Research progress of plant-derived porous carbon materials in supercapacitors
-
摘要: 超级电容器是一种功率密度高、充放电速率快、使用寿命长、应用范围广的储能装置。影响其性能的主要因素是电极材料,故导电性好、原料易得、成本低、环境友好的电极材料的开发是当今超级电容器的研究重点。植物衍生多孔碳材料因其满足上述要求而受到广泛关注。本文按照前驱体的来源对植物衍生多孔碳材料进行了分类,介绍了近年来国内外植物衍生多孔碳材料用于超级电容器电极材料的研究成果,讨论了植物衍生多孔碳电极材料在超级电容器领域中所面临的挑战,并对植物衍生多孔碳材料的发展前景进行了展望。Abstract: Supercapacitors represent an energy storage device renowned for its high-power density, rapid charging/discharging rates, long service life, and versatility across diverse applications. The primary factor influencing their performance lies in the electrode materials. Consequently, the development of electrode materials that are conductive, readily available, cost-effective, and environmentally friendly has emerged as a pivotal research focus in the field of supercapacitors. Plant-based porous carbon materials have garnered significant attention due to their adherence to these criteria. This paper categorizes plant-based porous carbons based on their precursor sources, reviews recent research achievements worldwide on their application as electrode materials in supercapacitors, discusses the challenges faced by plant-based porous carbon electrode materials in this domain, and offers an outlook on their promising future.
-
Keywords:
- plant-derived /
- carbon materials /
- supercapacitors /
- electrode materials /
- research progress
-
水资源短缺正成为21世纪最紧迫的资源问题之一[1]。城镇化建设和工业迅速发展,导致含有无机盐、有机污染物、表面活性剂、合成染料、重金属的污/废水大量排放,水体污染加剧了当前的水资源短缺问题。污/废水处理与回用是缓解该问题的重要措施[2]。我国最新颁布的《“十四五”环境影响评价与排污许可工作实施方案》、《工业废水循环利用实施方案》等政策均提高了污水排放与工业回用水标准。随着水体主要污染物排放限值的进一步收紧,急需改进传统工艺或研发新兴技术,提高污染物处理限值以降低污染物出水浓度。复合材料能通过吸附、絮凝、络合、离子交换、静电相互作用和膜过滤等方式深度去除水中污染物,开发绿色高效的水处理复合材料已引起研究者的广泛关注。混合金属氧化物(Mixed metal oxide,MMO)也可称复合金属氧化物,即含有两种或两种以上金属的氧化物[3],作为一种新兴水处理材料,在环境领域展现出了独特优势和广阔应用前景,受到学者广泛关注,被研究用于去除废水中重金属、类金属、有机物及阴离子等污染物。
目前MMO的研究主要聚焦于双金属,对于三金属及三金属以上的氧化物关注较少,双金属氧化物具有与二价金属氧化物相似的晶体结构,其化学分子式可表示为AxBmOn[1]。其中A与B为金属离子,O为氧离子。金属氧化物是由于金属离子的配位趋势而形成的,氧离子在金属离子周围形成配位球体,并形成紧密堆积结构,其物理、光学和化学性质性质与成分结构密切相关[4]。与单金属氧化物相比,MMO还具有许多其他优势[5-8]:(1) 制备时通过调节金属元素组成、比例可以快速实现MMO的功能调节,可控性强,调控方便快捷;(2) 在水中易重组形成层状双金属氢氧化物(Layered double hydroxides,LDHs),具有LDHs多电荷中心、比表面积大、活性位点丰富且分散等优点,且结构稳定性更好;(3) 多金属间易产生缺陷,且金属元素高度分散,比单金属氧化物具有更高的催化活性;(4) 部分MMO具有碱性及热稳定性,是用作催化剂载体的优良材料。
结构重组、催化、吸附及其协同作用是MMO去除污染物的主导机制。大部分阴离子在MMO结构重组过程中,被其捕集,以层间阴离子形式稳定存在于LDHs沉淀中[9],从而被高效去除;重金属阳离子通过MMO结构重组后的表面络合、表面吸附及同构取代被去除;MMO不仅可以吸附水中的有机污染物,还可以利用自身催化特性,催化氧化降解有机污染物[10];对于难以被吸附的As(Ⅲ)阴离子,则通过催化氧化与吸附的联合作用去除,即MMO首先通过催化氧化将As(Ⅲ)转变为易被吸附的As(Ⅴ),再将As(Ⅴ)富集至表面去除。
在试验研究及应用中,MMO仍存在以下局限[11-14]:(1) 颗粒态MMO使用后难以分离回收;(2) 纳米颗粒间容易发生聚集现象,易降低纳米催化剂的催化活性;(3) 物理吸附效果一般;(4) 电子电导率低和暴露活性金属中心的表面积有限等问题。因此,研究者们进一步探索了将MMO固载至特定功能的载体上、在MMO中掺杂其他元素等方式制备MMO复合材料以解决上述问题,推进其在废水处理领域的实际应用。
1. 混合金属氧化物的制备
MMO的制备方法主要包括固相烧结法[15]、聚合物前驱体焙烧法[16-17]、层状双金属氢氧化物前驱体焙烧法[18-19]、化学共沉淀法[20-21]、水热法[22]5种。不同制备方法及条件见表1。
表 1 混合金属氧化物(MMO)的不同制备方法及条件Table 1. Different preparation methods and conditions of mixed metal oxide (MMO)Synthetic method MMO Raw material pH Other conditions Calcination temperature/℃ Preparation time/h Ref. Solid-phase sintering CaAl-MMO CaO, Al2O3 — — 1200 4-5 [15] Polymer precursor calcination method ZnAlNiZr-MMO Zn(NO3)2·6H2O, Al(NO3)3·9H2O, Ni(NO3)2·6H2O, Zr(NO3)4·5H2O, C6H8O7·H2O, HOCH2CH2OH — Stir at 60-70℃, stir at 80-
90℃ and heat treat at 300℃550 18-24 [16] CoCu-MMO Co(NO3)2·6H2O, Cu(NO3)2·3H2O, C6H8O7·H2O, CH3CH2OH — Stir at normal atmospheric temperature and heat to 80℃ 500 53-55 [17] LDHs precursor calcination method MgAl-MMO Mg(NO3)2·6H2O, Al(NO3)3·9H2O, NaOH, Na2CO3 9.0 Refluxing crystallization 500 13-15 [18] CoCr-MMO Co(NO3)2·6H2O, Cr(NO3)3·9H2O, NaOH, Na2CO3 9.0 Age at 80℃ for 24 h, stir,
60℃ drying400 40-42 [19] Chemical coprecipitation FeSn-MMO Na2SnO3, FeCl3, NaOH 5.3 Stir, precipitate, 70℃ drying 250 11-13 [20] FeZr-MMO Zr(SO4)2·4H2O, FeSO4·7H2O, NaOH 7.5 Stir, precipitate, aging,
65℃ drying— — [21] Hydrothermal method SbMo-MMO SbCl3, NaMoO6·2H2O, CH3CH2OH — Magnetic stir, pressure cooker 180℃ for 24 h — >24 [22] Note: LDHs—Layered double hydroxides. 固相烧结法也称陶瓷法[23],是制备MMO最简单的方法,通常将几种单金属氧化物或金属盐研磨至粉末状,充分混和后直接煅烧。适用于该方法的金属氧化物有限,目前仅用于钙镁铝混合金属氧化物的制备,其他金属元素未见报道。例如,CaO和Al2O3粉末混合均匀后在1200℃下煅烧4 h,原子发生重排,钙铝混合金属氧化物(CaAl-MMO)形成[15]。原料粉末粒径越小,越有利于获得结晶度较高的MMO,若单次反应不完全,形成的MMO纯度不高,则可通过多次研磨煅烧得到高纯度MMO[24]。此法工艺流程简单,制备时间短(4~5 h),适合大规模制备,但所需煅烧温度最高(≥1000℃)、能耗大,制备成本高。
聚合物前驱体法最初制备的粉末状MMO多作为电介质材料,该方法能准确控制元素组成的化学计量比,从而获得具有不同性能的氧化物[25]。目前,该法制备的MMO在水处理领域的应用研究也引起了关注[17]。聚合物前驱体常采用羧酸(柠檬酸)与金属盐溶液反应,再通过醇类有机物(乙醇)聚合[17],经反复沉淀、再溶解循环和透析进行纯化[26]。干燥的纯化聚合物在相对低温下焙烧,可获得具有较大比表面积的MMO,这是由于聚合物的分解提供了更高的孔隙率[26]。该方法还可用于两种以上不同金属离子MMO的制备,Bezerra等[16]通过该法获得了结晶度良好、金属分布均匀、含有4种金属离子的ZnAlNiZr-MMO。
