留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

织物增强复合材料Micro-CT辅助数值仿真技术研究进展

杨斌 王继辉 冯雨薇 杨超 倪爱清

杨斌, 王继辉, 冯雨薇, 等. 织物增强复合材料Micro-CT辅助数值仿真技术研究进展[J]. 复合材料学报, 2023, 41(0): 1-20
引用本文: 杨斌, 王继辉, 冯雨薇, 等. 织物增强复合材料Micro-CT辅助数值仿真技术研究进展[J]. 复合材料学报, 2023, 41(0): 1-20
Bin YANG, Jihui WANG, Yuwei FENG, Chao YANG, Aiqing NI. Advances in Micro-CT aided numerical simulation of fabric-reinforced composites[J]. Acta Materiae Compositae Sinica.
Citation: Bin YANG, Jihui WANG, Yuwei FENG, Chao YANG, Aiqing NI. Advances in Micro-CT aided numerical simulation of fabric-reinforced composites[J]. Acta Materiae Compositae Sinica.

织物增强复合材料Micro-CT辅助数值仿真技术研究进展

基金项目: 国家重点研发计划资助 (2022YFB4300102)
详细信息
    通讯作者:

    倪爱清,博士,副研究员,硕士生导师,研究方向为先进复合材料 E-mail: aqni21 stcn@163.com

  • 中图分类号: TB332

Advances in Micro-CT aided numerical simulation of fabric-reinforced composites

Funds: National Key R&D Program of China(2022YFB4300102)
  • 摘要: 精确的数值模型是获得可靠的数值仿真结果的前提。显微计算机断层扫描(Micro-CT)技术可无损成像复合材料的内部结构,据此建立的数值模型比理想化模型更具代表性。本文综述了基于Micro-CT图像的复合材料介观模型构建方法及其在材料虚拟测试中的应用,提出了Micro-CT辅助数值仿真的概念。首先,对Micro-CT成像原理、设备特点和织物增强复合材料的成像难点进行了讨论。其次,梳理了现有的Micro-CT辅助建模技术的特点,将其建立的模型划分为间接模型、体素模型和数字材料孪生模型,重点介绍了构建各类模型的理论基础和技术途径,指出了各自的优势和局限性。然后对Micro-CT辅助数值仿真技术在织物增强复合材料的成型工艺和力学性能预测等方面的应用进行了总结,表明了该技术的重要价值。最后,对Micro-CT辅助数值仿真技术的未来发展进行了展望。

     

  • 图  1  织物增强复合材料多尺度结构

    Figure  1.  Multi-scale structure of textile reinforcements

    图  2  增强织物多尺度结构对复合材料加工和力学性能的影响

    Figure  2.  Effect of multi-scale structure on manufacturing process and mechanical properties of composites

    图  3  显微计算机断层扫描成像的x射线源:同步辐射光源(上)和锥形束光源(下)

    Figure  3.  Imaging of microcomputed tomography: X-ray beam initiates from synchrotron light sources (top) and from cone-beam source (bottom)

    图  4  图像分割与重建

    Figure  4.  Image segmentation and reconstruction

    图  5  间接建模技术的纤维束路径、轮廓特征定义和尺寸数据分析[67]

    Figure  5.  Fiber yarn paths, profile definition and dimensional analysis for indirect modeling techniques [67]

    图  6  织物结构直接建模技术流程图

    Figure  6.  Flow chart of direct textile geometrical modeling technique

    图  7  织物增强复合材料体素模型

    Figure  7.  Voxel model for fabric-reinforced composites

    图  8  基于Kriging的显式参数化表面重建方法[6]

    Figure  8.  Kriging-based explicit parametric surface reconstruction method[6]

    图  9  隐式表面重建方法生成的共形网格[64]

    Figure  9.  Conformal mesh generated by implicit surface reconstruction method[64]

    图  10  采用显微计算机断层扫描技术研究复合材料的历年文献发表数量

    Figure  10.  Number of scientific literatures applying micro tomography in investigations

    图  11  复合材料数字孪生技术应用图谱

    Figure  11.  Application of digital twin technology for composite materials

    图  12  基于体素模型的渗透率预测:(a) 边界条件和(b)速度云图[109]

    Figure  12.  Permeability prediction based on voxel model[109]

    图  13  不同精度的数值模型和X方向的拉伸应力云图[72]

    Figure  13.  Numerical models with different accuracy and tensile stress field in $ x $-direction[72]

