留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单向热固性预浸料面内剪切行为表征及粘弹性本构建模

高飒飒 王泽雨 何靓 于祖望 赵子钊 梁彪

高飒飒, 王泽雨, 何靓, 等. 单向热固性预浸料面内剪切行为表征及粘弹性本构建模[J]. 复合材料学报, 2023, 42(0): 1-11.
引用本文: 高飒飒, 王泽雨, 何靓, 等. 单向热固性预浸料面内剪切行为表征及粘弹性本构建模[J]. 复合材料学报, 2023, 42(0): 1-11.
GAO Sasa, WANG Zeyu, HE Liang, et al. In-plane shear behavior characterization of unidirectional thermoset prepreg and its viscoelastic constitutive modeling[J]. Acta Materiae Compositae Sinica.
Citation: GAO Sasa, WANG Zeyu, HE Liang, et al. In-plane shear behavior characterization of unidirectional thermoset prepreg and its viscoelastic constitutive modeling[J]. Acta Materiae Compositae Sinica.

单向热固性预浸料面内剪切行为表征及粘弹性本构建模

基金项目: 国家自然科学基金(12002274); 陕西省重点研发计划(2023-YBGY-346)
详细信息
    通讯作者:

    梁彪,博士,副教授,硕士生导师,研究方向为航空航天复合材料结构高性能制造 E-mail: biao.liang@nwpu.edu.cn

  • 中图分类号: TB332

In-plane shear behavior characterization of unidirectional thermoset prepreg and its viscoelastic constitutive modeling

Funds: National Natural Science Foundation of China (12002274); Key Research and Development Plan of Shaanxi Province, China (2023-YBGY-346)
  • 摘要: 单向热固性预浸料的面内剪切变形对最终复合材料构件的成型质量和力学性能有着显著影响。对此,本文研究了单向热固性预浸料在不同成型温度和加载速率下的面内剪切及应力松弛行为。结果表明,单向热固性预浸料呈现出与温度和加载速率强相关的非线性面内剪切变形行为,剪切变形对加载速率的敏感性随着温度的升高而降低,应力松弛速度随着温度的升高而加快,温度越高将会越快处于应力松弛稳定状态。基于单向热固性预浸料的面内剪切及应力松弛行为,构建了精准追踪纤维方向变化的广义Maxwell粘弹性本构模型,并编写VUMAT用户材料子程序,对单向热固性预浸料的偏轴拉伸阶梯加载应力松弛进行模拟,与试验结果表现出较好的一致性,证明了该本构模型的有效性和正确性。

     

  • 图  1  单向热固性预浸料样件及试验方法示意图

    Figure  1.  Schematic of unidirectional thermoset prepreg specimen and off-axial tensile test

    图  2  偏轴拉伸试验设备

    Figure  2.  Off-axial tensile experimental set-up

    图  3  单向热固性预浸料偏轴拉伸中出现的褶皱现象

    Figure  3.  Wrinkle phenomenon of unidirectional thermoset prepreg in off-axis tensile test

    图  4  不同温度、加载速率下单向热固性预浸料的剪切应力-应变曲线

    Figure  4.  Off-axial tensile shear stress-strain curves of unidirectional thermoset prepreg at different temperatures and loading rates

    图  5  单向热固性预浸料速率敏感系数随温度变化

    Figure  5.  Variation of rate sensitivity coefficient of unidirectional thermoset prepreg with different temperatures

    图  6  不同温度下单向热固性预浸料剪切应力-应变曲线

    Figure  6.  Shear stress-strain curves of unidirectional thermoset prepreg at different temperatures

    图  7  1.3%剪切应变$ {\varepsilon _{12}} $下温度对单向热固性预浸料剪切变形行为的影响

    Figure  7.  Effect of temperature on shear deformation behavior of unidirectional thermoset prepreg at 1.3% shear strain$ {\varepsilon _{12}} $