LDHs是对水滑石(Hydrotalcite,HT)和类水滑石化合物(Hydrotalcite-like compounds,HTLCs)的统称,又称为阴离子型黏土[27]。化学式为[M2+1−XM3+X(OH)2]x+(An−X/n)·mH2O,其中M2+和M3+分别为二价和三价金属阳离子,位于主体层板上;An−为层间阴离子;X为M3+/(M3++M2+)的摩尔比;m为层间水分子摩尔数[28]。在焙烧处理过程中,随着层间水、阴离子及层板羟基的脱除,粒子之间会相互搭接,形成金属分布均匀、多孔性、大比表面积的MMO[18]。MMO的粒径、结晶度和孔结构等性质均与LDHs的制备方法有关。LDHs的制备方法主要包括共沉淀法、水热法、离子交换法、诱导水解法、溶胶-凝胶法和焙烧还原法(结构重建法)[29]。这些方法均具有较强的可控性,因此LDHs前驱体焙烧法是制备特性优良MMO的常用方法[30]。
化学共沉淀法常用氢氧化钠作为沉淀剂,获得含有多金属的不溶性化合物,再经洗涤、干燥、筛分、焙烧等步骤得到MMO。Biswas等[20]以Na2SnO3、FeCl3和NaOH为原料制得的SnFe-MMO,与单次固相烧结法相比,化学共沉淀法制得的MMO结晶度更好、纯度更高[24]。水热法是将原料置于中等温度和高压条件中进行强制水解,合成的MMO不仅纯度高[9],同时由于水热法制备条件温和,因此MMO晶体的取向更好、缺陷更少、结晶度更高[24]。水热法制备的MMO,其结构可通过改变原料、溶剂pH值、反应时间和高压釜温度来调控[31]。
综上所述,MMO制备方法众多且大多需要煅烧或焙烧,其中固相烧结法所需温度最高,采用前驱体焙烧的方式,焙烧温度可大幅降低,且MMO的纯度显著提升。化学沉淀法能将焙烧温度降至250℃左右,LDHs前驱体及聚合物前驱体焙烧法则将温度降至400~550℃,水热法需要在200℃的温度和高压条件下进行。从产物性质看,由聚合物前驱体和LDHs前驱体焙烧制备的MMO具有更大的比表面积。这主要是由于这两类前驱体在高温分解过程中,为MMO提供了更高的孔隙率[18, 26]。但是聚合物前驱体焙烧法制备工艺较复杂,所需制备时间达50 h以上。LDHs前驱体焙烧法操作相对简单,且由于LDHs合成方法的多样性和可控性,学者们多采用此法制备具有不同性能的MMO。
2. 混合金属氧化物的可调控性
MMO制备方法的多样性决定了它的特性可调控性,即通过改变其合成方法及合成条件,可以实现从宏观元素组成、元素比例、形貌结构,到微观电子结构、表面化学性质及不饱和配位键的调控[30],以适用于不同应用领域。MMO金属元素组成在影响本身性质性能的同时其对不同污染物的亲和力也不同,而适宜的金属元素比例可以促进MMO中化学吸附氧含量的增加,改善表面晶格氧物种,增强MMO的活性。金属元素组成及比例的调控均能引起MMO形貌结构的变化,此外不同的合成方法及条件也能用于MMO的结构调控。
2.1 金属元素组成的调控
MMO的催化性能与元素组成密切相关,常见的金属元素有Fe、Mn、Co、Ni、Cu等,而含过渡金属元素的MMO,通常比单金属氧化物具有更多的活性中心[32]。Trotochaud等[33]比较了NiOx、CoOx、NiyCo1-yOx、Ni0.9Fe0.1Ox、IrOx、MnOx和FeOx的电催化产氧(OER)活性,研究了其电化学行为,并跟踪了OER过程中活性催化剂结构的变化。结果表明,Ni0.9Fe0.1Ox是碱性介质中最好的催化剂之一,其OER催化活性比IrOx高10倍以上。作者认为高活性主要归因于OER过程中原位形成的层状Ni0.9Fe0.1OOH,该物质中几乎每个Ni原子都具有电化学活性,且Fe与Ni表现出双金属协同作用,活性高于NiyCo1-yOx。不同金属组成的MMO,其光催化降解性能也存在差异。NiCu-MMO、NiCr-MMO和CuCr-MMO对3-氨基苯酚的光催化降解率分别为97.0%、95.0%和92.0%[34]。
MMO的吸附性能不仅与金属元素有关,还与吸附质相关,选择合适的MMO吸附材料对特定污染物的高效去除至关重要。向超[35]制备的3种MMO吸附材料中,FeNi-MMO和FeZr-MMO对PO43−的最大吸附容量仅为47.0 mg/g和62.5 mg/g,而LaZr-MMO可分别达到它们的3.4和2.6倍,这是由于La为该体系提供了更多的磷吸附反应位点。与零价铁、Fe3O4和FeZr-MMO等常用铁基吸附剂相比,铁锰二元金属复合材料通常表现出更好的Sb(V)吸附性能,这是由于Sb(V)对非晶态铁氧化物的亲和力更强[36]。FeMn-MMO吸附Sb(V)的最大吸附容量可达FeZr-MMO[21]的1.9倍[37],同时降低了金属离子的溶出量,大大提高了废水经吸附处理后直接回收利用的可行性。
2.2 元素比例的调控
金属元素比例会对MMO的粒径、孔结构、元素分布、氧元素存在形态(吸附氧、晶格氧)及酸碱性位点数量等造成影响,从而影响其催化活性及稳定性。Deng等[19]采用LDHs前驱体焙烧法制备了不同钴铬摩尔比的CoCr-MMO,用于催化氧化挥发性有机物(VOCs)。其中Co2Cr5-MMO的晶格氧迁移率最高,在1,2−二氯苯(浓度为1000 mg/L)的氧化反应中,呈现最强的催化活性,250℃时反应速率可达0.15~0.20 μmol/(m2·min)。Wang等[38]制备一系列锰钴摩尔比不同的均相MnCo-MMO,用于高效催化甲苯氧化,Mn2Co1-MMO具有较高的催化活性和优异的稳定性,在湿度为20%的气体环境下,也能进行高效催化反应。
当MMO用作催化剂载体时,其金属元素比例也会影响催化剂活性。例如,随着MgAl-MMO中镁铝比的增大,其碱性增强,而载体碱性的增强能提高催化剂活性[39],但当碱性强度达到阈值时,催化剂活性降低,因此探索催化剂载体中最佳金属元素的比例对其应用具有重大意义。刘媛[8]采用400℃焙烧LDHs前驱体得到了铜掺杂MgAl-MMO,作为碳酸丙烯酯合成反应的催化剂载体,发现当Cu掺杂量为1.0%、镁铝摩尔比为3 : 1时,催化剂催化活性最强,且具有很好的耐用性。
MMO中氧元素含量可以通过调整固相烧结过程中的气体气氛来实现。Palmer等[40]在1250℃下煅烧合成了钙钛矿结构的Ca2MnAlO5,再将其在氧气气氛中焙烧,Ca2MnAlO5中交替的AlO4四面体层被氧化成AlO6八面体,Ca2MnAlO5转变为CaMnAlO5.5,氧的插入使该MMO呈现反铁磁有序结构。
2.3 形貌结构的调控
改变MMO的孔结构、结晶度可以增加固体表面的催化活性位点,提高材料的吸附性能。由于LDHs制备方法多样性,以LDHs为前驱体焙烧制备MMO,能实现MMO形貌结构的简单控制。采用共沉淀、水热和尿素水解法合成的相同物质的LDHs,在焙烧后所得MMO粒径不同,孔结构也不同,比较而言,共沉淀法制得的LDHs焙烧后具有较小的粒径、较大的粒内介孔和较强的吸附性能[30, 41]。共沉淀法通常将合成后的LDHs沉淀物置于20~130℃进行热干燥,而冷冻干燥法比热干燥程序更简单,时间更短,效率更高。采用冷冻干燥法处理共沉淀法合成的LDHs,干燥后其颗粒尺寸能达纳米级。同时保留了更多的阴离子和层间水分子,以此为前驱体焙烧获得的MMO具有更好的多孔结构与更大的比表面积,因此其吸附能力也有所增大[42]。
LiAl-LDHs焙烧后形成的Li–O–Al结构拥有更强的Lewis碱性位点,同时由于其较高的碱度和在水介质中的较稳定的特点被广泛研究作为多相碱性催化剂[43]。然而共沉淀法制得的LiAl-LDHs比表面积仅100 m2/g左右,焙烧所得到的LiAl-MMO比表面积也很小。采用其他合成途径以获得结构特性更优良的MMO是有效的调控方法。Takemoto等[44]以低结晶度的金属氢氧化物纳米种子为原料,通过晶体生长的方式制备了新型纳米级、高晶体化的LiAl-LDH,焙烧后得到的纳米LAl-MMO具有更高的结晶度、比表面积(349.0 m2/g)及纯度,表面碱性位点数量可达共沉淀法制备的LiAl-MMO的2.2倍,对甲醇和大豆油的酯交换反应也表现出更高的催化活性。
3. MMO在废水处理中的研究现状
MMO在水体中会发生结构重组,形成LDHs,该特性称为结构记忆效应,原理如图1所示[9]。
近年来,发现LDHs对水中的多种污染物具有离子交换、表面吸附、静电吸引、催化分解等作用[45-46],但其对阴离子吸附能力或离子交换能力较弱[47],而MMO在含有其他阴离子的水中,阴离子会参与结构重组过程,形成相应阴离子插层的水滑石(HT)、类水滑石化合物(HTLCs)或钙矾石沉淀,因此,MMO对高浓度阴离子的去除能力远远优于LDHs[48-49]。
除阴离子外,MMO处理水中污染物的研究还包括重金属、类金属和有机污染物。如表2所示,MMO可以去除水中的多种重金属及类金属,如Cu2+、Pb2+、Zn2+、Cd2+、Cr(Ⅵ)、Se(IV)、Sb(V)、As(V)等,其中对Cd2+最大吸附容量可达386.1 mg/g;对于有机污染物,MMO表现出优越的催化降解及吸附能力,其对含卤有机物、酚类物质和酸性红14(Acid red 14,AR14)染料的降解率均接近100%,对偶氮染料的降解率可达88.0%,对染料的最大吸附容量可达263.0 mg/g;MMO对水体中的卤离子、含氧阴离子等均有较好的去除效果,吸附容量最高可达362.3 mg/g。因此,MMO在废水处理领域具有巨大的应用潜力。
表 2 MMO处理水中污染物的应用Table 2. Application of MMO in the wastewater treatmentContaminant MMO Application Adsorption
capacity/(mg·g−1)Removal
