留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固化与试验温度对环氧树脂及表层嵌贴CFRP-混凝土界面粘结性能的影响

龚爽 林福宽 粟淼 张建仁 彭晖

龚爽, 林福宽, 粟淼, 等. 固化与试验温度对环氧树脂及表层嵌贴CFRP-混凝土界面粘结性能的影响[J]. 复合材料学报, 2022, 39(11): 5512-5524. doi: 10.13801/j.cnki.fhclxb.20220801.001
引用本文: 龚爽, 林福宽, 粟淼, 等. 固化与试验温度对环氧树脂及表层嵌贴CFRP-混凝土界面粘结性能的影响[J]. 复合材料学报, 2022, 39(11): 5512-5524. doi: 10.13801/j.cnki.fhclxb.20220801.001
GONG Shuang, LIN Fukuan, SU Miao, et al. Effect of curing and ambient temperature on properties of epoxy resin and bond behavior of near-surface-mounted CFRP-concrete interface[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5512-5524. doi: 10.13801/j.cnki.fhclxb.20220801.001
Citation: GONG Shuang, LIN Fukuan, SU Miao, et al. Effect of curing and ambient temperature on properties of epoxy resin and bond behavior of near-surface-mounted CFRP-concrete interface[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5512-5524. doi: 10.13801/j.cnki.fhclxb.20220801.001

固化与试验温度对环氧树脂及表层嵌贴CFRP-混凝土界面粘结性能的影响

doi: 10.13801/j.cnki.fhclxb.20220801.001
基金项目: 国家自然科学基金(51578078;52178186)
详细信息
    通讯作者:

    彭晖,博士,教授,博士生导师,研究方向为FRP加固结构、桥梁新材料 E-mail:huipeng@csust.edu.cn

  • 中图分类号: U445.6

Effect of curing and ambient temperature on properties of epoxy resin and bond behavior of near-surface-mounted CFRP-concrete interface

  • 摘要: 表层嵌贴碳纤维增强复合材料(CFRP)加固混凝土结构中的环氧树脂粘结剂具有一定的温度敏感性,试验研究了不同固化温度和试验环境温度下环氧树脂力学性能及其在加固结构中的粘结性能,结果表明:(1) 固化温度的升高大幅缩短了环氧树脂固化时间,对其拉伸强度和剪切强度的影响较小,拉伸强度仅在固化温度超过80℃时小幅下降,降幅在10%以内;试验环境温度的升高会引起环氧树脂软化,导致其拉伸强度和剪切强度显著降低;固化温度更高的环氧树脂在60℃甚至更高试验环境温度下剪切性能更稳定;(2) 固化温度对表层嵌贴CFRP加固构件的界面粘结性能影响较小,但界面粘结性能随着试验环境温度的升高而显著下降,最大降幅约为58.89%,破坏模式也由混凝土内聚破坏转变为环氧树脂-混凝土界面破坏和CFRP-环氧树脂界面破坏;固化温度更高的试件在高试验环境温度下表现出更高的粘结强度。在试验基础上拟合了加固试件界面的粘结-滑移本构曲线,并建立了曲线特征参数与试验环境温度的关系。

     

  • 图  1  环氧树脂拉伸与剪切性能测试试件

    R—Chamfer radius between adjacent sections of the specimen

    Figure  1.  Epoxy specimen for tensile and shear properties

    图  2  单剪拉拔试验

    Figure  2.  Pull-out experiment

    图  3  固化温度对环氧树脂拉伸强度的影响

    Figure  3.  Effect of curing temperature on tensile strength of epoxy

    图  4  环氧树脂固化温度-固化时间曲线

    Figure  4.  Curing temperature-curing time curve of epoxy

    图  5  试验环境温度对环氧树脂拉伸性能影响

    Figure  5.  Effect of ambient temperature on tensile properties of epoxy

    图  6  试验环境温度对环氧树脂剪切性能影响

    Figure  6.  Effect of temperature on shear performance of epoxy

    图  7  表层嵌贴CFRP-混凝土典型破坏模式

    Figure  7.  Typical failure mode of near-surface-mounted CFRP-concrete

    图  8  P1-C100-T20 试件界面测试结果

    Figure  8.  Interface test results of P1-C100-T20

    图  9  不同试验环境温度下表层嵌贴CFRP-混凝土试件破坏模式

    Figure  9.  Failure modes of near-surface-mounted CFRP-concrete under different ambient temperatures

