Progress in preparation and application of hydrophobic-oleophobic cellulose-based functional materials
-
摘要: 基于中国“限塑令”到“禁塑令”的逐步实施,利用可再生可降解生物质基材料代替塑料成为研究热点。纤维素是自然界中最丰富的可再生生物质资源,利用绿色可降解纤维素基材料代替塑料是解决塑料污染的有效途径。本文介绍了纤维素基疏水疏油膜材料、纤维素基疏水疏油纸基材料和纤维素基疏水疏油凝胶材料的制备方法,分析比较了三种纤维素基双疏材料制备方法的特点,阐述了纤维素基双疏材料在水油分离、耐磨纺织材料、阻燃材料等领域的应用,阐明了疏水疏油机制,并对纤维素基双疏材料的发展方向进行了展望。Abstract: Based on the gradual implementation of China's "plastic restriction order" to "plastic ban order", the use of renewable and degradable biomass-based materials instead of plastics has become a research hotspot. Cellulose is the most abundant renewable biomass resources in nature. Replacing plastic with green degradable cellulose-based materials is an effective approach to solve plastic pollution. The preparation methods of cellulose-based hydrophobic-oleophobic film materials, cellulose-based hydrophobic-oleophobic paper materials and cellulose-based hydrophobic-oleophobic gel materials are introduced in this paper. The characteristics of different preparation methods of these three cellulose-based hydrophobic-oleophobic materials are analyzed and compared, and the application of cellulosic hydrophobic-oleophobic materials in the fields of water-oil separation, wear-resistant textile materials and flame-retardant materials are expounded. The hydrophobic-oleophobic mechanism are explained. The development direction of cellulose-based hydrophobic-oleophobic materials is also prospected.
-
图 3 双疏复合纸基材料
纤维素基双疏纸:(a)氟碳表面活性剂(ST-110)-氟化烷基硅烷(FAS)-聚四氟乙烯(PTFE)纤维纸[27];(b)PDMS-CNF双层涂布纸[25];(c)植酸铵-聚甲基氢硅氧烷双疏纤维素纸[28];(d)PTFE-ZrO2改性纤维素纸[11]
Figure 3. Hydrophobic and oleophobic composite paper based material
Cellulose-based Hydrophobic-oleophobic paper : (a) Fluorocarbon surfactant (ST-110) -fluoroalkyl silane (FAS) -polytetrafluoroethylene (PTFE) fiber paper[27]; (b) PDMS-CNF double-coated paper[25]; (c) ammonium phytate-polymethylhydrosiloxane hydrophobic oleophobic paper[28]; (d) PTFE-ZrO2 modified cellulose paper[11]
图 4 双疏复合凝胶材料
纤维素基双疏凝胶:(a)多孔和海绵状双疏硅型凝胶[32];(b)BC/BaSO4双疏气凝胶[33];(c)改性PIF纤维素凝胶[29];(d)氧化NFC-聚乙烯亚胺(PEI)和乙二醇二缩水甘油醚(EGDE)气凝胶[34]
Figure 4. Hydrophobic and oleophobic composite gel material
Cellulose-based Hydrophobic-oleophobic gels : (a) porous and spongy Hydrophobic oleophobic silicones[32]; (b) BC/BaSO4 Hydrophobic oleophobic gel[33]; (c) Modified PIF cellulose gel[29]; (d) Oxidized NFC-polyethylene imide (PEI) and ethylene glycol Hydrophobic oleophobic ether (EGDE) aerogel[34]
图 11 纤维素基双疏材料的结合力及表面构筑图:(a)CTAB与NCC静电作用图[54];(b)HDTMS与MCC之间的化学缩合反应[55];(c)F-PEG分子与HMDI之间化学反应[56];(d)水分子间氢键作用;(e)Stöber二氧化硅颗粒与CO微纳米粗糙结构构筑图[59]
Figure 11. Binding force and surface structure of cellulose-based hydrophobic-oleophobic materials : (a) Electrostatic interaction between CTAB and NCC[54]; (b) Chemical condensation reaction between HDTMS and MCC[55]; (c) Chemical reaction between F-PEG molecule and HMDI[56]; (d) hydrogen bonding between water molecules; (e) Stöber silica particles and CO micro-nano rough structure construction diagram[59]
-