    图  8  应力松弛试验加载方案

    Figure  8.  Stress relaxation test loading scheme

    图  9  不同加载速率下单向热固性预浸料应力松弛曲线

    Figure  9.  Stress relaxation curves of unidirectional thermoset prepreg at different loading rates

    图  10  广义Maxwell模型

    Figure  10.  Generalized Maxwell model

    图  11  材料坐标系和Green-Naghdi坐标系[26,27]

    Figure  11.  Material coordinate system and Green-Naghdi coordinate system[26,27]

    图  12  单向热固性预浸料CCF800 H/AC531应力松弛粘弹性材料参数拟合(25℃-2 mm/min)

    Figure  12.  Stress-relaxed viscoelastic material parameter fitting of CCF800 H/AC531 (25℃-2 mm/min)

    图  13  单向热固性预浸料阶梯加载应力松弛有限元模型

    Figure  13.  Step loading stress relaxation finite element model of unidirectional thermoset prepreg

    图  14  单向热固性预浸料剪切应变$ {\varepsilon _{12}} $

    Figure  14.  Comparison of shear strain$ {\varepsilon _{12}} $filed between experiment and simulation for unidirectional thermoset prepreg

    图  15  单向热固性预浸料阶梯加载应力松弛仿真与试验结果对比

    Figure  15.  Comparison of stress relaxation simulation and test results under step loading of unidirectional thermoset prepreg

    表  1  单向热固性预浸料CCF800 H/AC531的材料参数

    Table  1.   Material parameters of CCF800 H/AC531

    Parameter Value
    Thickness/mm 0.18
    Fiber surface density/(g·mm−2) 145
    Resin content/% 35
    下载: 导出CSV

    表  2  单向热固性预浸料CCF800 H/AC531粘弹性参数

    Table  2.   Viscoelastic parameters of CCF800 H/AC531

    Parameter loading rate ${E_\infty }$ ${E_1}$ ${E_2}$ ${E_3}$ ${\tau _1}$ ${\tau _2}$ ${\tau _3}$
    25℃ 2 mm/min 1.40 114.76 9.50 8.41 1.39 30.33 537.27
    60℃ 0.0100 7.60 1.56 2.97 1.52 14.38 475.91
    80℃ 0.0035 7.87 0.49 2.36 0.92 11.66 330.74
    100℃ 0.0012 22.79 0.83 2.55 0.25 8.07 498.22
    25℃ 10 mm/min 5.74 161.48 19.40 14.90 1.68 14.77 133.56
    60℃ 0.0171 31.29 0.91 3.32 0.15 13.23 559.08
    80℃ 0.0165 16.42 0.99 2.27 0.15 17.93 637.27
    100℃ 0.0160 10.64 0.51 1.49 0.15 13.28 877.01
    25℃ 20 mm/min 6.30 203.95 28.79 17.48 1.62 15.07 187.06
    60℃ 0.0183 57.86 2.23 5.09 0.09 11.68 624.43
    80℃ 0.0288 9.86 0.31 1.34 0.12 13.15 641.18
    100℃ 0.0278 7.81 0.45 1.44 0.10 12.29 999.98
    下载: 导出CSV
  • [1] Towsyfyan H , Biguri A , Boardman R , et al. Successes and challenges in non-destructive testing of aircraft composite structures[J]. Chinese Journal of Aeronautics, 2019, 33(3): 771-91.
    [2] Yang Y, Cheng H, Liang B, et al. A novel virtual material layer model for predicting natural frequencies of composite bolted joints[J]. Chinese Journal of Aeronautics, 2021, 34(8): 101-11. doi: 10.1016/j.cja.2020.05.028
    [3] 蒋诗才, 安学锋, 闫丽, 等. 国产T800级高韧性环氧树脂基复合材料C梁热隔膜预成型工艺研究[J]. 复合材料科学与工程, 2020, 37(12): 109-114. doi: 10.3969/j.issn.1003-0999.2020.12.018