    图  10  P2-C20-T80应变和粘结应力

    Figure  10.  Strain and shear stress of P2-C20-T80

    图  11  试验环境温度组表层嵌贴CFRP-混凝土数据分析

    Figure  11.  Analysis of ambient temperature group data of near-surface-mounted CFRP-concrete

    图  12  表层嵌贴CFRP-混凝土破坏荷载-试验环境温度曲线

    Figure  12.  Failure load-ambient temperature curves of near-surface-mounted CFRP-concrete

    图  13  固化温度对环氧树脂玻璃化转变温度影响

    Figure  13.  Effect of curing temperature on epoxy glass transition temperature

    图  14  表层嵌贴CFRP-混凝土粘结-滑移曲线拟合

    Figure  14.  Fitting of shear stress-slip curves of near-surface-mounted CFRP-concrete

    图  15  表层嵌贴CFRP-混凝土参数拟合

    Figure  15.  Parameter simulation of near-surface-mounted CFRP-concrete

    表  1  材料性能

    Table  1.   Mechanical performance

    Material parameterEpoxy resin CFRP
    Tensile strength/MPa402564.3
    Elasticity modulus/GPa3.2140.7
    Elongation at break/%1.51.96
    Bonding strength/MPa60
    Compressive strength/MPa70
    Standard value of tensile shear strength of steel to steel/MPa14
    Tensile strength of epoxy to
    concrete/MPa
    2.5
    Notes: Epoxy resin was cured at 23℃ for 7 days, and then tested at 23℃; CFRP—Carbon fiber reinforced polymer.
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Test conditions

    ExperimentCuring temperature/℃Curing time/hAmbient temperature/℃Purpose
    Quasi static tensile test (Tensile test) 100 0.5, 1, 1.5, 2 20 The influence of curing temperature on the tensile properties of epoxy resin, and the optimum curing time corresponding to each curing temperature.
    90 0.5, 1, 1.5, 2, 3
    80 0.5, 1, 1.5, 2, 3, 4
    70 0.5, 1, 1.5, 2, 3, 4, 6
    60 1, 2, 3, 4, 6, 8, 10
    50 1, 2, 3, 4, 6, 8, 10, 12
    40 12, 16, 20, 24, 28
    20 (Standard) 24, 36, 48, 60, 72, 96
    0 24, 48, 72, 96
    Quasi static tensile test (Shear test) 100 1.3 20, 30, 40, 50, 60, 70, 80 The effects of curing temperature and ambient temperature on shear properties of epoxy resin.
    80 2
    60 5
    40 24
    20 (Standard) 72
    Note: Considering the weather condition during the test, the curing condition at room temperature was set at 20℃.
    下载: 导出CSV

    表  3  试验参数设计

    Table  3.   Design of test parameters

    Specimen Curing temperature/℃Curing time/hAmbient temperature/℃
    P-C20-T20 20 96 20
    P1-C40-T20 40 24
    P1-C60-T20 60 5
    P1-C80-T20 80 2
    P1-C100-T20 100 1.3
    P2-C20-T40 20 96 40
    P2-C20-T60 60
    P2-C20-T80 80
    P3-C80-T40 80 2 40
    P3-C80-T60 60
    P3-C80-T80 80
    Notes: P-C20-T20—Control specimen; P1—Curing temperature group; P2—Ambient temperature group; P3—Heat resistance group; C and T are curing and ambient temperature respectively, followed by the number is the specific value.
    下载: 导出CSV

    表  4  固化温度组表层嵌贴CFRP-混凝土试验结果

    Table  4.   Test results of near-surface-mounted CFRP-concrete in curing temperature group