efficiency/%Mechanism Ref. Heavy metal ZnSn-MMO Cu2+, Pb2+, Zn2+ 38.9, 117.2, 29.1 — Surface complexation and adsorption [50] FeMn-MMO Pb2+ 108.1 — Surface complexation and adsorption [51] MgAl-MMO Cd2+, Pb2+ 386.1, 359.7 — Surface complexation and adsorption [52] FeZr-MMO Cr(Ⅵ) 59.9 — Reorganization and surface adsorption [53] MgAl-MMO Cr(Ⅵ) 94.6 — Reorganization and surface adsorption [54] Metalloid FeZr-MMO Se(IV) 277.0 — Reorganization and surface adsorption [55] MgAl2O4 Se(IV) 179.6 — Reorganization and surface adsorption [49] FeZr-MMO Sb(V) 51.0 — Reorganization and surface adsorption [21] FeMn-MMO Sb(V) 95.0 — Reorganization and surface adsorption [37] FeMn-MMO As(V) 132.8 — Reorganization and surface adsorption [56] FeAl-MMO As(III) 314.9 >99.0 Catalysis and adsorption [57] CuFe-MMO As(III) 118.1 — Catalysis and adsorption [58] Organic pollutants FeMn-MMO TCE — 100 Catalysis [59] NiCo2O4 AP — 99.5 Catalysis [60] CoNi-MMO PR — 70.0 Adsorption [61] FeMn-MMO RBK5 — 88.0 Catalysis [62] 1D ZnO-ZnFe2O4 CR 263.0 — Adsorption [13] Nd-CoAl-MMO AR — 100 Catalysis [63]
Halogen ionMgAl-MMO Br–, I– 362.3 — Reorganization and surface adsorption [47] MgZr-MMO F– 144.1 — Reorganization and surface adsorption [64] LaZr-MMO F– — 97.0 Reorganization and surface adsorption [65] CaAl-MMO Cl– 105.9, 96.0 — Reorganization and surface adsorption [15] Oxyanion ZnAl−MMO SO42– 62.5 — Reorganization and surface adsorption [66] CeAl-MMO PO43– 70.4 — Reorganization and surface adsorption [67] CeAl-MMO PO43– 249.3 — Reorganization and surface adsorption [68] Other anions MgAl-MMO S2– — 82.0 Reorganization and surface adsorption [69] Notes: TCE—Trichloroethylene; AP—4−acetaminophenol; PR—Procion red; RBK5—Reactive black 5; CR—Congo red; AR14—Acid red 14. 3.1 重金属及类金属
重金属及类金属(砷、硒、锑)[70]污染具有剧毒性和持久性,会对人类健康、农业和环境安全构成严重威胁[71],我国的地表水环境质量标准(GB/T 3838—2002)[72]、海水水质标准(GB/T 3097—1997)[73]及污水综合排放标准(GB/T 8978—1996)[74]等均规定了此类物质的排放限值。
MMO作为吸附剂可去除水中多种重金属及类金属,其去除水中重金属机制如图2所示[75]。MMO在水中重组为LDHs的过程中,Cr(VI)[54]、Se(IV)[76]和Sb(V)[21, 77]等阴离子大部分通过嵌入层间区域形成LDHs沉淀被去除。由于LDHs层板带正电,部分阴离子还会通过静电引力被吸附到层板表面去除。同时重组形成的LDHs表面均匀分布着大量羟基基团,重金属阳离子及上述阴离子均会与这些表面羟基络合[75],通过范德华力或氢键等作用吸附在表面,此外重金属阳离子还可能通过LDHs的同构取代作用被去除,即水中阳离子将LDHs中的阳离子交换出来,LDHs结构不变。此时,吸附效果取决于交换离子的半径,交换离子间相似的离子半径更易于同构替换[29, 78]。
在实际应用中,粉末吸附剂使用后存在难以固液分离的问题,在吸附剂上添加磁性颗粒不仅可以提高回收率,还能改善其分散性提高吸附性能[11]。制备的磁性MMO吸附有机物形成的LDHs,通过外加磁场回收焙烧后,能获得含碳MMO。该MMO是一种超顺磁性的复合材料,可重新用于有机物的吸附去除。此外,碳的存在增加了MMO的比表面积和表面负电荷,使其表面含有大量官能团(如羧基、羟基和氧化酶基团),大大提高了MMO对重金属阳离子吸附能力,用其吸附Pb2+、Cu2+和Cd2+三种重金属,最大吸附容量分别可达386.1 mg/g、359.7 mg/g和192.7 mg/g[46]。
砷在水中主要存在形式是亚砷酸盐(As(III))和砷酸盐(As(V))[70]。与As(V)相比,As(III)具有更高的流动性和毒性,同时As(III)对大多数吸附剂的亲和力较低,难以从废水中去除[79]。为提高As(III)去除率,通常将As(III)氧化为As(V),再进行吸附。MMO兼具光催化氧化特性和吸附能力,无外加氧化剂就能实现As(III)的高效去除。因此MMO对类金属砷的去除机制与其他离子略有不同,如图3所示[58]。As(V)通过与MMO水化后表面含有的高浓度M−OH发生化学吸附,形成稳定配合物而沉淀去除。在可见光照射下,MMO分解出的OH•和O2•能将As(III)氧化为As(V),随后与M−OH反应吸附在MMO表面。60 min内,As(III)完全氧化为As(V),最高吸附容量达118.1 mg/g[58]。硫掺杂可以显著提高金属氧化物的稳定性,减少CuX-MMO表面Cu(I)的氧化,保持其活性[80]。Li等[81]采用硫掺杂CuLa-MMO氧化-吸附去除As(III),MMO中Cu(I)与水中溶解氧共同作用促进了O2•生成,As(III)完全氧化为As(V),As的最大脱除量达上述报道[58]的2.7倍。硫掺杂CuLa-MMO(投加量为1.0 g/L)对井水中As(III)(1.0 mg/L)的去除率在循环4次后仍保持在99%以上,砷残留量仅0.7 μg/L[81],该研究探索了MMO处理低浓度含砷水的可行性,拓展了其在饮用水处理领域的应用潜力。
3.2 有机污染物
MMO对有机物的作用可分为吸附、催化氧化与催化还原3种情况。其中吸附过程分为物理吸附与化学吸附两种,催化氧化通常是活化过硫酸盐、过碳酸盐等氧化剂产生自由基、活性氧及光催化氧化降解有机物。
吸附剂和污染物之间的相互作用类型决定了吸附特性。物理吸附是静电相互作用、氢键、范德华相互作用和孔隙扩散的结果,化学吸附涉及离子交换、表面络合、酸碱相互作用和螯合作用。据报道[71],MMO吸附去除有机污染物的机制由基于pH条件的静电吸引/排斥作用控制,并与MMO的零点电荷pHZPC有关。当pH<pHZPC时,有助于阴离子污染物的吸附去除,而当pH>pHZPC时,MMO的去质子化现象有利于阳离子污染物的吸附去除[82]。因而,pH对MMO吸附去除水中有机物具有重大影响。Chowdhury等[61]采用碳酸盐共沉淀法制备了Co4Ni4O2,用于去除阳离子染料亚甲基蓝(Methylene blue,MB)和阴离子染料普施安红(Procion red,PR)。在pH=4.6时,对PR的去除率达到最高为70.0%,而在pH=10.4时,对MB去除率最高为20.0%,可见MMO对阴离子染料的吸附能力远强于阳离子。
为进一步改善MMO对阴离子染料的吸附效果,改性MMO的研究亦层出不穷,目前常采用的方法有中空纳米结构[83]、聚吡咯(Polypyrrole,PPy)复合[84]及异质结[13]等。其中中空纳米结构与PPy复合均通过增强MMO的表面电荷来改善其性能,表面电荷仍是限制MMO活性的主要因素,对其性能提升难以达到质的突破,更好的解决方案是开发合成化学吸附的MMO吸附剂。Richard等[13]以聚丙烯腈、二甲基甲酰胺、铁(III)和乙酰丙酮锌为原料,在13 V电压下,通过静电纺丝工艺制得了聚合物纳米纤维,得到的纤维干燥后在500℃下焙烧,获得一种一维异质结ZnO-ZnFe2O4(ZF),能通过化学吸附去除废水中刚果红(Congo red,CR)。作者认为异质结是该复合材料的活性相,ZnO和ZnFe2O4相之间的强界面相互作用是形成活性异质结的原因,而从Zn2p、Fe2p和O1s特征峰强度的急剧下降及它们的化学位移说明CR和ZF间有化学键形成[85]。因此,ZF异质结促进了CR的化学吸附而不是物理吸附。此外,ZF对CR的吸附容量可达263.0 mg/g,比ZnFe2O4高出3.3倍。并且由于ZnO和ZnFe2O4间存在的协同效应,通过改变ZF中的ZnO含量可以调节其化学吸附能力,该特性能为特定应用制备具有不同吸附容量的复合材料。同时,ZF具有高度的可回收性,在NaOH溶液中再生后仍能保持75%的吸附容量。这项研究不仅提供了金属氧化物复合材料中界面相互作用及其形态如何影响吸附的关键见解,还为合成廉价有效的MMO复合材料去除水中CR提供了一种新策略。
作为催化剂MMO不仅具备LDHs的优势,而且表现出更高的稳定性,其水中金属离子浸出率更低,结构更稳定。同时与单一金属氧化物相比,MMO多金属间的相互作用增强了其化学和物理性质,使MMO的电荷转移、比表面积和载流子增加[7],因而具有更高的催化效率。此外,MMO还具有可调控性好、制备成本低等优点[6]。MMO是一种极具应用前景的催化材料。其主要通过活化过硫酸盐、过碳酸盐等氧化剂产生的SO4•−、OH•、O2•、CO3•−和1O2等,从而高效降解水中有机污染物。徐铭骏等[62]以纳米片状FeMn-MMO为催化剂,活化过碳酸钠产生OH•、O2•、CO3•−和1O2四种活性物种,其中OH•在偶氮染料活性黑5降解过程中占据主导地位。Yang等[59]构建了基于FeMn-MMO催化剂的原位化学氧化系统,用于活化单过硫酸氢钾复合盐(KHSO5·0.5KHSO4·0.5K2SO4)催化降解水中的三氯乙烯(TCE),系统115天后仍能稳定运行,且TCE几乎完全脱氯,反应化学计量效率远高于基于H2O2的脱氯系统。催化降解机制如图4所示,FeMn-MMO活化HSO5−产生的SO4•−和OH•是降解TCE的主要氧化剂,降解产物主要为Cl−,且Cl−的累积对该降解反应无不利影响,这意味着该系统是一套绿色高效的水处理技术。