    表  1  Micro-CT 图像预处理和图像分割方法

    Table  1.   Micro-CT image pre-processing and image segmentation methods

    TextileResolution/$ \mathrm{\mu }\mathrm{m} $DenosingSmoothingSegmentationSoftwareReference
    Plain weave10.4//Manual segmentationVG studio[67]
    25Pixel intensity averaged with neighborsSobel operator & Structure tensorMATLAB[77]
    1 - 10Median filterThreshold-texture feature-morphology/[78]
    5A 1 D uniform filterMorphological gradient & Deep LearningImageJ & SciPy[82]
    18.6Non-local mean filterthresholding based on seed
    region growing
    Avizo[83]
    5-directional braided composite22.1VG studio/ImageJ[65]
    Fiber tow9.3/Nugget effectImplicit kriging & Indicator functionIn-house Python code[84]
    3 D fabric2Median filterTexture analysis/[74]
    /Gaussian smoothingStructure tensor & Signed distancesMATLAB[64]
    Note: “/” means information of the item was not given by authors, while “√” means the item was done but the method was not given.
    下载: 导出CSV

    表  2  五种常用的多孔介质渗流力学求解器

    Table  2.   Five commonly used solvers for percolation mechanics in porous media

    CategoryGoverning equationMeshingsoftwareReference
    Computational Fluid Dynamic (CFD)Stokes and Navier-Stokes equations on discretized grid meshYesFluent, OpenFOAM, et al,[92,110,111]
    Lattice-Boltzmann Method (LBM)Boltzmann equation on voxel meshNoOpenLB et al.[112,113]
    Voxel Based direct Navier-Stokes
    Solvers (VBS)
    Stokes and Navier-Stokes equations on segmented Micro-CT imagesNoVG studio, Avizo et al.[73,105,107,109,114]
    Semi-Analytical Solvers (SAS)Analytical up-scaling solutionsNo/[115]
    Empirical Kozeny–Carman type
    model (EMP)
    pore size distribution extracted fromNo/[5,88]
    下载: 导出CSV
  • [1] LLORCA J, GONZÁLEZ C, MOLINA-ALDAREGUÍA J M, et al. Multiscale modeling of composite materials: A roadmap towards virtual testing[J]. Advanced Materials,2011,23(44):5130-5147. doi: 10.1002/adma.201101683
    [2] HENNING F, KÄRGER L, DÖRR D, et al. Fast processing and continuous simulation of automotive structural composite components[J]. Composites Science and Technology,2019,171:261-279. doi: 10.1016/j.compscitech.2018.12.007
    [3] GRIEVES M, VICKERS J: Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems, Transdisciplinary perspectives on complex systems: Springer, 2017: 85-113.
    [4] 张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报, 2020, 32(4):744.

    ZHANG Lin. Cool thoughts on digital twins and modeling and simulation technologies behind[J]. Journal of System Simulation,2020,32(4):744(in Chinese).
    [5] ENDRUWEIT A, ZENG X, Matveev M, et al. Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements[J]. Composites Part A:Applied Science and Manufacturing,2018,104:139-150. doi: 10.1016/j.compositesa.2017.10.020
    [6] MADRA A, BREITKOPF P, RASSINEUX A, et al. Image-based model reconstruction and meshing of woven reinforcements in composites[J]. International Journal for Numerical Methods in Engineering,2017,112(9):1235-1252. doi: 10.1002/nme.5555
    [7] ZENG X, ENDRUWEIT A, BROWN L P, et al. Numerical prediction of in-plane permeability for multilayer woven fabrics with manufacture-induced deformation[J]. Composites Part A:Applied Science and Manufacturing,2015,77:266-274. doi: 10.1016/j.compositesa.2015.03.027
    [8] LONG A C, BROWN L P: Modelling the geometry of textile reinforcements for composites: TexGen, Boisse P, editor, Composite Reinforcements for Optimum Performance: Woodhead Publishing, 2011: 239-264.
    [9] SHERBURN M. Geometric and mechanical modelling of textiles[D]. University of Nottingham Nottingham, UK, 2007.
    [10] WENDLING A, DANIEL J, HIVET G, et al. Meshing preprocessor for the Mesoscopic 3 D finite element simulation of 2 D and interlock fabric deformation[J]. Applied Composite Materials,2015,22(6):869-886. doi: 10.1007/s10443-015-9441-8
    [11] ISART N, MAYUGO J A, BLANCO N, et al. Geometric model for 3 D through-thickness orthogonal interlock composites[J]. Composite Structures,2015,119:787-798. doi: 10.1016/j.compstruct.2014.09.044
    [12] 倪爱清, 王继辉, 朱以文. 复合材料液体模塑成型工艺中预成型体渗透率张量的数值预测[J]. 复合材料学报, 2007, 24(6):50-56. doi: 10.3321/j.issn:1000-3851.2007.06.009

    NI Aiqing, WANG Jihui, ZHU Yiwen. Numerical prediction of saturated permeability tensor of a woven fabric for use in the fluid simulation of liquid composite molding[J]. Acta Materiae Compositae Sinica,2007,24(6):50-56(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.06.009
    [13] 王旭. 基于3 ds Max软件的机织物结构三维建模研究[J]. 安徽工程大学学报, 2013, 28(3):4. doi: 10.3969/j.issn.2095-0977.2013.03.002

    WANG Xu. 3 D modeling on woven fabric structure by 3 D Max[J]. Journal of Anhui Polytechnic University,2013,28(3):4(in Chinese). doi: 10.3969/j.issn.2095-0977.2013.03.002
    [14] 惠新育, 许英杰, 张卫红, 等. 平纹编织 SiC/SiC 复合材料多尺度建模及强度预测[J]. 复合材料学报, 2019, 36(10):2380-2388.