    SpecimenCuring temperature/℃Curing time/hFailure load/kNMaximum shear stress/MPaFailure mode
    P-C20-T20209690.016.07CC+RC
    P1-C40-T20402492.516.28CC+RC
    P1-C60-T2060587.515.55CC+RC
    P1-C80-T2080290.015.41CC+RC
    P1-C100-T201001.387.517.15CC+RC
    Notes: CC—Cohesive failure of concrete; RC—Interface failure of epoxy resin to concrete.
    下载: 导出CSV

    表  5  试验环境温度组表层嵌贴CFRP-混凝土试验结果

    Table  5.   Test results of near-surface-mounted CFRP-concrete in ambient temperature group

    SpecimenSoftening degreeFailure
    load/kN
    αL/%Maximum shear stress/MPaαS/%Failure modeDecrease
    P-C20-T20No90.00.0016.070.00CC100.00%
    P2-C20-T40Slight60.033.3312.2723.65RC+CC66.67%
    P2-C20-T60Significant42.552.789.5740.45RC47.22%
    P2-C20-T80Severe37.058.898.5646.73FR41.11%
    Notes: FR—CFRP to epoxy resin interface failure; αL and αS—Decreasing amplitude of the failure load and shear stress of the specimen relative to P-C20-T20.
    下载: 导出CSV

    表  6  耐高温性能组表层嵌贴CFRP-混凝土试验结果

    Table  6.   Test results of near-surface-mounted CFRP-concrete for heat resistance group

    SpecimenCuring temperature/℃Ambient temperature/℃Failure load/kNαT/%Failure mode
    P-C20-T20202090.00.00CC
    P3-C80-T208090.0CC
    P2-C20-T40204060.016.67RC+CC
    P3-C80-T408070.0CC
    P2-C20-T60206042.511.76RC
    P3-C80-T608047.5RC
    P2-C20-T80208037.08.11FR
    P3-C80-T808040.0RC
    Note: αT—Increasing amplitude of specimen cured at 80℃ compared with those cured at 20℃.
    下载: 导出CSV
  • [1] 李荣, 滕锦光, 岳清瑞. FRP材料加固混凝土结构应用的新领域—嵌入式(NSM)加固法[J]. 工业建筑, 2004, 34(4):5-10. doi: 10.3321/j.issn:1000-8993.2004.04.002

    LI Rong, TENG Jinguang, YUE Qingrui. A new technique for strengthening concrete structure—Near-surface-mounted FRP reinforcement[J]. Industrial Construction,2004,34(4):5-10(in Chinese). doi: 10.3321/j.issn:1000-8993.2004.04.002
    [2] 彭晖, 张建仁, 何贤锋, 等. 表层嵌贴预应力CFRP-strip加固钢筋混凝土梁的受力性能研究[J]. 工程力学, 2012, 29(S1):79-85.

    PENG Hui, ZHANG Jianren, HE Xianfeng, et al. Study of mechanical behavior of reinforced concrete beams with near-surface-mounted prestressed CFRP strips[J]. Engi-neering Mechanics,2012,29(S1):79-85(in Chinese).
    [3] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11.

    TENG Jinguang. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese).
    [4] 高婧, 范凌云. CFRP筋与海水海砂混凝土粘结性能试验与机制分析[J]. 复合材料学报, 2022, 39(3):1194-1204. doi: 10.13801/j.cnki.fhclxb.20210512.001

    GAO Jing, FAN Lingyun. Experiment on bond performance between CFRP bar and seawater sea sand concrete and its working mechanism[J]. Acta Materiae Compositae Sinica,2022,39(3):1194-1204(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210512.001
    [5] 李游, 李传习, 郑辉, 等. 固化剂混掺对高温下CFRP板-钢板界面黏结性能的影响[J]. 复合材料学报, 2021, 38(12):4073-4089.