MMO还可直接作为光催化剂降解废水中有机物。掺杂改性是提高光催化剂活性的常用方式之一,在光催化剂中掺杂其他元素可以实现[63]:(1) 表面结构改变;(2) 光谱响应增加;(3) 带隙能量发生显著变化;(4) 抑制电子-空穴复合;(5) 形成一些晶体缺陷。因此,掺杂合适的元素能提高光催化剂的性能及稳定性。研究表明如果在MMO中掺杂某些镧系阳离子,能提高电荷分离效率。此外,镧系阳离子的空5d轨道和晶格畸变有助于表面电荷的注入,影响其光催化活性[86]。Khodam等[63]采用共沉淀法制备的掺钕离子CoAl-MMO,Nd3+的插入清除了导带中的光激发电子,减少了光诱导载流子复合,提高了它们的分离效率。以此提高了MMO的光吸收效率,缩小了带隙能量。可见光照射下60 min内,AR14完全降解,且经连续4次循环实验,其降解效率降幅在10%以内。
MMO作催化剂时存在电子电导率低和暴露活性金属中心的表面积有限等缺点,通过在具有大比表面积的载体上负载MMO,可以获取更多的活性金属位点[12]。复合材料广泛使用的载体材料有活性炭[87]、二氧化硅[88]、纤维素[89]、壳聚糖[90]、砂[91]和聚合物[84]等。其中碳基材料由于拥有较大的比表面积、发达的孔隙结构、C=O键、C=C键、C—N、C—O等功能基团和其他丰富的电子官能团[5],常被学者们用于制备MMO复合材料。Li等[60]制备的由多孔碳负载的纳米片状NiCo2O4(NCC),15 min内能实现4-乙酰氨基苯酚(4-acetaminophen,AP)的完全降解,且NCC的催化降解性能分别是纯NiCo2O4和多孔碳的1.3倍和1.9倍。在连续5次循环实验后,NCC对AP的降解效率仍超过85%。NCC的循环利用稳定性高、金属浸出率低,在快速高效去除酚类污染物方面体现了优势,拓展了去除废水中难降解酚类有机污染物的新途径。
硝基化合物催化还原为氨基衍生物是一种从环境中去除有毒硝基化合物的新兴工艺[92]。还原产物即氨基化合物是对环境无毒的化合物,广泛用作各种产品的合成中间体,如药品、农用化学品、颜料和染料等[93]。无催化剂的条件下,有毒硝基酚在水中不能被NaBH4还原,但以CuNi-MMO为催化剂时,NaBH4能分别在2 min、5 min和10 min内完成对硝基苯酚、2,4−二硝基苯酚和三硝基苯酚的还原反应[14],该研究为MMO去除水中有机物提供了一种新思路。Wu等[94]通过共沉淀焙烧得到的NiFe-MMO在H2气氛中还原,可以获得二维异质结构的FeNi3/NiFe-MMO纳米复合材料。基于金属和金属氧化物之间的强相互作用,纳米颗粒FeNi3可以均匀地固定在NiFe-MMO表面,其中FeNi3具有优异的电荷转移特性,而NiFe-MMO载体可选择性吸附芳香族硝基化合物。FeNi3和NiFe-MMO间的合作显著增强了MMO的催化性能,提高了硝基胺化反应的转化率(95%)和产物可回收性,推进了MMO通过催化还原去除水中硝基化合物的实际应用进程。
3.3 阴离子
由于LDHs表面带正电荷及层间阴离子可交换,早期被广泛研究用于去除工业废水中的阴离子[95, 96]。LDHs的阴离子交换能力与层间阴离子的种类密切相关,阴离子交换顺序为CO32− > SO42− > HPO2− > OH− > F− > Cl− > Br− > NO3− > I−[39]。然而,仅依靠静电引力及离子交换,LDHs对阴离子的去除效果并不理想[47],研究发现将LDHs焙烧后其阴离子吸附能力得到极大提升,Paul等[97]采用900℃焙烧CaAl-LDHs后,其对硼酸根离子的吸附能力达到未焙烧的3.6倍,焙烧所得的物质化学式为Ca12Al14O33。此外,MMO经改性后,阴离子去除性能得到极大提升,用其处理废水后能实现达标排放。在松木刨花表面对CeAl-MMO进行改性后[68],最大吸附容量可达原来[67]的3.5倍,且PO43−浓度能降至0.01 mg/L以下,符合GB/T 8978−1996一级排放标准(0.5 mg/L)。Wang等[64]通过绿色水热工艺和焙烧制备了一种含钙MgZr-MMO,钙分散在MMO表面,形成3D海绵状结构,对氟化物的吸附实验结果表明,该材料的微观结构特征显著增强了氟化物的迁移和扩散,氟离子浓度可从100 mg/L降至10 mg/L以下,符合GB/T 8978—1996一级排放标准(10 mg/L)。MMO合成工艺众多、可选性强,阴离子去除效率高,因此在环境净化和污染水修复方面具有极大潜在适用性。
高盐废水中盐分去除是今后环保工作的重点任务,其中通常含有大量的Ca2+、Mg2+、重金属离子、Cl−、SO42−。相比Cl−,其他离子均较容易去除,而Cl−由于离子半径小,难与其他物质反应形成沉淀,迄今尚未有低成本处理废水中Cl−的工艺,Cl−去除是高盐废水处理的最大难题。而早有研究显示[98]不同于LDHs,MMO除Cl−是一个再水化的放热增熵自发过程,伴随着LDHs层状结构的重建,Cl−进入其层间沉淀去除,该过程由Cl−与MMO的反应速率而不是扩散速率控制。由此,MMO能实现快速高效去除水中Cl−。Paul等[15]通过固相烧结法合成的钙铝石,在竞争阴离子(SO42−、NO3−和HCO3−)存在的情况下,能将Cl−浓度为630~2491 mg/L的废水降至250 mg/L以下。此外,得益于Cl−在LDH的离子交换顺序中Cl−处于靠后位置的特点。MMO去除高盐废水中Cl−后产生的LDHs沉淀物,还可回收用于浓度较低的重金属阴离子的处理[99],如图5所示。将除Cl−后产物回收利用,通过离子交换去除含Cr废水中(100~1000 mg/L)的Cr(VI),去除率可达96.0%[15]。
MMO去除水中阴离子后会产生大量固废,离子交换再生是学者们最常用的方式。利用NaOH交换阴离子再生后,MMO吸附能力仍能达到原来的97%[65]。此外,在NaOH清洗后,再采用HCl清洗能实现更高的重复利用率。Nakarmi等[68]在松木刨花表面制备的Ce/Al-MMO除PO43−后,使用0.1 mol/L NaOH和0.1 mol/L HCl进行清洗再生未损失其性能。然而此类再生方式存在从水体中除去的阴离子又转移至另一水体中的问题,较理想完善的MMO循环利用体系尚未建立。
3.4 混合污染物
实际工业废水中,阴阳离子共存,盐度较高且含有重金属,现有技术同时处理这两类离子难度较大。而MMO不仅对阴离子的去除能力优越,还能实现同步去除水中的重金属、金属阳离子。Sun等[100]将MgAl-MMO用于化学镀镍废水的处理,结果表明,MgAl-MMO可同步自发地吸附水体中的镍和磷,吸附容量分别为22.9 mg/g和761.5 mg/g。Swati等[101]以氧化铝和氧化铁为纳米粒子,尼龙6,6和聚4−苯乙烯磺酸钠为聚合物基体,制备了MMO掺杂聚合物复合材料,用于高盐废水的处理。该复合材料对总碱度和总硬度的去除率分别为66.7%和42.9%,氯化物、氟化物及硝酸盐去除率则可达58.7%、63.9%和34.8%。此类研究向开发多功能、高性价比的MMO复合材料用于水修复迈出重要一步。
4. 结论与展望
综述了混合金属氧化物(Mixed metal oxide,MMO)主要的制备方法及其在去除水中重金属、有机污染物和有害离子等方面的最新研究进展,总结了其去除这些污染物的机制及成效。得到以下结论:
(1) 通过控制制备方法及条件调节MMO的化学结构特性,可以使其具有不同性能用以处理不同污染物;
(2) MMO对水中污染物的去除机制为在结构重组的过程中捕集污染物,同时还会与污染物发生催化降解、表面吸附、同构取代、表面络合、氧化还原等作用;
(3) 在实际水体环境中,多种污染物质共存,MMO的多重特性使其不仅能高效脱除单一污染物,还能实现混合污染物的同步去除,作为一种多功能水处理剂在废水处理领域具有广阔的应用前景。
目前,关于MMO去除水中污染物的研究还处于探索阶段,尚未形成工业化应用的技术体系,结合环境效益和经济成本考虑,对未来MMO的相关研究工作,展望如下:
(1) 尽管MMO在废水处理的研究中取得了一定成功,但目前MMO的制备方法大多离不开煅烧或焙烧,所需制备温度较高,能耗大,经济效益较低。需进一步探索温和环境的制备方法,降低制备成本;
(2) 关于金属离子的溶出对水体造成二次污染方面鲜见报道。MMO中金属离子的溶出率、溶出机制及释放的金属离子浓度是否符合污水排放标准等问题有待系统性研究,同时开发抑制金属离子溶出的方法以减小二次污染也具有重要价值;
(3) MMO去除水中阴离子的同时也产生了大量固体废弃物,此类废弃LDHs的资源化利用途径及MMO去除水中阴离子的绿色高效再生循环系统均有待探究。
-
表 1 部分植物衍生碳材料的电化学性能
Table 1 Electrochemical properties of some plant-derived carbon materials
Material Activator Specific
Capacitance/(F·g−1)Electrolyte Energy density/
(Wh·kg−1)Power density/
(W·kg−1)Cycling
stabilityReference Shaddock endotheliums KOH 550
(0.2 A·g−1)1 mol·L−1
BMIMBF4/AN46.88 300 93.7% 10000 cycles97 Cashew nut husk KOH 305.2
(1 A·g−1)6 mol·L−1
KOH11.2 400 97.1% 4000 cycles98 Zanthoxylum Leaves ZnCl2 196
(0.5 A·g−1)0.5 mol·L−1
Na2SO418.68 225 92% 20000 cycles99 Pine pollen MgCO3 416.9
(1 A·g−1)6 mol·L−1
