留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料固化残余应变应变片原位检测方法

孟波 孙小巍 刘凯 刘振东 王鹏

孟波, 孙小巍, 刘凯, 等. 复合材料固化残余应变应变片原位检测方法[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 孟波, 孙小巍, 刘凯, 等. 复合材料固化残余应变应变片原位检测方法[J]. 复合材料学报, 2024, 42(0): 1-10.
MENG Bo, SUN Xiaowei, LIU Kai, et al. In-situ testing method for residual strain of cured composite materials[J]. Acta Materiae Compositae Sinica.
Citation: MENG Bo, SUN Xiaowei, LIU Kai, et al. In-situ testing method for residual strain of cured composite materials[J]. Acta Materiae Compositae Sinica.

复合材料固化残余应变应变片原位检测方法

基金项目: 重点实验室基金一般项目 (6142906220101);国防基础科研计划资助(JCKY2021206A045);国防基础科研计划资助 (JCKY2022206A010).
详细信息
    通讯作者:

    刘 凯,博士,副教授,博士生导师,研究方向为复合材料工艺力学 E-mail: liukai0704@bit.edu.cn

  • 中图分类号: TB332

In-situ testing method for residual strain of cured composite materials

Funds: Key Laboratory Fund General Projects (6142906220101); Defense Industrial Technology Development Program (JCKY2021206A045); Defense Industrial Technology Development Program (JCKY2022206A010)
  • 摘要: 复合材料固化残余应变是导致复合材料固化变形的主要原因,残余应变也会导致复合材料产生裂纹、分层等缺陷,影响复合材料构件装配与构件性能,因此,复合材料固化残余应变原位检测方法研究具有重要意义。本文建立了一种复合材料固化残余应变应变片原位检测方法,根据复合材料凝胶点将复合材料固化分橡胶态和玻璃态两个阶段,针对这两个阶段分段式处理应变片原位检测复合材料固化残余应变数据,对应变片原位检测数据分别采取去除应变片热膨胀和不去除热膨胀的处理方法。基于分段式处理方法,测试了碳纤维热固性复合材料真空袋固化成型0°和90°方向上的应变变化,并与光纤光栅(FBG)原位检测结果进行对比分析,揭示了复合材料固化残余应变的形成机理。研究结果表明,应变片原位检测数据分段式处理结果与FBG结果基本吻合,可以有效分析复合材料固化过程残余应变的演化规律。

     

  • 图  1  应变片温度热输出曲线

    Figure  1.  Temperature thermal output curve of strain gauge

    图  2  预浸料粘度-温度曲线

    Figure  2.  Viscosity and temperature curve of prep-reg

    图  3  固化系统、复合材料及烘箱温度

    Figure  3.  Curing system, composite material and oven temperature

    图  4  传感器的铺设位置

    Figure  4.  Laying position of the sensor

    图  5  FBG检测复合材料固化过程中应变结果

    Figure  5.  The strain results of the composite during solidification were measured by FBG in-situ

    图  6  去除温度影响前应变片检测结果

    Figure  6.  The influence of temperature on the strain gauge was removed

    图  7  去除温度影响后应变片检测不分阶段处理结果

    Figure  7.  After removing the influence of temperature, the measured data of strain gauge are processed regardless of stage

    图  8  去除温度影响后应变片检测数据分阶段处理结果

    Figure  8.  After removing the influence of temperature, the measured data of strain gauge are processed in stages

    表  1  应变片参数

    Table  1.   Resistance strain gauge parameters

    Type Maximum
    service
    temperature/℃
    Strain
    sensitivity coefficient
    Gridarea/
    mm
    Rsistance/
    Ω
    BA120-3AA 250 2.1±0.01 3×2 120
    下载: 导出CSV

    表  2  FBG传感器参数

    Table  2.   Parameters of FBG sensor

    ParametersValues
    Grating length Ls10 mm
    Initial Bragg grating period λB1540 nm~1552 nm
    Coefficient of axial strain Sensitivity Sε1.174 pm/με
    Coefficient of temperature Sensitivity ST11.033 pm/℃
    下载: 导出CSV

    表  3  应变片及FBG检测结果100℃~45℃降温段应变变化比较

    Table  3.   Comparison of strain change results measured by strain gauge and FBG in 100℃~45℃ cooling section