    HUI Xinyu, XU Yingjie, ZHANG Weihong, HE Zongbei. Multi-scale modeling and strength prediction of plain woven SiC/SiC composites[J]. Acta Materiae Compositae Sinica,2019,36(10):2380-2388(in Chinese).
    [15] YANG B, WANG S, TANG Q. Geometry modeling and permeability prediction for textile preforms with nesting in laminates[J]. Polymer Composites,2018,39(12):4408-4415. doi: 10.1002/pc.24526
    [16] SWERY E E, MEIER R, LOMOV S V, et al. Predicting permeability based on flow simulations and textile modelling techniques: Comparison with experimental values and verification of FlowTex solver using Ansys CFX[J]. Journal of Composite Materials,2016,50(5):601-615. doi: 10.1177/0021998315579927
    [17] VERPOEST I, LOMOV S V. Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis[J]. Composites Science and Technology,2005,65(15-16):2563-2574. doi: 10.1016/j.compscitech.2005.05.031
    [18] 金天国, 魏雅君, 杨波, 等. 预成型体渗透率预测及其受压缩变形的影响[J]. 复合材料学报, 2015, 32(3):840-847. doi: 10.13801/j.cnki.fhclxb.201503.009

    JIN Tianguo, WEI Yajun, YANG Bo, BI Fengyang. Permeability prediction of preform and influence of compression deformation[J]. Acta Materiae Compositae Sinica,2015,32(3):840-847(in Chinese). doi: 10.13801/j.cnki.fhclxb.201503.009
    [19] STUMP D, FRASER W. A simplified model of fabric drape based on ring theory[J]. Textile Research Journal,1996,66(8):506-514. doi: 10.1177/004051759606600804
    [20] WADEKAR P, GOEL P, Amanatides C, et al. Geometric modeling of knitted fabrics using helicoid scaffolds[J]. Journal of Engineered Fibers and Fabrics, 2020, 15: 1558925020913871.
    [21] HUANG W, CAUSSE P, Brailovski V, et al. Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT Aided Geometric Modeling[J]. Composites Part A:Applied Science and Manufacturing,2019,124:105481. doi: 10.1016/j.compositesa.2019.105481
    [22] ZENG X, BROWN L P, Endruweit A, et al. Geometrical modelling of 3 D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties[J]. Composites Part A:Applied Science and Manufacturing,2014,56:150-160. doi: 10.1016/j.compositesa.2013.10.004
    [23] ALI M A, UMER R, KHAN K A. A virtual permeability measurement framework for fiber reinforcements using micro CT generated digital twins[J]. International Journal of Lightweight Materials and Manufacture,2020,3(3):204-216. doi: 10.1016/j.ijlmm.2019.12.002
    [24] BODAGHI M, LOMOV S V, SIMACEK P, et al. On the variability of permeability induced by reinforcement distortions and dual scale flow in liquid composite moulding: A review[J]. Composites Part A:Applied Science and Manufacturing,2019,120(February):188-210.
    [25] GEREKE T, CHERIF C. A review of numerical models for 3 D woven composite reinforcements[J]. Composite Structures,2019,209:60-66. doi: 10.1016/j.compstruct.2018.10.085
    [26] ORHAN K. Micro-computed Tomography (micro-CT) in Medicine and Engineering[M]. Springer, 2020.
    [27] MADRA A, CAUSSE P, Trochu F, et al. Stochastic characterization of textile reinforcements in composites based on X-ray microtomographic scans[J]. Composite Structures,2019,224:111031. doi: 10.1016/j.compstruct.2019.111031
    [28] 许承海, 徐凯, 宋乐颖, 等. 多向轴编碳/碳材料炭基体微结构 Micro-CT 原位扫描及其等效力[J]. 复合材料学报, 2013, 1.