KOH34.9 181 97.4% 10000 cycles100 Willow catkin KOH 298
(0.5 A·g−1)6 mol·L−1
KOH21.0 180 99.7% 10000 cycles101 Loofah sponge KOH 309.6
(1 A·g−1)6 mol·L−1
KOH16.1 160 81.3% 10000 cycles102 Bamboo fungi [ZnCO3]2·
[Zn(OH)2]3367
(0.5 A·g−1)6 mol·L−1
KOH24.6 400 95.7% 10000 cycles103 Banana CO2 178.9
(1 A·g−1)6 mol·L−1
KOH3.23 50 67% 10000 cycles104 Eucalyptus bark KOH 483.5
(0.5 A·g−1)1 mol·L−1
Na2SO421.7 168.9 83.1% 10000 cycles105 Lacquer wood H3PO4 354
(0.2 A·g−1)1 mol·L−1
H2SO4/ / 95.3% 10000 cycles106 Notes:BMIMBF4/AN is 1-butyl-3-methylimidazolium tetrafluoroborate/acetonitrile -
[1] KUMAR A, BHATTACHARYA T, HASNAIN S M M, et al. Applications of biomass-derived materials for energy production, conversion, and storage[J]. Materials Science for Energy Technologies, 2020, 3: 905-920. DOI: 10.1016/j.mset.2020.10.012
[2] SHARMA S, CHAND P. Supercapacitor and electrochemical techniques: A brief review[J]. Results in Chemistry, 2023, 5: 100885. DOI: 10.1016/j.rechem.2023.100885
[3] SATPATHY S, DAS S, BHATTACHARYYA B K. How and where to use super-capacitors effectively, an integration of review of past and new characterization works on super-capacitors[J]. Journal of Energy Storage, 2020, 27: 101044. DOI: 10.1016/j.est.2019.101044
[4] WANG J, ZHOU J, ZHAO W. Deep reinforcement learning based energy management strategy for fuel cell/battery/supercapacitor powered electric vehicle[J]. Green Energy and Intelligent Transportation, 2022, 1(2): 100028. DOI: 10.1016/j.geits.2022.100028
[5] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical reviews, 2004, 104(10): 4245-4270. DOI: 10.1021/cr020730k
[6] SALLEH N A, KHEAWHOM S, HAMID N A A, et al. Electrode polymer binders for supercapacitor applications: a review[J]. Journal of Materials Research and Technology, 2023, 23: 3470-3491. DOI: 10.1016/j.jmrt.2023.02.013
[7] SUBRAMANIAN B, VEERAPPAN M, RAJAN K, et al. Fabrication of hierarchical indium vanadate materials for supercapacitor application[J]. Global Challenges, 2020, 4(11): 2000002. DOI: 10.1002/gch2.202000002
[8] SENTHIL C, LEE C W. Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110464. DOI: 10.1016/j.rser.2020.110464
[9] LI Y, GUPTA R, ZHANG Q, et al. Review of biochar production via crop residue pyrolysis: Development and perspectives[J]. Bioresource Technology, 2023, 369: 128423. DOI: 10.1016/j.biortech.2022.128423
[10] “十四五”能源领域科技创新规划[R]. 中国科技奖励, 2022, 09: 23-42. The 14th five-year plan for scientific and technological innovation in the energy sector[R]. China Awards for Science and Technology, 2022, 09: 23-42.
[11] Supercapacitor Market to Generate Revenue of USD24.37 Billion by 2029 Demand, Trends and Growth Industries from 2022 to 2029[J]. M2 Presswire, 2022.
[12] VAITHYANATHAN V K, GOYETTE B, RAJAGOPAL R. A critical review of the transformation of biomass into commodity chemicals: Prominence of pretreatments[J]. Environmental Challenges, 2023, 11: 100700. DOI: 10.1016/j.envc.2023.100700
[13] ANTAR M, LYU D, NAZARI M, et al. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110691. DOI: 10.1016/j.rser.2020.110691
[14] KARAM D S, NAGABOVANALLI P, RAJOO K S, et al. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application[J]. Journal of the Saudi Society of Agricultural Sciences, 2022, 21(3): 149-159. DOI: 10.1016/j.jssas.2021.07.005
[15] 宋晓岚, 段海龙, 王海波, 等. 稻壳基活性炭电极材料制备及其电化学性能研究[J]. 硅酸盐通报, 2017, 36(3): 991-995. SONG Xiaolan, DUAN Hailong, WANG Haibo, et al. Preparation and electrochemical performance of rice husk-based activated carbon electrode[J]. Bulletin of the Chinese Ceramic Society, 017, 36(3): 991-995. (in Chinese)
[16] GAO Y, LI L, JIN Y, et al. Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor[J]. Applied Energy, 2015, 153: 41-47. DOI: 10.1016/j.apenergy.2014.12.070
[17] HE X, LING P, YU M, et al. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors[J]. Electrochimica Acta, 2013, 105: 635-641. DOI: 10.1016/j.electacta.2013.05.050
[18] LOBATO-PERALTA D R, DUQUE-BRITO E, ORUGBA H O, et al. Sponge-like nanoporous activated carbon from corn husk as a sustainable and highly stable supercapacitor electrode for energy storage[J]. Diamond and Related Materials, 2023, 138: 110176. DOI: 10.1016/j.diamond.2023.110176
[19] 隋光辉, 程岩岩. 以稻壳热解炭制备镧负载多孔炭复合电极材料[J]. 高等学校化学学报, 2024, 45(4): 151-159. SUI Guanhui, CHENG Yanyan. Preparation of lanthanum-loaded porous carbon composite electrode materials from rice husk pyrolytic carbon[J]. Chemical Journal of Chinese Universities, 2024, 45(4): 151-159(in Chinese).