    LI You, LI Chuanxi, ZHENG Hui, et al. Effect of curing agent mixture on interface bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica,2021,38(12):4073-4089(in Chinese).
    [6] 张靠民, 顾轶卓, 李敏, 等. 快速固化环氧树脂及其碳纤维/环氧复合材料性能[J]. 复合材料学报, 2013, 30(6):21-27. doi: 10.3969/j.issn.1000-3851.2013.06.004

    ZHANG Kaomin, GU Yizhuo, LI Min, et al. Rapid curing epoxy resin and the properties of carbon fiber/epoxy composite[J]. Acta Materiae Compositae Sinica,2013,30(6):21-27(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.004
    [7] KOTYNIA R, WALENDZIAK R, STOECKLIN I, et al. RC slabs strengthened with prestressed and gradually anchored CFRP strips under monotonic and cyclic loading[J]. Journal of Composites for Construction,2011,15(2):168-180. doi: 10.1061/(ASCE)CC.1943-5614.0000081
    [8] 龚爽, 彭晖, 粟淼, 等. 梯度锚固预应力NSM CFRP加固RC梁静力及疲劳性能研究[J]. 湖南大学学报(自然科学版), 2022, 49(1):113-123.

    GONG Shuang, PENG Hui, SU Miao, et al. Study on monotonic and fatigue behavior of RC beams strengthened with gradually anchored prestressed NSM CFRP[J]. Journal of Hunan University (Natural Science),2022,49(1):113-123(in Chinese).
    [9] 龚爽, 张建仁, 林福宽, 等. 梯度锚固预应力NSM CFRP板条加固梁破坏模式与影响因素试验研究[J]. 中国公路学报, 2019, 32(12):156-166.

    GONG Shuang, ZHANG Jianren, LIN Fukuan, et al. Experimental study on failure modes and influence factors of RC beams strengthened with gradually anchored prestressed NSM CFRP[J]. China Journal of Highway and Transport,2019,32(12):156-166(in Chinese).
    [10] SILVA M, BISCAIA H. Degradation of bond between FRP and RC beams[J]. Composite Structures,2008,85(2):164-174. doi: 10.1016/j.compstruct.2007.10.014
    [11] CARBAS R J C, MARQUES E A S, DA SLIVA L F M, et al. Effect of cure temperature on the glass transition temperature and mechanical properties of epoxy adhe-sives[J]. The Journal of Adhesion,2014,90(1):104-119. doi: 10.1080/00218464.2013.779559
    [12] 胡克旭, 董坤, 杨耀武. 结构胶黏剂在温度作用下的剪切性能试验研究[J]. 湖南大学学报(自然科学版), 2016, 43(7):120-125. doi: 10.16339/j.cnki.hdxbzkb.2016.07.016

    HU Kexu, DONG Kun, YANG Yaowu. Expermental study on shear performances of structural adhesive different temperatures[J]. Journal of Hunan University (Natural Science),2016,43(7):120-125(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2016.07.016
    [13] 彭勃, 余益斌, 单远铭, 等. 环氧建筑结构胶的耐热性能研究[J]. 湖南大学学报(自然科学版), 2013, 40(9):25-29.

    PENG Bo, YU Yibin, SHAN Yuanming, et al. Study of the heat resistance performance of epoxy structural adhesive[J]. Journal of Hunan University (Natural Science),2013,40(9):25-29(in Chinese).
    [14] 胡克旭, 董坤, 杨耀武. 温度作用对碳纤维-混凝土界面黏结性能的影响[J]. 同济大学学报(自然科学版), 2016, 44(6):845-852.