    XU Chenghai, XU Kai, SONG Leying, et al. Microstructure characterization from X-ray micro-tomography and equivalent mechanical properties of carbon matrix of 4 D in-plane carbon/carbon composites[J]. Acta Materiae Compositae Sinica, 2013, 1 (in Chinese).
    [29] NGUYEN N Q, MEHDIKHANI M, STRAUMIT I, et al. Micro-CT measurement of fibre misalignment: Application to carbon/epoxy laminates manufactured in autoclave and by vacuum assisted resin transfer moulding[J]. Composites Part A:Applied Science and Manufacturing,2018,104:14-23. doi: 10.1016/j.compositesa.2017.10.018
    [30] ALI M A, GUAN Q, UMER R, et al. Efficient processing of μCT images using deep learning tools for generating digital material twins of woven fabrics[J]. Composites Science and Technology,2022,217:109091. doi: 10.1016/j.compscitech.2021.109091
    [31] PENG P, GAO M, GUO E, et al. Deformation behavior and damage in B4 Cp/6061 Al composites: An actual 3 D microstructure-based modeling[J]. Materials Science and Engineering:A,2020,781:139169. doi: 10.1016/j.msea.2020.139169
    [32] WILLIAMS J, FLOM Z, AMELL A, et al. Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography[J]. Acta Materialia,2010,58(18):6194-6205. doi: 10.1016/j.actamat.2010.07.039
    [33] MADRA A, ADRIEN J, BREITKOPF P, et al. A clustering method for analysis of morphology of short natural fibers in composites based on X-ray microtomography[J]. Composites Part A:Applied Science and Manufacturing,2017,102:184-195. doi: 10.1016/j.compositesa.2017.07.028
    [34] AGYEI R F, SANGID M D. A supervised iterative approach to 3 D microstructure reconstruction from acquired tomographic data of heterogeneous fibrous systems[J]. Composite Structures,2018,206:234-246. doi: 10.1016/j.compstruct.2018.08.029
    [35] HUANG W. Analysis of Through-Thickness Injection in Liquid Composite Molding Based on Digital Material Twins[D]. Polytechnique Montréal, 2020.
    [36] ZHANG C, LI N, WANG W, et al. Progressive damage simulation of triaxially braided composite using a 3 D meso-scale finite element model[J]. Composite Structures,2015,125:104-116. doi: 10.1016/j.compstruct.2015.01.034
    [37] PATIÑO I D, POWER H, NIETO-LONDOÑO C, et al. Stokes–Brinkman formulation for prediction of void formation in dual-scale fibrous reinforcements: a BEM/DR-BEM simulation[J]. Computational Mechanics,2017,59(4):555-577. doi: 10.1007/s00466-016-1360-5
    [38] YANG B, HUANG W, CAUSSE P, et al. On the design of test molds based on unidirectional saturated flows to measure transverse permeability in liquid composite molding[J]. Polymer Composites,2022,43(4):2234-2251. doi: 10.1002/pc.26536
    [39] KANG M K, LEE W I, HAHN H T. Formation of microvoids during resin-transfer molding process[J]. Composites Science and Technology,2000,60(12):2427-2434.
    [40] RUIZ E, ACHIM V, SOUKANE S, et al. Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites[J]. Composites Science and Technology,2006,66(3-4):475-486. doi: 10.1016/j.compscitech.2005.06.013
    [41] YUAN Z, WANG Y, YANG G, et al. Evolution of curing residual stresses in composite using multi-scale method[J]. Composites Part B:Engineering,2018,155:49-61. doi: 10.1016/j.compositesb.2018.08.012
    [42] 王晓霞, 贾玉玺, 董抒华. 基于 Morris 方法的纤维复合材料结构件固化均匀性的全局灵敏度分析[J]. 复合材料学报, 2015, 32(4):1211-1217.

    WANG Xiaoxia, JIA Yuxi, DONG Shuhua. Global sensitivity analysis of curing uniformity of fiber composite structures based on Morris method[J]. Acta Materiae Compositae Sinica,2015,32(4):1211-1217(in Chinese).
    [43] 屈鹏. 纤维/树脂复合材料多尺度结构对力学性能的影响[D]. 济南: 山东大学, 2012.