[20] WEI F, GUO Y, WANG S, et al. N, P codoped carbon nanosheets derived from rice husk for supercapacitors with high energy density[J]. Diamond and Related Materials, 2023, 137: 110161. DOI: 10.1016/j.diamond.2023.110161
[21] XIAO S, HUANG J, LIN C, et al. Porous carbon derived from rice husks as sustainable bioresources: Insights into the role of micro/mesoporous hierarchy in Co3O4/C composite for asymmetric supercapacitors[J]. Microporous and Mesoporous Materials, 2020, 291: 109709. DOI: 10.1016/j.micromeso.2019.109709
[22] BARBIERI V, GUALTIERI M L, SILIGARDI C. Wheat husk: A renewable resource for bio-based building materials[J]. Construction and Building Materials, 2020, 251: 118909. DOI: 10.1016/j.conbuildmat.2020.118909
[23] BLEDZKI A K, MAMUN A A, Volk J. Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(4): 480-488. DOI: 10.1016/j.compositesa.2009.12.004
[24] CUI J, SUN H, LUO Z, et al. Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process[J]. Materials Letters, 2015, 156: 42-45. DOI: 10.1016/j.matlet.2015.04.134
[25] 卓祖优, 宋生南, 黄明堦, 等. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. ZHUO Zuyou, SONG Shengnan, HUANG Mingjie, et al. Preparation of wheat flour-based hierarchical porous carbon with ultra large specific surface area by synergistic activation of potassium oxalate-urea and its electrochemical energy storage performance[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 925-933(in Chinese).
[26] BAIG M M, GUL I H. Conversion of wheat husk to high surface area activated carbon for energy storage in high-performance supercapacitors[J]. Biomass and Bioenergy, 2021, 144: 105909. DOI: 10.1016/j.biombioe.2020.105909
[27] BAIG M M, GUL I H. Transformation of wheat husk to 3D activated carbon/NiCo2S4 frameworks for high-rate asymmetrical supercapacitors[J]. Journal of Energy Storage, 2021, 37: 102477. DOI: 10.1016/j.est.2021.102477
[28] KONG S, JIN B, QUAN X, et al. MnO2 nanosheets decorated porous active carbon derived from wheat bran for high-performance asymmetric supercapacitor[J]. Journal of Electroanalytical Chemistry, 2019, 850: 113412. DOI: 10.1016/j.jelechem.2019.113412
[29] DU W, ZHANG Z, DU L, et al. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors[J]. Journal of Alloys and Compounds, 2019, 797: 1031-1040. DOI: 10.1016/j.jallcom.2019.05.207
[30] ZHANG R, MA S, LI L, et al. Comprehensive utilization of corn starch processing by-products: A review[J]. Grain & Oil Science and Technology, 2021, 4(3): 89-107.
[31] RATNA A S, GHOSH A, MUKHOPADHYAY S. Advances and prospects of corn husk as a sustainable material in composites and other technical applications[J]. Journal of Cleaner Production, 2022, 371: 133563. DOI: 10.1016/j.jclepro.2022.133563
[32] AHMED M J, DANISH M, ANASTOPOULOS I, et al. Recent progress on corn (Zea mays L. )-based materials as raw, chemically modified, carbonaceous, and composite adsorbents for aquatic pollutants: A review[J]. Journal of Analytical and Applied Pyrolysis, 2023, 172: 106004. DOI: 10.1016/j.jaap.2023.106004
[33] LEITE M, FREITAS A, SILVA A S, et al. Maize (Zea mays L. ) and mycotoxins: A review on optimization and validation of analytical methods by liquid chromatography coupled to mass spectrometry[J]. Trends in Food Science & Technology, 2020, 99: 542-565.
[34] 林彦萍, 任源, 王晓娥, 等. 农业生物质废弃物转化功能材料的研究进展[J]. 环境科学, 2024, 45(7): 4332-4351. LIN Yanping, REN Yuan, WANG Xiaoe, et al. Research progress on functional materials for agricultural biomass waste conversion[J]. Environmental Science, 2024, 45(7): 4332-4351(in Chinese).
[35] 韦会鸽, 李桂星, 雷祥楠, 等. 聚苯胺-玉米苞叶纤维复合材料基柔性自支撑电极的制备及其电化学性能[J]. 复合材料学报, 2022, 39(7): 3462-3468. WEI Huige, LI Guixing, LEI Xiangnan, et al. Polyaniline-corn husk fiber composite based flexible self-standing electrode: Preparation and electrochemical properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3462-3468(in Chinese).
[36] ZOU Q. Corn-straw-converted activated carbons with tunable porosity and N/O functionalities as high-performance supercapacitors electrode at commercial-level mass loading[J]. Journal of Energy Storage, 2023, 72: 108673. DOI: 10.1016/j.est.2023.108673
[37] 邢宝林, 陈丽薇, 张传祥, 等. 玉米芯活性炭的制备及其电化学性能研究[J]. 材料导报, 2015, 29(6): 45-48+64. DOI: 10.11896/j.issn.1005-023X.2015.06.010 XING Baolin, CHEN Liwei, ZHANG Chuanxiang, et al. Preparation and electrochemical performance of corncob based activated carbon[J]. Materials Reports, 2015, 29(6): 45-48+64(in Chinese). DOI: 10.11896/j.issn.1005-023X.2015.06.010
[38] YU K, ZHU H, QI H, et al. High surface area carbon materials derived from corn stalk core as electrode for supercapacitor[J]. Diamond and Related Materials, 2018, 88: 18-22. DOI: 10.1016/j.diamond.2018.06.018
[39] RANI M U, NANAJI K, RAO T N, et al. Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors[J]. Journal of Power Sources, 2020, 471: 228387. DOI: 10.1016/j.jpowsour.2020.228387
[40] ZHOU J, YUAN S, LU C, et al. Hierarchical porous carbon microtubes derived from corn silks for supercapacitors electrode materials[J]. Journal of Electroanalytical Chemistry, 2020, 878: 114704. DOI: 10.1016/j.jelechem.2020.114704
[41] SUN K, ZHANG Z, PENG H, et al. Hybrid symmetric supercapacitor assembled by renewable corn silks based porous carbon and redox-active electrolytes[J]. Materials Chemistry and Physics, 2018, 218: 229-238. DOI: 10.1016/j.matchemphys.2018.07.052
[42] TANG J, GUO Z, KONG X, et al. Soybean meal-derived heteroatoms-doped porous carbons for supercapacitor electrodes[J]. Materials Chemistry and Physics, 2022, 284: 126055. DOI: 10.1016/j.matchemphys.2022.126055
[43] WANG A, SUN K, XU R, et al. Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation[J]. Journal of Cleaner Production, 2021, 283: 125385. DOI: 10.1016/j.jclepro.2020.125385
[44] ZHANG Q, WANG J, DENG M. Preparation of Porous Carbon from Buckwheat Husk and its Electrochemical Properties[J]. International Journal of Electrochemical Science, 2022, 17(11): 221145. DOI: 10.20964/2022.11.32
[45] HU H, WU G. Porous carbon derived from sweet potato biomass as electrode for zinc-ion hybrid supercapacitors[J]. International Journal of Electrochemical Science, 2021, 16(9): 210937. DOI: 10.20964/2021.09.01
[46] ALBATRNI H, QIBLAWEY H, Al-MARRI M J. Walnut shell based adsorbents: A review study on preparation, mechanism, and application[J]. Journal of Water Process Engineering, 2022, 45: 102527. DOI: 10.1016/j.jwpe.2021.102527
[47] 郭晖, 张记升, 朱天星, 等. 利用核桃壳制备高比表面积活性炭电极材料的研究[J]. 材料导报, 2016, 30(2): 24-27+33. GUO Hui, ZHANG Jisheng, ZHU Tianxing, et al. Preparation of high specific surface area activated carbon electrode materials from walnut shell[J]. Materials Reports, 2016, 30(2): 24-27+33(in Chinese).
[48] FU H, CHEN L, GAO H, et al. Walnut shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors[J]. International Journal of Hydrogen Energy, 2020, 45(1): 443-451. DOI: 10.1016/j.ijhydene.2019.10.159
[49] 张传涛, 邢宝林, 黄光许, 等. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 材料导报, 2018, 32(7): 1088-1093. ZHANG Chuantao, XING Baolin, HUANG Guangxu, et al. Preparation of walnut shell activated carbons via combination of hydrothermal carbonization and KOH activation[J]. Materials Reports, 2018, 32(7): 1088-1093(in Chinese).
[50] XU X, GAO J, TIAN Q, et al. Walnut shell derived porous carbon for a symmetric all-solid-state supercapacitor[J]. Applied Surface Science, 2017, 411: 170-176. DOI: 10.1016/j.apsusc.2017.03.124
[51] CUI S, MCCLEMENTS D J, XU X, et al. Peanut proteins: extraction, modifications, and applications: a comprehensive review[J]. Grain & Oil Science and Technology, 2023, 6(3): 135-147.
[52] 宋晓琪, 雷西萍, 樊凯, 等. 基于生物质衍生炭在超级电容器中的研究进展[J]. 复合材料学报, 2023, 40(3): 1328-1339. SONG Xiaoqi, LEI Xiping, FAN Kai, et al. Research progress of biomass derived carbon in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1328-1339(in Chinese).