    HU Kexu, DONG Kun, YANG Yaowu. Temperature effect on bond behavior of carbon fiber reinforced polymer to concrete interface[J]. Journal of Tongji University (Natu-ral Science),2016,44(6):845-852(in Chinese).
    [15] 王飞朋, 苗杰, 牛琪瑛. 固化温度对高架桥梁补修用环氧树脂胶拉伸强度的影响研究[J]. 中国胶粘剂, 2021, 30(7):23-27. doi: 10.13416/j.ca.2021.07.006

    WANG Feipeng, MIAO Jie, NIU Qiying. Research on influence of curing temperature on tensile strength of epoxy resin adhesive for viaduct repair[J]. China Adhesives,2021,30(7):23-27(in Chinese). doi: 10.13416/j.ca.2021.07.006
    [16] CZADERSKI C, MARTINELLI E, MICHELS J, et al. Effect of curing conditions on strength development in an epoxy resin for structural strengthening[J]. Composites Part B: Engineering,2012,43(2):398-410. doi: 10.1016/j.compositesb.2011.07.006
    [17] GAMAGE J, WONG M B, AL-MAHAIDI R. Performance of CFRP strengthened concrete members under elevated temperatures[J]. Construction & Building Materials,2005,75(1-4):199-205.
    [18] 胡克旭, 卢凡, 蔡正华. 高温下碳纤维-混凝土界面受剪性能试验研究[J]. 同济大学学报(自然科学版), 2009, 37(12):1592-1597. doi: 10.3969/j.issn.0253-374x.2009.12.006

    HU Kexu, LU Fan, CAI Zhenghua. Researches on mechanical property of CFRP-concrete interface at elevated temperatures[J]. Journal of Tongji University (Natural Science),2009,37(12):1592-1597(in Chinese). doi: 10.3969/j.issn.0253-374x.2009.12.006
    [19] 胡克旭, 彭东平, 赵传鑫. 温度对CFRP-混凝土界面粘结滑移行为的影响[J]. 防灾减灾工程学报, 2012, 32(S1):45-49. doi: 10.13409/j.cnki.jdpme.2012.s1.023

    HU Kexu, PENG Dongping, ZHAO Chuanxin. Influence of temperature on the bond-slip behavior of CFRP-concrete Interface[J]. Journal of Disaster Prevention and Mitigation Engineering,2012,32(S1):45-49(in Chinese). doi: 10.13409/j.cnki.jdpme.2012.s1.023
    [20] LEONE M, MATTHY S, AIELLO M A. Effect of elevated service temperature on bond between FRP EBR systems and concrete[J]. Composites Part B: Engineering,2009,40(1):85-93. doi: 10.1016/j.compositesb.2008.06.004
    [21] 李传习, 曹先慧, 柯璐, 等. 高温对结构加固用环氧黏结剂力学性能的影响[J]. 建筑材料学报, 2020, 23(3):642-649.

    LI Chuanxi, CAO Xianhui, KE Lu, et al. Effects of high temperatures on mechanical properties of epoxy adhesives for structural strengthening[J]. Journal of Building Materials,2020,23(3):642-649(in Chinese).
    [22] American Society for Testing Materials. Test method for tensile properties of plastics: ASTM D638-10[S]. West Conshohocken: ASTM International, 2010.
    [23] 中国国家标准化管理委员会. 胶粘剂拉伸剪切强度的测定(刚性材料对刚性材料): GB/T 7124—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Adhesives—Determination of tensile lap-shear strength of rigid-to-rigid bind assemblies: GB/T 7124—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [24] CUSTODIO J, BROUGHTON J, CRUZ H. Rehabilitation of timber structures—Preparation and environmental service condition effects on the bulk performance of epoxy adhesives[J]. Construction & Building Materials,2011,25(8):3570-3582. doi: 10.1016/j.conbuildmat.2011.03.050
    [25] LORENZIS L D, NANNI A. Bond between near-surface mounted fiber-reinforced polymer rods and concrete in structural strengthening[J]. ACI Structural Journal,2002,99(2):123-132.
    [26] ZHANG S S, TENG J G, YU T. Bond-slip model for CFRP strips near-surface mounted to concrete[J]. Engineering Structures,2013,56:945-953.
    [27] SU M, ZHONG Q Y, PENG H, et al. Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete[J]. Construction and Building Materials, 2020, 270(4): 121456.
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  636
  • HTML全文浏览量:  362
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 修回日期:  2022-07-12
  • 录用日期:  2022-07-19
  • 网络出版日期:  2022-08-04
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回