    JIANG Shicai, AN Xuefeng, YAN Li, et al. Study on preform technology of c-beam hot diaphragm of domestic t800 high toughness epoxy resin matrix composite[J]. Composites Science and Engineering, 2020, 37(12): 109-114(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.12.018
    [4] 李伟, 张晨乾, 叶宏军, 等. 固化工艺参数对国产T800增强高韧性复合材料性能的影响[J]. 复合材料科学与工程, 2020, (06): 98-104. doi: 10.3969/j.issn.1003-0999.2020.06.017

    LI Wei, ZHANG Chenqian, YE Hongjun, et al. Effect of curing process parameters on the properties of high toughness composites reinforced by domestic t800 carbon fiber[J]. Composites Science and Engineering, 2020, (06): 98-104(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.06.017
    [5] 孙立帅, 刘闯, 李玉军, 等. 变厚度复合材料U型零件固化变形仿真预测与结构影响因素[J]. 复合材料学报, 2023, 40(1): 553-566.

    SUN Lishuai, LIU Chuang, LI Yujun, et al. Prediction and analysis of cure-induced deformation of composite U-shaped parts with variable thickness[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 553-566(in Chinese).
    [6] 王显峰, 段少华, 唐珊珊, 等. 复合材料自动铺放技术在航空航天领域的研究进展[J]. 航空制造技术, 2022, 65(16): 64-77.

    WANG Xianfeng, DUAN Shaohua, TANG Shanshan, et al. Progress of composite automated placement technology in aviation field[J]. Aeronautical Manufacturing Technology, 2022, 65(16): 64-77(in Chinese).
    [7] 张小辉, 朱玉祥, 张少秋, 等. 先进复合材料自动铺丝技术研究进展[J]. 航空制造技术, 2018, 61(7): 54-61.

    ZHANG Xiaohui, ZHU Yuxiang, ZHANG Shaoqiu, et al. Research progress on automated fiber placement technology[J]. Aeronautical Manufacturing Technology, 2018, 61(7): 54-61(in Chinese).
    [8] ZHANG L, WANG X, PEI J, et al. Review of automated fibre placement and its prospects for advanced composites[J]. Journal of Materials Science, 2020, 55(3): 7121-7155.
    [9] 张建宝, 肖军, 文立伟, 等. 自动铺带技术研究进展[J]. 材料工程, 2010, (07): 87-91. doi: 10.3969/j.issn.1001-4381.2010.07.019

    ZHANG Jianbao, XIAO Jun, WEN Liwei, et al. Research progress of automated tape-laying technology[J]. Journal of Materials Engineering, 2010, (07): 87-91(in Chinese). doi: 10.3969/j.issn.1001-4381.2010.07.019
    [10] Air A, Shamsuddoha M, Prusty B G. A review of Type V composite pressure vessels and automated fibre placement based manufacturing[J]. Composites Part B:Engineering, 2023, 253: 110573. doi: 10.1016/j.compositesb.2023.110573
    [11] Lin H, Wang J, Long A C, et al. Predictive modelling for optimization of textile composite forming[J]. Composites Science and Technology, 2007, 67(15-16): 3242-3252. doi: 10.1016/j.compscitech.2007.03.040
    [12] THIJE R H W T, AKKERMAN R. Solutions to intra-ply shear locking in finite element analyses of fiber reinforced materials[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(7): 1167-1176. doi: 10.1016/j.compositesa.2008.03.014
    [13] BOISSE P, HAMILA N, VIDAL-SALLE E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology, 2011, 71(5): 683-692. doi: 10.1016/j.compscitech.2011.01.011
    [14] LARBERY Y, ÅKERMO M. In-plane deformation of multilayered unidirectional thermoset prepreg: Modelling and experimental verification[J]. Composites Part A:Applied Science and Manufacturing, 2014, 56: 203-212. doi: 10.1016/j.compositesa.2013.10.005
    [15] 吕柄熠, 王时玉, 校金友, 等. 基于非正交本构模型的热塑性机织物预浸料宽温域赋形褶皱缺陷仿真方法[J]. 复合材料学报, 2023, 40(4): 2355-2364.