    QU Peng. Influence of multiscale structure of fiber/resin composites on mechanical properties [D]. Jinan: Shandong University, 2012 (in Chinese).
    [44] WELLINGTON S L, VINEGAR H J. X-ray computerized tomography[J]. Journal of petroleum technology,1987,39(8):885-898. doi: 10.2118/16983-PA
    [45] MAYERHÖFER T G, PAHLOW S, POPP J. The Bouguer-Beer-Lambert Law: Shining Light on the Obscure[J]. ChemPhysChem,2020,21(18):2029-2046. doi: 10.1002/cphc.202000464
    [46] GARCEA S C, WANG Y, Withers P J. X-ray computed tomography of polymer composites[J]. Composites Science and Technology,2018,156:305-319. doi: 10.1016/j.compscitech.2017.10.023
    [47] NIKISHKOV Y, AIROLDI L, MAKEEV A. Measurement of voids in composites by X-ray Computed Tomography[J]. Composites Science and Technology,2013,89:89-97. doi: 10.1016/j.compscitech.2013.09.019
    [48] FELDKAMP L A, DAVIS L C, Kress J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A,1984,1(6):612. doi: 10.1364/JOSAA.1.000612
    [49] GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of theoretical Biology,1970,29(3):471-481. doi: 10.1016/0022-5193(70)90109-8
    [50] HAIDE R, FEST-SANTINI S, SANTINI M. Use of X-ray micro-computed tomography for the investigation of drying processes in porous media: A review[J]. Drying Technology,2021,40(9):1-14.
    [51] ELBAKRI I A, FESSLER J A. Statistical image reconstruction for polyenergetic X-ray computed tomography[J]. IEEE Transactions on Medical Imaging,2002,21(2):89-99. doi: 10.1109/42.993128
    [52] WIELHORSKI Y, MENDOZA A, Rubino M, et al. Numerical modeling of 3 D woven composite reinforcements: A review[J]. Composites Part A:Applied Science and Manufacturing,2022,154:106729. doi: 10.1016/j.compositesa.2021.106729
    [53] GAO Y, HU W, XIN S, et al. A review of applications of CT imaging on fiber reinforced composites[J]. Journal of Composite Materials,2022,56(1):133-164. doi: 10.1177/00219983211050705
    [54] RASHIDI A, OLFATBAKHSH T, CRAWFORD B, et al. A Review of Current Challenges and Case Study toward Optimizing Micro-Computed X-Ray Tomography of Carbon Fabric Composites[J]. Materials,2020,13(16):3606. doi: 10.3390/ma13163606
    [55] FLAY N, BROWN S, SUN W, et al. Effects of off-focal radiation on dimensional measurements in industrial cone-beam micro-focus X-ray computed tomography systems[J]. Precision Engineering,2020,66:472-481. doi: 10.1016/j.precisioneng.2020.08.014
    [56] HE P, ZHAO W, YANG B, et al. Void content reduction of composites with sensor-aided injection strategy in liquid composite molding process[J]. Materials Research Express,2021,8(7):075309. doi: 10.1088/2053-1591/ac1532
    [57] MADRA A, HAJJ N E, BENZEGGAGH M. X-ray microtomography applications for quantitative and qualitative analysis of porosity in woven glass fiber reinforced thermoplastic[J]. Composites Science and Technology,2014,95:50-58. doi: 10.1016/j.compscitech.2014.02.009
    [58] ALIYEVA S, ALABBAD A, DAZA J P, et al. Elasticity, Electrical Conductivity and Permeability in Digital Rocks: A Comparative Study Using Simpleware, NIST, Comsol Multiphysics and Lattice-Boltzmann Algorithms[C]. 51 st US Rock Mechanics/Geomechanics Symposium, 2017.
    [59] MILAN J-L, PLANELL J A, Lacroix D. Computational modelling of the mechanical environment of osteogenesis within a polylactic acid–calcium phosphate glass scaffold[J]. Biomaterials,2009,30(25):4219-4226. doi: 10.1016/j.biomaterials.2009.04.026
    [60] ZHANG Y, WANG Q. Application of software VGStudio MAX 2.0 in 3 D reconstruction of industrial computed tomography images[J]. Metrology & Measurement Technology, 2011, 5.
    [61] KIKINIS R, PIEPER S D, Vosburgh K G. 3 D Slicer: a platform for subject-specific image analysis, visualization, and clinical support[M]. Springer, 2014: 277-289.
    [62] BIRD M B, BUTLER S L, HAWKES C D, et al. Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL[J]. Computers & Geosciences,2014,73:6-16.
    [63] RASSINEUX A. Robust conformal adaptive meshing of complex textile composites unit cells[J]. Composite Structures,2022,279:114740. doi: 10.1016/j.compstruct.2021.114740
    [64] WINTIBA B, VASIUKOV D, Panier S, et al. Automated reconstruction and conformal discretization of 3 D woven composite CT scans with local fiber volume fraction control[J]. Composite Structures,2020,248:112438. doi: 10.1016/j.compstruct.2020.112438
    [65] LIU X, ZHANG D, SUN J, et al. Refine reconstruction and verification of meso-scale modeling of three-dimensional five-directional braided composites from X-ray computed tomography data[J]. Composite Structures,2020,245:112347. doi: 10.1016/j.compstruct.2020.112347
    [66] ABRÀMOFF M D, MAGALHÃES P J, Ram S J. Image processing with ImageJ[J]. Biophotonics international,2004,11(7):36-42.
    [67] YU X-W, WANG H, WANG Z-W. Analysis of yarn fiber volume fraction in textile composites using scanning electron microscopy and X-ray micro-computed tomography[J]. Journal of Reinforced Plastics and Composites,2018,38(5):199-210.
    [68] TAO W, ZHU P, XU C, et al. Uncertainty quantification of mechanical properties for three-dimensional orthogonal woven composites. Part II: Multiscale simulation[J]. Composite Structures,2020,235:111764. doi: 10.1016/j.compstruct.2019.111764
    [69] TAO W, P, Xu C, et al. Uncertainty quantification of mechanical ZHU properties for three-dimensional orthogonal woven composites. Part I: Stochastic reinforcement geometry reconstruction[J]. Composite Structures,2020,235:111763. doi: 10.1016/j.compstruct.2019.111763
    [70] 曹欣怡, 彭秀钟, 范进, 等. 一种改进的基于两单胞模型的三维角联锁机织复合材料弹性性能数值预测方法及实验验证[J]. 复合材料学报, 2021, 38(11):3704-3713. doi: 10.13801/j.cnki.fhclxb.20210122.003

    Xinyi CAO, Xiuzhong PENG, Jin FAN, Mengjing ZHOU. An improved numerical prediction method of elastic properties based on two unit-cells models for 3 D angle-interlock woven composites and experimental verification[J]. Acta Materiae Compositae Sinica,2021,38(11):3704-3713(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210122.003
    [71] 王童童. 三维编织复合材料的制备及面内拉伸和剪切性能研究[D]. 哈尔滨工业大学, 2019.