[53] LIANG K, CHEN Y, WANG S, et al. Peanut shell waste derived porous carbon for high-performance supercapacitors[J]. Journal of Energy Storage, 2023, 70: 107947. DOI: 10.1016/j.est.2023.107947
[54] ZHAN Y, ZHOU H, GUO F, et al. Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors[J]. Journal of Energy Storage, 2021, 34: 102180. DOI: 10.1016/j.est.2020.102180
[55] NGUYEN N T, LE P A, PHUNG V B T. Biomass-derived carbon hooks on Ni foam with free binder for high performance supercapacitor electrode[J]. Chemical Engineering Science, 2021, 229: 116053. DOI: 10.1016/j.ces.2020.116053
[56] JANNAT N, Al-MUFTI R L, HUSSIEN A, et al. Utilisation of nut shell wastes in brick, mortar and concrete: A review[J]. Construction and Building Materials, 2021, 293: 123546. DOI: 10.1016/j.conbuildmat.2021.123546
[57] BORRES M P, SATO S, EBISAWA M. Recent advances in diagnosing and managing nut allergies with focus on hazelnuts, walnuts, and cashew nuts[J]. World Allergy Organization Journal, 2022, 15(4): 100641. DOI: 10.1016/j.waojou.2022.100641
[58] OZPINAR P, DOGAN C, DEMIRAL H, et al. Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis[J]. Renewable Energy, 2022, 189: 535-548. DOI: 10.1016/j.renene.2022.02.126
[59] LIU Y, LIU P, LI L, et al. Fabrication of biomass-derived activated carbon with interconnected hierarchical architecture via H3PO4-assisted KOH activation for high-performance symmetrical supercapacitors[J]. Journal of Electroanalytical Chemistry, 2021, 903: 115828. DOI: 10.1016/j.jelechem.2021.115828
[60] FARMA R, TANIA Y, APRIYANI I. Conversion of hazelnut seed shell biomass into porous activated carbon with KOH and CO2 activation for supercapacitors[J]. Materials Today: Proceedings, 2023, 87: 51-56. DOI: 10.1016/j.matpr.2023.02.099
[61] XIE Y, ZHANG D, JATI G N P, et al. Effect of structural and compositional alterations on the specific capacitance of hazelnut shell activated carbon[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126951. DOI: 10.1016/j.colsurfa.2021.126951
[62] QIN L, HOU Z, LU S, et al. Porous carbon derived from pine nut shell prepared by steam activation for supercapacitor electrode material[J]. International Journal of Electrochemical Science, 2019, 14(9): 8907-8918. DOI: 10.20964/2019.09.20
[63] 王芳平, 马婧, 李小亚, 等. 板栗壳生物炭高性能对称性超级电容器电极材料的制备及性能[J]. 化工进展, 2021, 40(8): 4381. WANG Fangping, MA Jing, LI Xiaoya, et al. Preparation and properties of chestnut shell-based biochar electrode material for high-performance symmetrical supercapacitor[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4381(in Chinese).
[64] MA C, BAI J, DEMIR M, et al. Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor[J]. Fuel, 2022, 326: 125119. DOI: 10.1016/j.fuel.2022.125119
[65] CAI N, CHENG H, JIN H, et al. Porous carbon derived from cashew nut husk biomass waste for high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry, 2020, 861: 113933. DOI: 10.1016/j.jelechem.2020.113933
[66] HAMID M, AMATURRAHIM S A, DALIMUNTHE I B, et al. Synthesis of magnetic activated carbon-supported cobalt (II) chloride derived from pecan shell (Aleurites moluccana) with co-precipitation method as the electrode in supercapacitors[J]. Materials Science for Energy Technologies, 2023, 6: 429-436. DOI: 10.1016/j.mset.2023.04.004
[67] WU C, ZHANG G, LIU J, et al. A green strategy to prepare nitrogen-oxygen co-doped porous carbons from macadamia nut shells for post-combustion CO2 capture and supercapacitors[J]. Journal of Analytical and Applied Pyrolysis, 2023, 171: 105952. DOI: 10.1016/j.jaap.2023.105952
[68] BHATTACHARJEE C, DUTTA S, SAXENA V K. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent[J]. Environmental Advances, 2020, 2: 100007. DOI: 10.1016/j.envadv.2020.100007
[69] YANG C, LI P, WEI Y, et al. Preparation of nitrogen and phosphorus doped porous carbon from watermelon peel as supercapacitor electrode material[J]. Micromachines, 2023, 14(5): 1003. DOI: 10.3390/mi14051003
[70] OMAR N, ABDULLAH E C, NUMAN A, et al. Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material[J]. Journal of Energy Storage, 2022, 49: 104147. DOI: 10.1016/j.est.2022.104147
[71] DONG J, LI S, DING Y. Anchoring nickel-cobalt sulfide nanoparticles on carbon aerogel derived from waste watermelon rind for high-performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2020, 845: 155701. DOI: 10.1016/j.jallcom.2020.155701
[72] ABOAGYE D, BANADDA N, KIGGUNDU N, et al. Assessment of orange peel waste availability in Ghana and potential bio-oil yield using fast pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 814-821. DOI: 10.1016/j.rser.2016.11.262
[73] SIDDIQUI S A, PAHMEYER M J, ASSADPOUR E, et al. Extraction and purification of d-limonene from orange peel wastes: Recent advances[J]. Industrial Crops and Products, 2022, 177: 114484. DOI: 10.1016/j.indcrop.2021.114484
[74] XU C, HU Z, WANG X, et al. Facile preparation of hierarchical porous carbon from orange peels for high-performance supercapacitor[J]. International Journal of Electrochemical Science, 2021, 16(3): 210350. DOI: 10.20964/2021.03.07
[75] DING F, LI J, DU H, et al. Highly porous heteroatom doped-carbon derived from orange peel as electrode materials for high-performance supercapacitors[J]. International Journal of Electrochemical Science, 2020, 15(6): 5632-5649. DOI: 10.20964/2020.06.75
[76] SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power sources, 2011, 196(1): 1-12. DOI: 10.1016/j.jpowsour.2010.06.084
[77] AJAY K M, DINESH M N, BYATARAYAPPA G, et al. Electrochemical investigations on low cost KOH activated carbon derived from orange-peel and polyaniline for hybrid supercapacitors[J]. Inorganic Chemistry Communications, 2021, 127: 108523. DOI: 10.1016/j.inoche.2021.108523
[78] SUN K, WANG H, PENG H, et al. Manganese oxide nanorods supported on orange peel-based carbon nanosheets for high performance supercapacitors[J]. International Journal of Electrochemical Science, 2015, 10(3): 2000-2013. DOI: 10.1016/S1452-3981(23)04823-X
[79] YUMNAM M, MARAK P R, GUPTA A K, et al. Effect of pomelo peel essential oil on the storage stability of a few selected varieties of freshwater fish[J]. Journal of Agriculture and Food Research, 2023, 11: 100472. DOI: 10.1016/j.jafr.2022.100472
[80] 王芳平, 周凯玲, 马婧, 等. 葡萄柚皮多孔碳高性能对称性超级电容器电极材料的制备及性能[J]. 硅酸盐学报, 2021, 49(3): 495-502. WANG Fangping, ZHOU Kailing, MA Jing, et al. Preparation and properties of porous carbon electrode material of grapefruit peel for high performance symmetrical supercapacitor[J]. Journal of the Chinese Ceramic Society, 2021, 49(3): 495-502(in Chinese).
[81] LI J, LIU W, XIAO D, et al. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor[J]. Applied Surface Science, 2017, 416: 918-924. DOI: 10.1016/j.apsusc.2017.04.162
[82] CHEN J, LIN Y, LIU J, et al. Outstanding supercapacitor performance of nitrogen-doped activated carbon derived from shaddock peel[J]. Journal of Energy Storage, 2021, 39: 102640. DOI: 10.1016/j.est.2021.102640
[83] LI G, LI Y, CHEN X, et al. One step synthesis of N, P co-doped hierarchical porous carbon nanosheets derived from pomelo peel for high performance supercapacitors[J]. Journal of Colloid and Interface Science, 2022, 605: 71-81. DOI: 10.1016/j.jcis.2021.07.065
[84] HAN J, PING Y, LI J, et al. One-step nitrogen, boron codoping of porous carbons derived from pomelo peels for supercapacitor electrode materials[J]. Diamond and Related Materials, 2019, 96: 176-181. DOI: 10.1016/j.diamond.2019.05.014
[85] LIU Y, CHANG Z, YAO L, et al. Nitrogen/sulfur dual-doped sponge-like porous carbon materials derived from pomelo peel synthesized at comparatively low temperatures for superior-performance supercapacitors[J]. Journal of Electroanalytical Chemistry, 2019, 847: 113111. DOI: 10.1016/j.jelechem.2019.04.071
[86] SURYA K, MICHAEL M S. Hierarchical porous activated carbon prepared from biowaste of lemon peel for electrochemical double layer capacitors[J]. Biomass and Bioenergy, 2021, 152: 106175. DOI: 10.1016/j.biombioe.2021.106175
[87] KITENGE V N, TARIMO D J, OYEDOTUN K O, et al. Facile and sustainable technique to produce low-cost high surface area mangosteen shell activated carbon for supercapacitors applications[J]. Journal of Energy Storage, 2022, 56: 105876. DOI: 10.1016/j.est.2022.105876
[88] MOHAMMED A A, CHEN C, ZHU Z. Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells[J]. Journal of Colloid and Interface Science, 2019, 538: 308-319. DOI: 10.1016/j.jcis.2018.11.103
[89] 李涛, 何松, 林晓莹, 等. 农林废弃生物质资源精深加工技术进展[J]. 材料导报, 2021, 35(19): 19001-19014. LI Tao, HE Song, LIN Xiaoying, et al. Recent advances on deep processing technologies for resourcing utilization of agricultural and forestry biomass wastes[J]. Materials Reports, 2021, 35(19): 19001-19014(in Chinese).
