留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性鸡蛋壳协效膨胀型阻燃剂对热塑性聚氨酯弹性体阻燃抑烟性能的影响

程鹏飞 徐文总 程传明 丁丁 张祎 周耀成

程鹏飞, 徐文总, 程传明, 等. 改性鸡蛋壳协效膨胀型阻燃剂对热塑性聚氨酯弹性体阻燃抑烟性能的影响[J]. 复合材料学报, 2023, 40(9): 5170-5180. doi: 10.13801/j.cnki.fhclxb.20221109.003
引用本文: 程鹏飞, 徐文总, 程传明, 等. 改性鸡蛋壳协效膨胀型阻燃剂对热塑性聚氨酯弹性体阻燃抑烟性能的影响[J]. 复合材料学报, 2023, 40(9): 5170-5180. doi: 10.13801/j.cnki.fhclxb.20221109.003
CHENG Pengfei, XU Wenzong, CHENG Chuanming, et al. Effect of modified chicken eggshell and intumescent flame retardant on flame retardancy and smoke suppression of thermoplastic polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5170-5180. doi: 10.13801/j.cnki.fhclxb.20221109.003
Citation: CHENG Pengfei, XU Wenzong, CHENG Chuanming, et al. Effect of modified chicken eggshell and intumescent flame retardant on flame retardancy and smoke suppression of thermoplastic polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5170-5180. doi: 10.13801/j.cnki.fhclxb.20221109.003

改性鸡蛋壳协效膨胀型阻燃剂对热塑性聚氨酯弹性体阻燃抑烟性能的影响

doi: 10.13801/j.cnki.fhclxb.20221109.003
基金项目: 安徽省高校自然科学研究项目(重点)(KJ2021 A0627);安徽省自然科学基金项目(2208085 ME114)
详细信息
    通讯作者:

    徐文总,博士,教授,硕士生导师,研究方向为阻燃高分子材料 E-mail: wenzongxu@ahjzu.edu.cn

  • 中图分类号: TB332

Effect of modified chicken eggshell and intumescent flame retardant on flame retardancy and smoke suppression of thermoplastic polyurethane elastomer

Funds: Natural Science Research Project of Colleges and Universities in Anhui Province (KJ2021 A0627); Anhui Provincial Natural Science Foundation (2208085 ME114)
  • 摘要: 为了提高热塑性聚氨酯弹性体(TPU)的阻燃抑烟性能,以废弃鸡蛋壳(CES)为原料,采用沸石咪唑酯骨架材料-8 (ZIF-8)对其改性,合成了ZIF-8-CES杂化物。与纯TPU相比,当TPU中添加20wt%膨胀型阻燃剂(IFR)和5wt%ZIF-8-CES时,TPU复合材料的热释放速率峰值(pHRR)和烟释放速率峰值(pSPR)分别降低到242 kW·m−2和0.151 m2·s−1,极限氧指数(LOI)值到达31.5%,垂直燃烧(UL-94)达到了V-0级,ZIF-8-CES与IFR在TPU中具有较好的协效阻燃效果。这主要是由于ZIF-8-CES与IFR在高温下生成氧化锌、磷酸钙和亚磷酸钙,起到催化成炭和增强炭层的作用,从而提高了TPU复合材料的阻燃、抑烟性能。

     

  • 图  1  热塑性聚氨酯弹性体(TPU)复合材料制备示意图

    Figure  1.  Schematic diagram of preparation process of thermoplastic polyurethane elastomer (TPU) composites

    IFR—Inrumescent flame retardant; ZIF-8—Zeolitic imidazolate framework-8; CES—Chicken eggshell

    图  2  废弃鸡蛋壳(CES)、ZIF-8和ZIF-8-CES的XRD谱图

    Figure  2.  XRD patterns of waste CES, ZIF-8 and ZIF-8-CES

    图  3  CES、ZIF-8和ZIF-8-CES的FTIR图谱

    Figure  3.  FTIR spectra of CES, ZIF-8 and ZIF-8-CES

    图  4  CES (a) 和ZIF-8-CES (b) 的SEM图像和水接触角(WCA);(c) ZIF-8-CES的EDS分析;(d) ZIF-8-CES的粒径分布;(e) 5wt%ZIF-8-CES-20wt%IFR/TPU复合材料断面的SEM图像

    Figure  4.  SEM images and water contact angle (WCA) of CES (a) and ZIF-8-CES (b); (c) EDS analysis of ZIF-8-CES; (d) Particle size distribution of ZIF-8-CES; SEM images of fracture surface of 5wt%ZIF-8-CES-20wt%IFR/TPU (e)