    WANG Tongtong. The fabrication and in-plane tensile and shear performance of 3 d woven composites [D]. Harbin Institute of Technology, 2019 (in Chinese).
    [72] ISART N, EL SAID B, IVANOV D S, et al. Internal geometric modelling of 3 D woven composites: A comparison between different approaches[J]. Composite Structures,2015,132:1219-1230. doi: 10.1016/j.compstruct.2015.07.007
    [73] AZIZ A R, ALI M A, ZENG X, et al. Transverse permeability of dry fiber preforms manufactured by automated fiber placement[J]. Composites Science and Technology,2017,152:57-67. doi: 10.1016/j.compscitech.2017.09.011
    [74] NAOUAR N, VIDAL-SALLE E, SCHNEIDER J, et al. 3 D composite reinforcement meso F. E. analyses based on X-ray computed tomography[J]. Composite Structures,2015,132:1094-1104. doi: 10.1016/j.compstruct.2015.07.005
    [75] IWATA A, INOUE T, NAOUAR N, et al. Coupled meso-macro simulation of woven fabric local deformation during draping[J]. Composites Part A:Applied Science and Manufacturing,2019,118(January):267-280.
    [76] NAOUAR N, VASIUKOV D, PARK C H, et al. Meso-FE modelling of textile composites and X-ray tomography[J]. Journal of Materials Science,2020,55(36):16969-16989. doi: 10.1007/s10853-020-05225-x
    [77] WIJAYA W, ALI M A, UMER R, et al. An automatic methodology to CT-scans of 2 D woven textile fabrics to structured finite element and voxel meshes[J]. Composites Part A:Applied Science and Manufacturing,2019,125:105561. doi: 10.1016/j.compositesa.2019.105561
    [78] 钱浩. 平纹编织复合材料Micro CT成像试验与纤维束识别方法研究[D]. 国防科学技术大学, 2015.

    QIAN Hao. Micro CT experiment and the method of yarn segmentation in plain-weave composites of Micro CT images[D]. National University of Defense Technology, 2015 (in Chinese).
    [79] 宋永忠, 王俊山, 傅健. 多向编织C/C复合材料显微结构的 $ \mu $-CT研究[J]. 宇航材料工艺, 2011, 41(2):5.