[1] 吉兴香. 以纸代塑研究方向及进展[C]. 2021国际造纸技术报告会, 2021, 265-282.JI Xing Xiang. Research direction and progress of paper plastic replacement[C]. 中国上海, 2021, 265-282(in Chinese). [2] S AHMAD K A N, SOFIANSENG N S, OTHAMAN R, et al. A Review on Agro-industrial Waste as Cellulose and Nanocellulose Source and Their Potentials in Food Applications[J]. Food Reviews International, 2021, 39(2) (2): 663-688. [3] Barthlott W, C Neinhuis. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1-8. doi: 10.1007/s004250050096 [4] WOOD M J. , BROCK G, KIETZIG A M. The penguin feather as inspiration for anti-icing surfaces[J]. Cold Regions Science and Technology, 2023, 213: 103903. doi: 10.1016/j.coldregions.2023.103903 [5] IVANOVA E P., LINKLATER D P., ABURTOMEDINA A., et al. Antifungal versus antibacterial defence of insect wings[J]. J Colloid Interface Sci, 2021, 603: 886-897. [6] DEPAOLA M G., MAMMOLENTI D., LUPI F R., et al. Formulation and process investigation of glycerol/starch suspensions for edible films production by tape casting[J]. Chemical Papers, 2021, 76(3) (3): 1525-1538. [7] TANG M, CHRISTIE K S S. , HOU D Y, et al. Fabrication of a novel underwater-superoleophobic/hydrophobic composite membrane for robust anti-oil-fouling membrane distillation by the facile breath figures templating method[J]. Journal of Membrane Science, 2021, 617: 118666. doi: 10.1016/j.memsci.2020.118666 [8] ZHOU J H, LIU X Q, L WANG X. Photo-responsive cellulose nanocrystal modified fluorinated polyacrylate based on coumarin chemistry[J]. Applied Polymer, 2023, 140: 16. [9] WEI L, QIU Q H, WANG R W, et al. Influence of the processing parameters on needleless electrospinning from double ring slits spinneret using response surface methodology[J]. Journal of Applied Polymer Science, 2018, 135(27) (27): 46407. [10] JUSTIN K J. , PANG P F, CHAKRABORTY S, et al. Presence, origins and effect of stable surface hydration on regenerated cellulose for underwater oil-repellent membranes[J]. Journal of Colloid and Interface Science, 2023, 635: 197-207. doi: 10.1016/j.jcis.2022.12.109 [11] ZHANG T T, LI Z H, LIU Y, et al. Electrospinning Inorganic/Organic Nanohybridization Membranes with Hydrophobic and Oleophobic Performance[J]. Fibers and Polymers, 2023, 24(12) (12): 4169-4179. [12] DIZGE N, SHAULSKY E, KARANIKOLA V. Electrospun cellulose nanofibers for superhydrophobic and oleophobic membranes[J]. Journal of Membrane Science, 2019, 590: 117271. doi: 10.1016/j.memsci.2019.117271 [13] CHEN M M, ZHANG X M, MA J P, et al. Experimental study on film thickness and the problem of free surface film flow in dip coating[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(5) (5): 695-704. [14] C AN X, LIU Z Y, HU Y X. Amphiphobic surface modification of electrospun nanofibrous membranes for anti-wetting performance in membrane distillation[J]. Desalination, 2018, 432: 23-31. doi: 10.1016/j.desal.2017.12.063 [15] WANG J., CHEN X., REIS R., et al. Plasma Modification and Synthesis of Membrane Materials-A Mechanistic Review[J]. Membranes (Basel), 2018, 8(3) (3): 56. [16] OBERLINTNER A, VESEL A, NAUMOSKA K, et al. Permanent hydrophobic coating of chitosan/cellulose nanocrystals composite film by cold plasma processing[J]. Applied Surface Science, 2022, 597: 153562. doi: 10.1016/j.apsusc.2022.153562 [17] HUANG C, TSAI C Y, JUANG R S, et al. Tailoring surface properties of cellulose acetate membranes by low-pressure plasma processing[J]. Journal