[90] IWUOZOR K O, ADENIYI A G, EMENIKE E C, et al. Prospects and challenges of utilizing sugarcane bagasse as a bio-coagulant precursor for water treatment[J]. Biotechnology Reports, 2023, 39: e00805. DOI: 10.1016/j.btre.2023.e00805
[91] IWUOZOR K O, EMENIKE E C, IGHALO J O, et al. A review on the thermochemical conversion of sugarcane bagasse into biochar[J]. Cleaner Materials, 2022, 6: 100162. DOI: 10.1016/j.clema.2022.100162
[92] YADAV N, HASHMI S A. High energy density solid-state supercapacitors based on porous carbon electrodes derived from pre-treated bio-waste precursor sugarcane bagasse[J]. Journal of Energy Storage, 2022, 55: 105421. DOI: 10.1016/j.est.2022.105421
[93] CHEN J, QIU J, WANG B, et al. Polyaniline/sugarcane bagasse derived biocarbon composites with superior performance in supercapacitors[J]. Journal of Electroanalytical Chemistry, 2017, 801: 360-367. DOI: 10.1016/j.jelechem.2017.08.014
[94] TU J, QIAO Z, WANG Y, et al. American ginseng biowaste-derived activated carbon for high-performance supercapacitors[J]. International Journal of Electrochemical Science, 2023, 18(2): 16-24. DOI: 10.1016/j.ijoes.2023.01.011
[95] GOPALAKRISHNAN A, RAJU T D, Badhulika S. Green synthesis of nitrogen, sulfur-co-doped worm-like hierarchical porous carbon derived from ginger for outstanding supercapacitor performance[J]. Carbon, 2020, 168: 209-219. DOI: 10.1016/j.carbon.2020.07.017
[96] NGUYEN T B, YOON B, NGUYEN T D, et al. A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications[J]. Carbon, 2023, 206: 383-391. DOI: 10.1016/j.carbon.2023.02.060
[97] YANG S, WANG S, LIU X, et al. Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors[J]. Carbon, 2019, 147: 540-549. DOI: 10.1016/j.carbon.2019.03.023
[98] CAI N, CHENG H, JIN H, et al. Porous carbon derived from cashew nut husk biomass waste for high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry, 2020, 861: 113933. DOI: 10.1016/j.jelechem.2020.113933
[99] XU Y, LEI H, QI S, et al. Three-dimensional zanthoxylum Leaves-Derived nitrogen-Doped porous carbon frameworks for aqueous supercapacitor with high specific energy[J]. Journal of Energy Storage, 2020, 32: 101970. DOI: 10.1016/j.est.2020.101970
[100] WAN L, SONG P, LIU J, et al. Facile synthesis of nitrogen self-doped hierarchical porous carbon derived from pine pollen via MgCO3 activation for high-performance supercapacitors[J]. Journal of Power Sources, 2019, 438: 227013. DOI: 10.1016/j.jpowsour.2019.227013
[101] LI Y, WANG G, WEI T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy, 2016, 19: 165-175. DOI: 10.1016/j.nanoen.2015.10.038
[102] SU X L, CHEN J R, ZHENG G P, et al. Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications[J]. Applied Surface Science, 2018, 436: 327-336. DOI: 10.1016/j.apsusc.2017.11.249
[103] ZHAO Y, CHEN P, TAO S, et al. Nitrogen/oxygen co-doped carbon nanofoam derived from bamboo fungi for high-performance supercapacitors[J]. Journal of Power Sources, 2020, 479: 228835. DOI: 10.1016/j.jpowsour.2020.228835
[104] LEI E, LI W, MA C, et al. CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors[J]. Applied Surface Science, 2018, 457: 477-486. DOI: 10.1016/j.apsusc.2018.07.001
[105] LI K, LIU Z, MA X, et al. A combination of heteroatom doping engineering assisted by molten salt and KOH activation to obtain N and O co-doped biomass porous carbon for high performance supercapacitors[J]. Journal of Alloys and Compounds, 2023, 960: 170785. DOI: 10.1016/j.jallcom.2023.170785
[106] HU S C, CHENG J, WANG W P, et al. Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications[J]. Renewable Energy, 2021, 177: 82-94. DOI: 10.1016/j.renene.2021.05.113
-
期刊类型引用(0)
其他类型引用(1)
-
目的
目前在储能领域,植物衍生多孔碳基超级电容器因其优异的性能而备受研究者的青睐。本文通过综述植物衍生多孔碳材料的制备方法、结构特性及其在超级电容器中的应用效果,深入分析其储能机理、性能优化策略及未来发展方向。这不仅有助于推动超级电容器技术的进一步创新,还为实现绿色、高效的能源存储解决方案提供有力支持。此外,通过探讨当前研究中存在的问题与挑战,提出针对性的改进策略和未来发展方向,为进一步提升超级电容器的性能、推动其产业化应用提供理论依据和实践指导。
方法本文按照前驱体的来源对植物衍生多孔碳材料进行了分类,介绍了近年来国内外植物衍生多孔碳材料用于超级电容器电极材料的研究成果,讨论了植物衍生多孔碳电极材料在超级电容器领域中所面临的挑战,并对植物衍生多孔碳材料的发展前景进行了展望。
结果1、粮食作物衍生碳材料:粮食作物作为人类主要的食物来源,种类繁多、种植广泛,产量巨大。将其制成超级电容器电极材料不仅有利于离子与电子的传输,还易于实现杂原子掺杂。但由于粮食作物废弃物种类繁杂,材质不均匀,在实际研究和应用中仍存在一些挑战。将生物质与其他材料复合可制备复合电极材料,但复合材料存在成本高,制备条件难调控的缺点,未来还需进一步研究。2、坚果壳衍生碳材料:坚果壳质地坚硬,固定碳含量高,灰分低,且富含醛基、羟基、羧基等活性基团,是一种生产电极材料的优质资源。目前,坚果壳衍生碳材料主要通过高温活化法制得,常用的活化剂主要为碱、酸、盐类,如KOH、HPO、KCl、ZnCl等,单活化剂制备碳材料方法简便,效果良好可行性高。除单活化剂活化法,还存在双活化剂(HPO与KOH、Zn(NO)与KOH)活化法,双活化剂之间的协同作用可以使制备的碳材料具有更丰富的孔隙分布,不同尺寸孔隙之间的协同作用可使得材料表现出良好的电化学性能。3、果皮衍生碳材料:果皮来源广、品种多、产量大,富含纤维素、果胶,是制备碳电极材料的理想材料。果皮衍生碳材料蕴含独特的三维孔道结构且富含不同杂原子(N、O、P、S、B),电化学性能良好。将果皮衍生碳材料与导电聚合物、过渡金属氧化物复合,电容性能更佳,但制备成本,时间较长,同时材料的循环稳定性能会受到一定影响。
结论本文综述了近年来国内外植物衍生多孔碳在超级电容器中的应用及研究进展,归纳总结了不同类别植物衍生多孔碳材料的制备方法、掺杂方法及电化学性能。尽管通过活化和表面性质调控改性,能提高植物衍生多孔碳材料的电化学性能,但还存在以下不足:离子传输内阻大、孔径分布难调控、制备过程较复杂。尽管植物衍生多孔碳材料在超级电容器中的应用前景广阔,但仍面临一些挑战,如提高能量密度、降低内阻、增强电导率以及实现规模化生产等。未来的研究将聚焦于开发新的制备技术、探索新型生物质原料以及改进现有材料的性能。
-
超级电容器是一种高效能、充放电循环稳定的绿色的能源储存器件,因其比传统的蓄电池具有更长的使用寿命、更优的可逆充放电效能以及更低的循环损耗而受到了全世界的极大关注。影响超级电容器的生产成本和性能的关键因素是电极材料。植物衍生多孔碳作为一种常用的高比表面积材料,由于其成本低、性能稳定,在结构和形貌方面得到了广泛的科学研究。生物质碳是一系列具有复杂结构和丰富形态的碳基材料的总和,由于其良好的电导率、稳定的化学循环和优良的电化学特性等特有性质,在能量储存领域包括超级电容器方面展示出了庞大的潜在应用价值。本文综述了近年来国内外植物衍生多孔碳用于超级电容器电极材料的研究进展,归纳总结了不同类别植物衍生多孔碳材料的孔结构、表面官能团对其电化学性能的影响规律,并对植物衍生多孔碳电极材料在超级电容器领域中所面临的挑战与发展前景进行了展望。
各种植物前驱体用作超级电容器的电极材料