    图  5  CES、ZIF-8和ZIF-8-CES的TGA曲线

    Figure  5.  TGA curves of CES, ZIF-8和ZIF-8-CES

    图  6  纯TPU和TPU复合材料的TGA曲线 (a)、DTG曲线 (b)

    Figure  6.  TGA (a) and DTG (b) curves of neat TPU and TPU composites

    图  7  TPU和TPU复合材料的极限氧指数(LOI)值和UL-94等级

    Figure  7.  Limiting oxygen index (LOI) value and UL-94 of neat TPU and TPU composites

    图  8  TPU和TPU复合材料的热释放速率(HRR) (a)、总热释放(THR) (b)、烟生成速率(SPR) (c) 和总生烟量(TSP) (d) 曲线

    Figure  8.  Heat release rate (HRR) (a), total heat release (THR) (b), smoke generation rate (SPR) (c) and total smoke production (TSP) (d) curves of TPU and TPU composites

    图  9  TPU和TPU复合材料残炭的拉曼光谱

    Figure  9.  Raman spectra of residual char of TPU and TPU composites

    ID—Intensity of peak D; IG—Intensity of peak G

    图  10  5wt%ZIF-8-CES-20wt%IFR/TPU残炭的XRD图谱

    Figure  10.  XRD pattern of residual char of 5wt%ZIF-8-CES-20wt%IFR/TPU

    图  11  TPU和TPU复合材料残炭的数码照片和SEM图像

    Figure  11.  Digital photos and SEM images of char residue of TPU and TPU composites

    图  12  TPU和TPU复合材料的力学性能

    Figure  12.  Mechanical properties of TPU and TPU composites

    表  1  TPU和TPU复合材料的配方

    Table  1.   Formula of TPU and TPU composites

    SampleTPU/wt%IFR/wt%CES/wt%ZIF-8/wt%ZIF-8-CES/wt%
    TPU1000000
    25wt%IFR/TPU7525000
    5wt%CES-20wt%IFR/TPU7520500
    5wt%ZIF-8-CES-20wt%IFR/TPU7520005
    2wt%ZIF-8-3wt%CES-20wt%IFR/TPU7520320
    5wt%ZIF-8-20wt%IFR/TPU7520050
    下载: 导出CSV

    表  2  纯TPU和TPU复合材料TAG和DTG数据

    Table  2.   Data of TGA and DTG of neat TPU and TPU composites

    SampleT5%/℃Tmax/℃Char residue at 700℃/%
    TPU323.1422.24.3
    25wt%IFR/TPU268.7371.59.8
    5wt%CES-20wt%IFR/TPU273.7367.514.7
    5wt%ZIF-8-CES-20wt%IFR/TPU281.4364.216.3
    2wt%ZIF-8-3wt%CES-20wt%IFR/TPU280.4368.714.9
    5wt%ZIF-8-20wt%IFR/TPU270.1363.814.8
    Notes:T5%—5wt% mass loss temperature; Tmax—Maximum mass loss temperature.
    下载: 导出CSV

    表  3  纯TPU和TPU复合材料燃烧试验数据

    Table  3.   Date from combustion tests of neat TPU and TPU composites

    SamplepHRR/(kW·m−2)THR/(MJ·m−2)pSPR/(m2·s−1)TSP/m2
    TPU1574189.20.15116.0
    25wt%IFR/TPU905105.10.0748.9
    5wt%ZIF-8-CES-20wt%IFR/TPU24266.50.0316.3
    Notes: pHRR —Peak of heat release rate; pSPR—Peak of smoke produce rate.
    下载: 导出CSV
  • [1] STEVEN P, CHEN C, HU J, et al. Characterization of thermoplastic polyurethane (TPU) and Ag-carbon black TPU nanocomposite for potential application in additive manufacturing[J]. Polymers,2017,9(1):6.
    [2] 周醒, 夏元梦, 蔺海兰, 等. 纳米SiO2功能化改性石墨烯-热塑性聚氨酯复合材料的制备与性能[J]. 复合材料学报, 2017, 34(4):699-707.

    ZHOU X, XIA Y M, LIN H L, et al. Preparation and properties of nano SiO2 functionally modified graphene-thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica,2017,34(4):699-707(in Chinese).
    [3] 白静静, 尹建宇, 高雄. 异氰酸酯功能化氧化石墨烯-热塑性聚氨酯弹性体复合材料的制备与性能[J]. 复合材料学报, 2018, 35(7):1683-1690.