    LV Bingyi, WANG Shiyu, XIAO Jinyou, et al. A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2355-2364(in Chinese).
    [16] HARRISON P, CLIFFORD M J, LONG A C. Shear characterization of viscous woven textile composites: A comparison between picture frame and bias extension experiments[J]. Composites Science and Technology, 2004, 64(10-11): 1453-1465. doi: 10.1016/j.compscitech.2003.10.015
    [17] Boisse P, Hamila N, Guzman-Maldonado E, et al. The biasextension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review[J]. International Journal of Material Forming, 2017, 10: 473-92. doi: 10.1007/s12289-016-1294-7
    [18] Harrison P, Abdiwi F, Guo Z, et al. Characterising the shear-tension coupling and wrinkling behaviour of woven engineering fabrics[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43: 903-14. doi: 10.1016/j.compositesa.2012.01.024
    [19] Margossian A, Bel S, Hinterhoelzl R. On the characterisation of transverse tensile properties of molten unidirectional thermoplastic composite tapes for thermoforming simulations[J]. Composites Part A:Applied Science and Manufacturing, 2016, 88: 48-58. doi: 10.1016/j.compositesa.2016.05.019
    [20] 陈萍, 赵月青, 陈菲, 等. 单向碳纤维/环氧树脂预浸料叠层的面内变形行为[J]. 复合材料学报, 2020, 37(5): 1049-1055.

    CHEN Ping, ZHAO Yueqing, CHEN Fei, et al. In-plane deformation behavior of unidirectional carbon fiber/epoxy prepreg layups[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1049-1055(in Chinese).
    [21] Zhang B, Kim B C. Experimental characterisation of large in-plane shear behaviour of unidirectional carbon fibre/epoxy prepreg tapes for continuous tow shearing (CTS) process[J]. Composites Part A: Applied Science and Manufacturing, 2022, 162.
    [22] Zhao Y, Gu Y, Zhang T, et al. Characterization of intra-ply shear behaviors of unidirectional prepregs during hot diaphragm forming process[J]. Polymer composites, 2020, 42(2): 1008-20.
    [23] Brands D, Wijskamp S, Grouve W J B, et al. In-plane shear characterization of unidirectional fiber reinforced thermoplastic tape using the bias extension method[J]. Frontiers in Materials, 2022, 9: 863952. doi: 10.3389/fmats.2022.863952
    [24] Wang Y, Chea M K, Belnoue JP H, et al. Experimental characterisation of the in-plane shear behaviour of UD thermoset prepregs under processing conditions[J]. Composites Part A:Applied Science and Manufacturing, 2020, 133: 105865. doi: 10.1016/j.compositesa.2020.105865
    [25] Potter K. In-plane and out-of-plane deformation properties of unidirectional preimpregnated reinforcement[J]. Composites Part A:Applied Science and Manufacturing, 2002, 33: 1469-77. doi: 10.1016/S1359-835X(02)00138-0
    [26] Zhao Z, Zhang K, Cheng H, et al. Experimental characterization and numerical modelling of bending behavior of carbon fiber unidirectional thermoset prepregs[J]. Journal of Reinforced Plastics and Composites. 2023.
    [27] Wang Y, Belnoue JP H, Ivanov D S, et al. Hypo-viscoelastic modelling of inplane shear in UD thermoset prepregs[J]. Composites Part A:Applied Science and Manufacturing, 2021, 146: 106400. doi: 10.1016/j.compositesa.2021.106400
    [28] 佘彩凤. 金属变形滞后回弹的本构模型UMAT二次开发及有限元分析[D]. 北京理工大学, 2015.

    SHE Caifeng . Secondary development and finite element analysis of the constitutive model UMAT for delayed rebound of metal deformation[D]. Beijing Institute Of Technology University, 2015(in Chinese)
  • 加载中
计量
  • 文章访问数:  180
  • HTML全文浏览量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 修回日期:  2023-12-05
  • 录用日期:  2023-12-12
  • 网络出版日期:  2023-12-27

目录

    /

    返回文章
    返回