036

    WANG Qing, BAO Chonggao, LI Shijia, et al. Fabrication of diatomite slurries and diatomite porous ceramics based on stereo lithography apparatus[J]. Bulletin of the Chinese Ceramic Society,2022,41(4):1416-1422(in Chinese). doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204036
    [25] BI Y B, ZHANG H J, WANG H F, et al. Facile preparation of reduced GO modified porous ceramics with hierarchical pore structure as a highly efficient and durable sorbent material[J]. Journal of the European Ceramic Society,2020,40(5):2106-2112. doi: 10.1016/j.jeurceramsoc.2020.01.008
    [26] DENG L L, DU P X, YU W B, et al. Novel hierarchically porous allophane/diatomite nanocomposite for benzene adsorption[J]. Applied Clay Science,2019,168(2):155-163.
    [27] 杨勤桃, 农接亮, 解庆林, 等. 改性硅藻土在污水处理中的应用研究进展[J]. 化工新型材料, 2022, 50(1):298-302. doi: 10.19817/j.cnki.issn1006-3536.2022.01.060

    YANG Qintao, NONG Jieliang, XIE Qinglin, et al. Research progress on application of modified diatomite in wastewater treatment[J]. New Chemical Materials,2022,50(1):298-302(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2022.01.060
    [28] HU Z B, ZHENG S L, JIA M Z, et al. Preparation and characterization of novel diatomite/ground calcium carbonate composite humidity control material[J]. Advanced Powder Technology,2017,28(5):1372-1381. doi: 10.1016/j.apt.2017.03.005
    [29] JIANG F, ZHANG L L, JIANG Z, et al. Diatomite-based porous ceramics with high apparent porosity: Pore structure modification using calcium carbonate[J]. Ceramics International,2019,45(5):6085-6092. doi: 10.1016/j.ceramint.2018.12.082
    [30] ZHENG R J, REN Z J, GAO H M, et al. Effects of calcination on silica phase transition in diatomite[J]. Journal of Alloys and Compounds,2018,757:364-371. doi: 10.1016/j.jallcom.2018.05.010
    [31] 卢尚青, 吴素芳. 碳酸钙热分解进展[J]. 化工学报, 2015, 66(8):2895-2902. doi: 10.11949/j.issn.0438-1157.20150670

    LU Shangqing, WU Sufang. Advances in calcium carbonate thermal decomposition[J]. Journal of Chemical Industry and Engineering (China),2015,66(8):2895-2902(in Chinese). doi: 10.11949/j.issn.0438-1157.20150670
    [32] XIAO J X, GUO Y, LUO W Q, et al. A scalable, cost-effective and salt-rejecting MoS2/SA@melamine foam for continuous solar steam generation[J]. Nano Energy,2021,87(9):106213.
    [33] HU W J H, XIE L, ZENG H B. Novel sodium alginate-assisted MXene nanosheets for ultrahigh rejection of multiple cations and dyes[J]. Journal of Colloid and Interface Science,2020,568(5):36-45.
    [34] YU Y L, CHEN S, JIA Y, et al. Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification[J]. Carbon,2020,169:134-141. doi: 10.1016/j.carbon.2020.06.089
    [35] YANG Z Y, ZANG L L, DOU T W, et al. Asymmetric cellulose/carbon nanotubes membrane with interconnected pores fabricated by droplet method for solar-driven interfacial evaporation and desalination[J]. Membranes,2022,12(4):369. doi: 10.3390/membranes12040369
    [36] ZHU R F, WANG D, LIU Y M, et al. Bifunctional superwetting carbon nanotubes/cellulose composite membrane for solar desalination and oily seawater purification[J]. Chemical Engineering Journal,2022,433:133510. doi: 10.1016/j.cej.2021.133510
    [37] LI Q, ZHANG S Q, WEI N, et al. Porous Ni/CNTs composite membrane as solar absorber for highly efficient solar steam generation[J]. Solar Energy Materials and Solar Cells,2022,243:111815. doi: 10.1016/j.solmat.2022.111815
    [38] XIONG Z C, ZHU Y J, QIN D D, et al. Flexible fire-resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy-driven water purification[J]. Small,2018,14(50):1803387. doi: 10.1002/smll.201803387
    [39] GLEN A D. Methods for calculating brine evaporation rates during salt production[J]. Journal of Archaeological Science,2008,35(6):1453-1462. doi: 10.1016/j.jas.2007.10.013
    [40] WEI N, LI Z K, LI Q, et al. Scalable and low-cost fabrication of hydrophobic PVDF/WS2 porous membrane for highly efficient solar steam generation[J]. Journal of Colloid and Interface Science,2021,588(4):369-377.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  641
  • HTML全文浏览量:  421
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2022-11-01
  • 录用日期:  2022-11-12
  • 网络出版日期:  2022-11-21
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回