of Applied Polymer Science, 2010, 118(6): 3227-3235. [18] VISHWAKARMA A., SINGH M., WECLAWSKI B., et al. Construction of hydrophobic fire retardant coating on cotton fabric using a layer-by-layer spray coating method[J]. Int J Biol Macromol, 2022, 223 (Pt B): 1653-1666. [19] ARALDIDASILVA B, DESOUSACUNHA R, VALÉRIO A, et al. Electrospinning of cellulose using ionic liquids: An overview on processing and applications[J]. European Polymer Journal, 2021, 147: 110283. doi: 10.1016/j.eurpolymj.2021.110283 [20] HUANG C, PAN C H, TSAI C Y, et al. Fabrication of oleophobic fluorocarbon film by 13.56 MHz CH 2 F 2/Ar plasma chemical vapor deposition[J]. Surface and Coatings Technology, 2013, 231: 47-52. doi: 10.1016/j.surfcoat.2012.05.060 [21] MA Y W, HE Q. Preparation of superhydrophobic conductive CNT/PDMS film on paper by foam spraying method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129327. doi: 10.1016/j.colsurfa.2022.129327 [22] HUANG S., WANG X., ZHANG Y., et al. Cellulose nanofibers/polyvinyl alcohol blends as an efficient coating to improve the hydrophobic and oleophobic properties of paper[J]. Sci Rep, 2022, 12(1) (1): 16148. [23] HUANG S, WANG X, ZHANG Y, et al. Water and oil-grease barrier properties of PVA/CNF/MBP/AKD composite coating on paper[J]. Scientific Reports, 2023, 13(1): 12292. doi: 10.1038/s41598-023-38941-w [24] ZHANG F., ZHAO H., SHA L., et al. One-step fabrication of eco-friendly multi-functional amphiphobic coatings for cellulose-based food packaging[J]. Int J Biol Macromol, 2023, 253(8) (Pt 8): 127578. [25] YI K, FU S Y, YI Z D, et al. Nanocellulose and polysiloxane coatings for strength enhancement and oil-proof and hydrophobicity improvement of recycled pulp sheets[J]. BioResources, 2023, 18(2) (2): 2826-2841. [26] SONG Z P, LI J R, XIAO H N. Effect of Plasma-Induced Polymerization on Contact Angle of Paper[J]. Advanced Materials Research, 2011, 396(398): 1619-1623. [27] ZENG Z L, QIN J S, WANG Z H, et al. A new type of lipophilic hydrophobic self-repairing cellulose insulating paper developed with ST-110/FAS/PTFE ternary system as coating substrate[J]. High Voltage, 2023, 9(2) (2): 474-483. [28] WU T H, GU Y Q, ZHAO D, et al. A multifunctional cellulose paper with excellent flame retardancy, hydrophobicity and oil/water-separation performance via reaction with ammonium phytate and poly(methylhydrosiloxane)[J]. Polymer Degradation and Stability, 2024, 223: 110738. doi: 10.1016/j.polymdegradstab.2024.110738 [29] WANG Q, ZHONG S L, ZHENG Z H, et al. Bacterial cellulose based three-dimensional porous composites with remarkable amphiphobic monolith properties for passive daytime radiative cooling[J]. Materials Letters, 2023, 352: 135220. doi: 10.1016/j.matlet.2023.135220 [30] HALIM A, XU Y C, LIN K H, et al. Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane[J]. Separation and Purification Technology, 2019, 224: 322-331. doi: 10.1016/j.seppur.2019.05.005 [31] XIE X, LIU L, ZHANG L, et al. Strong cellulose hydrogel as underwater superoleophobic coating for efficient oil/water separation[J]. Carbohydrate Polymers 2020, 229: 115467. [32] ZHANG X, ZHU W Z, PARKIN I P. A free-standing porous silicon-type gel sponge with superhydrophobicity and oleophobicity[J]. RSC Advances, 2017, 7(1) (1): 31-36. [33] LIU X C, ZHANG R B. Preparation of a novel multifunctional integrated polyimide foam with high temperature resistance and hydrophobic and oleophobic properties[J]. Materials Letters, 2024, 361: 136153. doi: 10.1016/j.matlet.2024.136153 [34] FAN B J, WU L L, MING A X, et al. Highly compressible and hydrophobic nanofibrillated cellulose aerogels for cyclic oil/water separation[J]. International Journal of Biological Macromolecules, 2023, 242: 125066. doi: 10.1016/j.ijbiomac.2023.125066 [35] WANG W., LIN J., CHENG J., et al. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties[J]. J Hazard Mater, 2020, 385: 121582. [36] FU B., YANG Q., YANG F. Flexible Underwater Oleophobic Cellulose Aerogels for Efficient Oil/Water Separation[J]. ACS Omega, 2020, 5(14) (14): 8181-8187. [37] WANG D C, YANG X G, YU H Y, et al. Smart nonwoven fabric with reversibly dual-stimuli responsive wettability for intelligent oil-water separation and pollutants removal[J]. Journal of Hazardous Materials, 2020, 383: 121123. doi: 10.1016/j.jhazmat.2019.121123 [38] TAIBI J, ROUIF S, AMEDURI B, et al. Radiation induced graft polymerization of fluorinated monomers onto flax fabrics for the control of hydrophobic and oleophobic properties[J]. Polymer, 2023, 281: 126132. doi: 10.1016/j.polymer.2023.126132 [39] DENG B, CAI R, YU Y, et al. Laundering Durability of Superhydrophobic Cotton Fabric[J]. Advanced Materials, 2010, 22(48) (48): 5473-5477. [40] 赵迎, 朱杰辉, 林小茜, 等. 自清洁防水透湿防护面料的制备及性能研究[J]. 棉纺织技术, 2023, 51(6): 1-6. doi: 10.3969/j.issn.1001-7415.2023.06.002ZHAO Ying, ZHU Jie Hui, LIN Xiao Qian, et al. Preparation and properties of self-cleaning waterproof permeable protective fabric[J]. Cotton textile technology, 2023, 51(6): 1-6(in Chinese). doi: 10.3969/j.issn.1001-7415.2023.06.002 [41] VILČNIK A, JERMAN I, ŠURCA VUK A, et al. Structural Properties and Antibacterial Effects of Hydrophobic and Oleophobic Sol−Gel Coatings for Cotton Fabrics[J]. Langmuir, 2009, 25(10) (10): 5869-5880. [42] 张玉彤, 刘云, 董朝红, 等. 纳米纤维素基阻燃材料的制备及其应用进展[J]. 精细化工, 2023, 41(5): 1-10.ZHANG Xiao Tong, LIU Yun, DONG Zhao Hong, et al. Progress in preparation and application of nanocellulose based flame retardant materials[J]. fine chemical engineering, 2023, 41(5): 1-10(in Chinese). [43] KADER A H A, DACRORY S, KHATTAB T A., et al. Hydrophobic and Flame-Retardant Foam Based on Cellulose[J]. Journal of Polymers and the Environment, 2022, 30(6) (6): 2366-2377. [44] ESMERYAN K D., FEDCHENKO Y I., GYOSHEV S D., et al. On the Development of Ultradurable Extremely Water-Repellent and Oleophobic Soot-Based Fabrics with Direct Relevance to Sperm Cryopreservation[J]. ACS Applied Bio Materials, 2022, 5(7) (7): 3519-3529. [45] 丁晨辉, 王威, 宋晓明. 空气污染对区域科技创新的双边影响效应分析[J]. 统计与决策, 2024, 40(6): 84-88.DING Chen Hui, WANG Wei, SONG Xiao Ming. Analysis of bilateral effects of air pollution on regional science and technology innovation[J]. Statistics and decision, 2024, 40(6): 84-88(in Chinese). [46] 黄梅, 曾娅莉, 霍婷婷, 等. 6种可吸入性矿物粉尘致A549细胞炎症因子的变化研究[J]. 