    BAI J J, YIN J Y, GAO X. Preparation and characterization of isocyanate functionalized graphene oxide-thermoplastic polyurethane elastomer composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1683-1690(in Chinese).
    [4] WANG L Y, WEI Y, DENG H B, et al. Synergistic flame retardant effect of barium phytate and intumescent flame retardant for epoxy resin[J]. Polymers,2017,13(17):2900.
    [5] ZHOU Y, LIU X, WANG F, et al. Effect of metal oxides on fire resistance and char formation of intumescent flame retardant coating[J]. Journal of Inorganic Materials,2014,29:972-978.
    [6] XU W, CHENG C, QIN Z, et al. Improvement of thermoplastic polyurethane's flame retardancy and thermal conductivity by leaf-shaped cobalt-zeolitic imidazolate framework-modified graphene and intumescent flame retardant[J]. Polymers for Advanced Technologies,2021,32:228-240. doi: 10.1002/pat.5078
    [7] LIN M, LI B, LI Q, et al. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes[J]. Jourinal of Applied Polymer Science,2011,121(4):1951-1960.
    [8] ASHOK B, NARESH S, REDDY KO, et al. Tensile and thermal properties of poly(lactic acid)-eggshell powder composite fifilms[J]. International of Journal Polymer Analysis and Characterization,2014,19(3):245-255. doi: 10.1080/1023666X.2014.879633
    [9] XU Z, CHU Z, YAN L, et al. Effect of chicken eggshell on the flame-retardant and smoke suppression properties of an epoxy-based traditional APP-PER-MEL system[J]. Polymer Composites,2019,40(7):2712-2723. doi: 10.1002/pc.25077
    [10] URTEKIN G, HAZER S, AYTAC A, et al. Effect of eggshell and intumescent flame retardant on the thermal and mechanical properties of plasticised PLA[J]. Plastics Rubber and Composites,2020,50(3):127-136.
    [11] LI H, MENG D, QI P, et al. Fabrication of a hybrid from metal organic framework and sepiolite (ZIF-8-SEP) for reducing the fire hazards in thermoplastic polyurethane[J]. Applied Clay Science,2022,210:106376.
    [12] ASTM. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics: ASTM D2863—2012[S]. West Conshohocken: ASTM, 2012.
    [13] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分: 模塑和挤塑塑料的试验条件: GB-T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. plastics—Determination of tensile properties— Part 2: Test conditions for moulding and extrusion plastics: GB-T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [14] NABIPOUR H, NIE S, WANG X, et al. Zeolitic imidazolate framework-8-polyvinyl alohol hybird aerogels with excellent flame retardancy[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105720.
    [15] SHEN R, QUAN Y, ZHANG Z, et al. Metal-organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene[J]. Industrial & Engineering Chemisty Research,2022,61:7292-7302.
    [16] XIE J, SHI X, ZHANG M, et al. Improving the flame retardancy of polypropylene by nano metal-organic frameworks and bioethanol coproduct[J]. Fire & Materials,2019,43(4):373-380.
    [17] XU W Z, ZHANG B L, WANG X L, et al. The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4, modified reduced graphene oxide-layered double hydroxide on epoxy resin[J]. Journal of Hazardous Materials,2018,343:364-375. doi: 10.1016/j.jhazmat.2017.09.057
    [18] KJELLIN P, RAJASEKHARAN A K, CURRIE F, et al. Investigation of calcium phosphate formation from calcium propionate and triethyl phosphate)[J]. Ceramics International,2016,42:14061-14065. doi: 10.1016/j.ceramint.2016.06.013
    [19] WANG R, ZHUO D X, WENG Z X, et al. Synergistic effect between zeolitic imidazolate framework-8 and expandable graphite to improve the flame retardancy and smoke suppression of polyurethane elastomer[J]. Journal of Applied Polymer Science,2020,137(1):9826-9836.
    [20] LIU B, XU Y, LI S, et al. A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system[J]. Compo-sites Part B: Engineering,2019,176:107218. doi: 10.1016/j.compositesb.2019.107218
    [21] SOMDEE P, HASOOK A. Effect of modified eggshell powder on physical properties of poly(lactic acid) and natural rubber composites[J]. Materials Today: Proceedings,2017,4:6502-6511. doi: 10.1016/j.matpr.2017.06.160
    [22] YOUNIS A, EL-WAKIL A. New composites from waste polypropylene-eggshell characterized by high flame retardant and mechanical properties[J]. Fibers and Polmers,2021,22:3456-3468. doi: 10.1007/s12221-021-0069-z
    [23] MOUSTAFA H, M. YOUSSEF A, DUQUESNE S, et al. Characterization of bio-filler derived from seashell wastes and its effect on the mechanical, thermal, and flame retardant properties of ABS composites[J]. Polymer Composites,2017,38(12):2788-2797. doi: 10.1002/pc.23878
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  583
  • HTML全文浏览量:  318
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2022-10-24
  • 录用日期:  2022-10-29
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回