    SONG Yongzhong, WANG Junshan, FU Jian. Microstructure of 3 D Carbon/Carbon Composites Measured With Micro-CT[J]. Aerospace Science and Technology,2011,41(2):5(in Chinese).
    [80] BADRAN A, MARSHALL D, Legault Z, et al. Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning[J]. Journal of Materials Science,2020,55(34):16273-16289. doi: 10.1007/s10853-020-05148-7
    [81] STRAUMIT I, LOMOV S V, WEVERS M. Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data[J]. Composites Part A:Applied Science and Manufacturing,2015,69:150-158. doi: 10.1016/j.compositesa.2014.11.016
    [82] SINCHUK Y, KIBLEUR P, AELTERMAN J, et al. Variational and Deep Learning Segmentation of Very-Low-Contrast X-ray Computed Tomography Images of Carbon/Epoxy Woven Composites[J]. Materials,2020,13(4):936. doi: 10.3390/ma13040936
    [83] YOUSAF Z, WITHERS P J, POTLURI P. Compaction, nesting and image based permeability analysis of multi-layer dry preforms by computed tomography (CT)[J]. Composite Structures,2021,263:113676. doi: 10.1016/j.compstruct.2021.113676
    [84] MADRA A, TROCHU F, BREITKOPF P. Implicit kriging model of fibrous reinforcements in composites based on X-ray microtomography[C]. 13 e colloque national en calcul des structures, 2017.
    [85] SAXENA N, HOFMANN R, ALPAK F O, et al. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks[J]. Advances in Water Resources,2017,109:211-235. doi: 10.1016/j.advwatres.2017.09.007
    [86] LIU Y, STRAUMIT I, VASIUKOV D, et al. Prediction of linear and non-linear behavior of 3 D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography[J]. Composite Structures,2017,179:568-579. doi: 10.1016/j.compstruct.2017.07.066
    [87] RINALDI R G, BLACKLOCK M, BALE H, et al. Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3 D tow representations[J]. Journal of the Mechanics and Physics of Solids,2012,60(8):1561-1581. doi: 10.1016/j.jmps.2012.02.008
    [88] ALI M A, UMER R, KHAN K A, et al. Application of X-ray computed tomography for the virtual permeability prediction of fiber reinforcements for liquid composite molding processes: A review[J]. Composites Science and Technology,2019,184(September):107828-107828.
    [89] SINCHUK Y, PANNIER Y, ANTORANZ-GONZALEZ R, et al. Analysis of moisture diffusion induced stress in carbon/epoxy 3 D textile composite materials with voids by µ-CT based Finite Element Models[J]. Composite Structures,2019,212:561-570. doi: 10.1016/j.compstruct.2018.12.041
    [90] DOITRAND A, FAGIANO C, IRISARRI F-X, et al. Comparison between voxel and consistent meso-scale models of woven composites[J]. Composites Part A:Applied Science and Manufacturing,2015,73:143-154. doi: 10.1016/j.compositesa.2015.02.022
    [91] NAGAI Y, OHTAKE Y, SUZUKI H. Tomographic surface reconstruction from point cloud[J]. Computers & Graphics,2015,46:55-63.
    [92] ZHAO Y, ZHU G, ZHANG C, et al. Pore-Scale Reconstruction and Simulation of Non-Darcy Flow in Synthetic Porous Rocks[J]. Journal of Geophysical Research:Solid Earth,2018,123(4):2770-2786. doi: 10.1002/2017JB015296
    [93] TROCHU F. A Contouring Program Based on Dual Kriging Interpolation[J]. Engineering with Computers,1993,9(3):160-177. doi: 10.1007/BF01206346
    [94] MADRA A, BREITKOPF P, RAGHAVAN B, et al. Diffuse manifold learning of the geometry of woven reinforcements in composites[J]. Comptes Rendus Mécanique,2018,346(7):532-538.
    [95] HUANG W, CAUSSE P, HU H, et al. Transverse compaction of 2 D glass woven fabrics based on material twins - Part I: Geometric analysis[J]. Composite Structures,2020,237:111929. doi: 10.1016/j.compstruct.2020.111929
    [96] HUANG W, CAUSSE P, HU H, et al. Transverse compaction of 2 D glass woven fabrics based on material twins – Part II: Tow and fabric deformations[J]. Composite Structures,2020,237:111963. doi: 10.1016/j.compstruct.2020.111963
    [97] BERGER M, TAGLIASACCHI A, SEVERSKY L, et al. State of the art in surface reconstruction from point clouds[J]. Eurographics 2014-State of the Art Reports,2014,1(1):161-185.
    [98] EHAB MOUSTAFA KAMEL K, SONON B, MASSART T J. An integrated approach for the conformal discretization of complex inclusion-based microstructures[J]. Computational Mechanics,2019,64(4):1049-1071. doi: 10.1007/s00466-019-01693-4
    [99] SI H. TetGen, a Delaunay-based quality tetrahedral mesh generator[J]. ACM Transactions on Mathematical Software (TOMS),2015,41(2):1-36.
    [100] SOLTANI P, JOHARI M S, ZARREBINI M. 3 D fiber orientation characterization of nonwoven fabrics using X-ray micro-computed tomography[J]. World J Text Eng Technol,2015,1:41-47.
    [101] ARBTER R, BERAUD J M, BINETRUY C, et al. Experimental determination of the permeability of textiles: A benchmark exercise[J]. Composites Part A:Applied Science and Manufacturing,2011,42(9):1157-1168. doi: 10.1016/j.compositesa.2011.04.021
    [102] VERNET N, RUIZ E, ADVANI S, et al. Experimental determination of the permeability of engineering textiles: Benchmark II[J]. Composites Part A:Applied Science and Manufacturing,2014,61:172-184. doi: 10.1016/j.compositesa.2014.02.010
    [103] MAY D, AKTAS A, ADVANI S G, et al. In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise[J]. Composites Part A:Applied Science and Manufacturing,2019,121(March):100-114.
    [104] SOLTANI P, JOHARI M S, ZARREBINI M. Effect of 3 D fiber orientation on permeability of realistic fibrous porous networks[J]. Powder Technology,2014,254:44-56. doi: 10.1016/j.powtec.2014.01.001
    [105] ALI M A, UMER R, KHAN K A, et al. Non-destructive evaluation of through-thickness permeability in 3 D woven fabrics for composite fan blade applications[J]. Aerospace Science and Technology,2018,82-83(October):520-533.
    [106] TAHIR M W, HALLSTRÖM S, ÅKERMO M. Effect of dual scale porosity on the overall permeability of fibrous structures[J]. Composites science and technology,2014,103:56-62. doi: 10.1016/j.compscitech.2014.08.008
    [107] ALI M A, UMER R, KHAN K A, et al. In-plane virtual permeability characterization of 3 D woven fabrics using a hybrid experimental and numerical approach[J]. Composites Science and Technology,2019,173(February):99-109.
    [108] ALI M A, UMER R, KHAN K A, et al. XCT-scan assisted flow path analysis and permeability prediction of a 3 D woven fabric[J]. Composites Part B:Engineering,2019,176(May):107320-107320.
    [109] 曹鹏军;赵文斌;杨斌;倪爱清;王继辉. 基于Micro-CT图像的缎纹织物细观结构分析及渗透率预测[J]. 复合材料学报, 2022, 40(-):1. doi: 10.13801/j.cnki.fhclxb.20220420.002