    Checking angle FBG-Experiment-1 FBG-Experiment-2 Average Strain gage-Experiment-1 Strain gage-Experiment-2 Average
    32.4 33.2 32.8 36.7 37.3 37
    90° −1903.1 −2030 −1966.5 −1900 −2172.2 −2036.1
    下载: 导出CSV
  • [1] SORRENTINO L, BELINI C. Compaction influence on spring-in of thin composite parts: Experimental and numerical results[J]. Journal of Composite Materials, 2015, 49(17): 2149-2158. doi: 10.1177/0021998314542362
    [2] YUAN Z Y, WANG Y J, YANG G G, et al. Evolution of curing residual stresses in composite using multi-scale method[J]. Composites Part B: Engineering, 2018, 155: 49-61. doi: 10.1016/j.compositesb.2018.08.012
    [3] CHAVA, SANDEEP, SIRISH N. Continuous evolution of processing induced residual stresses in composites: An in-situ approach[J]. Composites Part A-applied Science and Manufacturing, 2021, 145: 106368. doi: 10.1016/j.compositesa.2021.106368
    [4] JOHNSTON, ANDREW. An integrated model of the development of process-induced deformation in autoclave processing of composite structures [D]. The University of British Columbia 1998.
    [5] DING A X, LI S X, WANG J H, et al. A new path-dependent constitutive model predicting cure-induced distortions in composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 183-196. doi: 10.1016/j.compositesa.2016.11.032
    [6] SVANBERG, J. MAGNUS, JONAS H. Prediction of shape distortions Part I. FE-implementation of a path dependent constitutive model[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(6): 711-721. doi: 10.1016/j.compositesa.2004.02.005
    [7] DING A X, LI S X, WANG J H, et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence[J]. Composite Structures, 2016, 136: 34-43. doi: 10.1016/j.compstruct.2015.09.014
    [8] KISTER G, DOSSI E. Cure monitoring of CFRP composites by dynamic mechanical analyzer[J]. Polymer Testing, 2015, 47: 71-78. doi: 10.1016/j.polymertesting.2015.08.009
    [9] HARDIS R, JESSOP J L P, PETERS F E, et al. Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 100-108. doi: 10.1016/j.compositesa.2013.01.021
    [10] ANTONUCCI V, GIORDANO M, CUSANO A, et al. Real time monitoring of cure and gelification of a thermoset matrix[J]. Composites Science and Technology, 2006, 66(16): 3273-3280. doi: 10.1016/j.compscitech.2005.07.009
    [11] 巴德欣, 董永康. 分布式光纤传感技术及其在航空航天领域的应用展望[J]. 宇航学报, 2020, 41(6): 730-738.

    BA D X, DONG Y K. Distributed optical fiber sensing technology and its application prospect in aerospace field[J]. Acta Astronautica, 2020, 41(6): 730-738(in Chinese).
    [12] MULLE M, COLLOMBET F, OLIVIER P, et al. Assessment of cure residual strains through the thickness of carbon-epoxy laminates using FBGs, Part I: elementary specimen[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(1): 94-104. doi: 10.1016/j.compositesa.2008.10.008
    [13] GUEMES J A, MENENDEZ J M. Response of Bragg grating fiber-optic sensors when embedded in composite laminates[J]. Composites Science and Technology, 2002, 62(7/8): 959-966.
    [14] 卢少微, 高禹, 张海军, 等. 树脂传递模塑成型的光纤光栅检测[J]. 高分子材料科学与工程, 2013, 29(1): 119-122.

    LU S W, GAO Y, ZHANG H J, et al. Fiber Bragg grating testing for resin transfer molding[J]. Polymer materials Science and engineering, 2013, 29(1): 119-122(in Chinese).
    [15] CANAL L P, BENAVENTE M, HAUSMANN M, et al. Process-induced strains in RTM processing of polyurethane/carbon composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78(4): 264-273.
    [16] MICHAEL W N, JACOB W S, et al. Life cycle strain monitoring in glass fiber reinforced polymer laminates using embedded fiber Bragg grating sensors from manufacturing to failure[J]. Journal of Composite Materials, 2014, 48(3): 365-381. doi: 10.1177/0021998312472221
    [17] DING A X, LI S X, WANG J H, et al. Experimental and numerical investigation of tool-part interaction on the process-induced distortions in composite structures[J]. Composite Structures, 2022, 279: 114871. doi: 10.1016/j.compstruct.2021.114871
    [18] CHEN J L, WANG J H, LI X Y, et al. Monitoring of temperature and cure-induced strain gradient in laminated composite plate with FBG sensors[J]. Composite Structures, 2020, 242: 112-168.
    [19] WACHTARCZYK K, BENDER M, FAUSTER E, et al. Gel Point Determination in Resin Transfer Molding Process with Fiber Bragg Grating Inscribed in Side-Hole Elliptical Core Optical Fiber[J]. Materials, 2022, 15(18): 6497. doi: 10.3390/ma15186497
    [20] DANIEL I M, LIBER T. Effect of laminate construction on residual stresses in graphite/polyimide composites[J]. Experimental Mechanics, 1977, 17(1): 21-25. doi: 10.1007/BF02324267
    [21] CRASTO A S, KIM R Y, RUSSELL J D. In situ monitoring of residual strain development during composite cure[J]. Polymer composites, 2002, 23(3): 454-463. doi: 10.1002/pc.10447
    [22] 游敏, 郑小玲, 郑勇, 等. 树脂基复合材料内应力测试与分析[J]. 复合材料学报, 2004, 21(4): 29-32.

    YOU M, ZHENG X L, ZHENG Y, et al. Test and analysis of internal stress of resin matrix composites[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 29-32(in Chinese).
    [23] WISNOM M R, GIGLIOTTI M, ERSOYN, et al. Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(4): 522-529. doi: 10.1016/j.compositesa.2005.05.019
    [24] KANERVA M, ANTUNES P, SARLIN E, et al. Direct measurement of residual strains in CFRP-tungsten hybrids using embedded strain gauges[J]. Materials & Design, 2017, 127: 352-363.
    [25] 张明, 安学锋, 唐邦铭等. 高性能双组份环氧树脂固化动力学研究和TTT图绘制[J]. 复合材料学报, 2006, (1): 17-25.

    ZHANG M, AN X F, TANG B M, et al. Study on curing kinetics and TTT diagram of high performance two-component epoxy resin[J]. Acta Materiae Compositae Sinica, 2006, (1): 17-25(in Chinese).
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-04-10
  • 录用日期:  2024-04-21
  • 网络出版日期:  2024-05-24

目录

    /

    返回文章
    返回