中国工业医学杂志, 2016, 29(5): 362-365+401.HUANG Mei, ZENG Ya Li, HUO Ting Ting, et al. Changes of inflammatory factors induced by 6 kinds of inhalable mineral dust in A549 cells[J]. Chinese Journal of Industrial Medicine, 2016, 29(5): 362-365+401(in Chinese). [47] ZHOU G., XU Z., CHEN G., et al. Hydrophobic/oleophobic nanofibrous filter media with bead-on-string structure for efficient personal protection of dust in mines[J]. Environ Res, 2023, 226: 115699. [48] 邵伟力, 岳万里, 曹颖, 等. 疏水疏油聚氨酯纳米纤维膜的制备及防雾霾窗纱的应用研究[J]. 产业用纺织品, 2019, 37(9): 13-18. doi: 10.3969/j.issn.1004-7093.2019.09.003SHAO Wei Li, YUE Wan Li, CAO Ying, et al. Preparation of hydrophobic and oleophobic polyurethane nanofiber film and application of anti-haze window screen[J]. industrial textiles, 2019, 37(9): 13-18(in Chinese). doi: 10.3969/j.issn.1004-7093.2019.09.003 [49] YOUNG T. An Essay on the Cohesion of Fluids[J]. The Royal Society, 1805, 65: 171-172. [50] WENZEL R. Resistance of solid surfaces to wetting by water[J]. Transactions of the Faraday Society, 1936, 28(8) (8): 988-994. [51] 王培壮. 甲壳素纳米纤维的制备及其透明涂层疏水疏油改性机理研究[D]. 吉林大学, 2023, 11-18.WANG Pei Zhuang. Preparation of chitin nanofibers and study on hydrophobic and oleophobic modification mechanism of transparent coatings[D]. Jilin University, 2023, 11-18(in Chinese). [52] CASSIE, BAXTER. S. WETTABILITY OF POROUS SURFACES[J]. Transactions of thr Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546 [53] D ROBERT H, J RULON E J. Contact Angle Hysteresis. IV. Contact Angle Measurements on Heterogeneous Surfaces[J]. Contact Angle Hysteresis, 1965, 69(5): 1507-1515. [54] Z NORHIDAYU, A ISHAK, K HANIEH, et al. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin[J]. Carbohydr Polym, 2017, 163: 261-269. doi: 10.1016/j.carbpol.2017.01.036 [55] WANG X. Y, XU S M., TAN Y., et al. Synthesis and characterization of a porous and hydrophobic cellulose-based composite for efficient and fast oil-water separation[J]. Carbohydr Polym, 2016, 140: 188-94. [56] CHEN J J, ZHANG Y X, CHEN C, et al. Cellulose Sponge with Superhydrophilicity and High Oleophobicity Both in Air and under Water for Efficient Oil–Water Emulsion Separation[J]. Macromolecular Materials and Engineering, 2017, 302(9) (9): 1700086. [57] 陈庆辉, 朱梦琳, 吴朝军, 等. 纳米纤维素中氢键网络调控技术的研究进展[J]. 中国造纸学报, 2023, 42(3): 104-113.CHEN Qing Hui, ZHU Meng Lin, WU Chao Jun, et al. Research progress of hydrogen bond network regulation technology in nanocellulose[J]. China Pulp and Paper, 2023, 42(3): 104-113(in Chinese). [58] Zhu R., Fu X., Jin S., et al. Water and oil-resistant paper materials based on sodium alginate/hydroxypropyl methylcellulose/polyvinyl butyral/nano-silica with biodegradable and high barrier properties[J]. Int J Biol Macromol, 2023, 225: 162-171. [59] VASILJEVIć J, ZORKO M, TOMšič B, et al. Fabrication of the hierarchically roughened bumpy-surface topography for the long-lasting highly oleophobic “lotus effect” on cotton fibres[J]. Cellulose, 2016, 23(5) (5): 3301-3318. [60] WENZEL. R. Resistance of Solid Surf Aces to Wetting by Water[J]. Industrial and Engineering Chemistry, 1936, 28(8): 988-994. doi: 10.1021/ie50320a024 [61] MALIN N, ANASTASIA V R, MIKAEL J, et al. Superamphiphobic coatings based on liquid-core microcapsules with engineered capsule walls and functionality[J]. Scientific Reports, 2018, 8(1) (1): 3647.
计量
- 文章访问数: 57
- HTML全文浏览量: 34
- 被引次数: 0