    Pengjun CAO, Wenbin ZHAO, Bin YANG, Aiqing NI, Jihui WANG. Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT[J]. Acta Materiae Compositae Sinica,2022,40(-):1(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220420.002
    [110] SOULAINE C, GJETVAJ F, GARING C, et al. The Impact of Sub-Resolution Porosity of X-ray Microtomography Images on the Permeability[J]. Transport in Porous Media,2016,113(1):227-243. doi: 10.1007/s11242-016-0690-2
    [111] RAEINI A Q, BIJELJIC B, BLUNT M J. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images[J]. Advances in Water Resources,2015,83:102-110. doi: 10.1016/j.advwatres.2015.05.008
    [112] NABOVATI A, SOUSA A C M. Fluid flow simulation at open–porous medium interface using the lattice Boltzmann method[J]. International Journal for Numerical Methods in Fluids,2008,56(8):1449-1456. doi: 10.1002/fld.1614
    [113] BELOV E B, LOMOV S V, VERPOEST I, et al. Modelling of permeability of textile reinforcements: lattice Boltzmann method[J]. Composites Science and Technology,2004,64(7-8):1069-1080. doi: 10.1016/j.compscitech.2003.09.015
    [114] HUANG W, CAUSSE P, HU H, et al. Numerical and experimental investigation of saturated transverse permeability of 2 D woven glass fabrics based on material twins[J]. Polymer Composites,2020,41(4):1341-1355. doi: 10.1002/pc.25458
    [115] DONG H, BLUNT M J. Pore-network extraction from micro-computerized-tomography images[J]. Physical Review E,2009,80(3):036307. doi: 10.1103/PhysRevE.80.036307
    [116] MAY D, AKTAS A, YONG A. International benchmark exercises of textile permeability and compressibility characterization[C]. 18 th European Conference on Composite Materials, 2018: 24-28.
    [117] ZHU J, WANG J, ZU L. Influence of out-of-plane ply waviness on elastic properties of composite laminates under uniaxial loading[J]. Composite Structures,2015,132:440-450. doi: 10.1016/j.compstruct.2015.05.062
    [118] CHEN B, CHOU T-W. Compaction of woven-fabric preforms: nesting and multi-layer deformation[J]. Composites Science and Technology,2000,60(12-13):2223-2231. doi: 10.1016/S0266-3538(00)00017-8
    [119] PAN Q. Multi-scale modelling and material characterisation of textile composites for aerospace applications[J]. Computer Methods in Applied Mechanics and Engineering,2016,310:906-934. doi: 10.1016/j.cma.2016.08.007
    [120] 吕青泉, 赵振强, 李超, 等. 2.5 D 机织复合材料的渐进损伤与失效模拟[J]. 复合材料学报, 2021, 38(8):2747-2757.

    LV Qingquan, ZHAO Zhenqiang, LI Chao, et al. Progressive damage and failure simulation of 2.5 D woven composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2747-2757(in Chinese).
    [121] 曹勇, 张超. 薄层复合材料冲击损伤行为研究进展[J]. 航空学报, 2022, 43(6):525323.

    CAO Y, ZHANG C. Impact damage behavior of thin-ply composites: A review[J]. Acta Aeronautica et Astronautica Sinica,2022,43(6):525323(in Chinese).
    [122] ZHAO ZQ, LIU P, CHEN CY. Modeling the transverse tensile and compressive failure behavior of triaxially braided composite[J]. Composites Science and Technology,2019,172:96-107. doi: 10.1016/j.compscitech.2019.01.008
    [123] ZHAO ZQ, LIU P, DANG HY. Understanding the critical role of boundary conditions in meso-scale finite element simulation of braided composites[J]. Advanced Composites and Hybrid Materials,2022,5:39-49. doi: 10.1007/s42114-021-00284-3
    [124] AKPOYOMARE A I, OKEREKE M I, Bingley M S. Virtual testing of composites: Imposing periodic boundary conditions on general finite element meshes[J]. Composite Structures,2017,160:983-994. doi: 10.1016/j.compstruct.2016.10.114
  • 加载中
计量
  • 文章访问数:  92
  • HTML全文浏览量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-14
  • 修回日期:  2023-04-03
  • 录用日期:  2023-04-21
  • 网络出版日期:  2023-05-06

目录

    /

    返回文章
    返回