留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GO@P-g-C3N4复合光催化材料的制备及其抗菌性能

张雪婷 高晓红 杨旭礼 包育闻 王梁宇

张雪婷, 高晓红, 杨旭礼, 等. GO@P-g-C3N4复合光催化材料的制备及其抗菌性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 张雪婷, 高晓红, 杨旭礼, 等. GO@P-g-C3N4复合光催化材料的制备及其抗菌性能[J]. 复合材料学报, 2024, 42(0): 1-12.
ZHANG Xueting, GAO Xiaogong, YANG Xuli, et al. Preparation and antibacterial properties of GO@P-g-C3N4 composite photocatalytic material[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Xueting, GAO Xiaogong, YANG Xuli, et al. Preparation and antibacterial properties of GO@P-g-C3N4 composite photocatalytic material[J]. Acta Materiae Compositae Sinica.

GO@P-g-C3N4复合光催化材料的制备及其抗菌性能

基金项目: 江苏省大学生创新创业训练计划项目(202310304117Y);江苏省青年基金(BK20210834)
详细信息
    通讯作者:

    高晓红,硕士,教授,硕士生导师,功能性纳米材料的制备、功能性纺织品开发、空气净化和印染废水治理研究 E-mail: gao.xh@ntu.edu

  • 中图分类号: O611.62; TB332

Preparation and antibacterial properties of GO@P-g-C3N4 composite photocatalytic material

Funds: Jiangsu Province College Students’ Innovation and Entrepreneurship Training Program (202310304117Y); Jiangsu Province Youth Found (BK20210834)
  • 摘要: 通过静电自组装法制备了质子化石墨相氮化碳(P-g-C3N4)涂层的氧化石墨烯(GO)复合材料(GO@P-g-C3N4),探究其在光催化抗菌方面的应用。通过SEM、TEM、XRD、XPS、Raman、UV-Vis DRS、稳态/瞬态荧光光谱(PL)等对GO@P-g-C3N4复合材料的微观形貌、晶态结构及光电性能进行表征,并通过调控P-g-C3N4的含量对GO@P-g-C3N4复合材料进行了结构优化。在模拟太阳光照射条件下,以大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)为实验对象,研究了不同P-g-C3N4含量的GO@P-g-C3N4复合材料的光催化抗菌性能,以及光照时间对抗菌性能的影响。结果表明:GO与P-g-C3N4以质量比为1∶4合成的GO@P-g-C3N4-80%复合材料,光照100 min后,对E. coliS. aureus的抑菌率分别为98.80%和95.99%;光照150 min后,对E. coliS. aureus的抑菌率均达到99%以上,抗菌性能显著优于GO与P-g-C3N4

     

  • 图  1  (a) B-g-C3N4、(c) P-g-C3N4、(e) GO和(g) GO@P-g-C3N4的SEM图;(b) B-g-C3N4、(d) P-g-C3N4,(f) GO和(h) GO@P-g-C3N4的TEM图;(i) GO@P-g-C3N4的EDX元素分布图

    Figure  1.  SEM images of (a) B-g-C3N4, (c) P-g-C3N4, (e) GO and (g) GO@P-g-C3N4; TEM images of (b) B-g-C3N4, (d) P-g-C3N4, (f) GO and (h) GO@P-g-C3N4; (i) EDX image of GO@P-g-C3N4

    图  2  GO、B-g-C3N4、P-g-C3N4和GO@P-g-C3N4的XRD图

    Figure  2.  XRD patterns of GO, B-g-C3N4, P-g-C3N4 and GO@P-g-C3N4

    图  3  (a) P-g-C3N4、GO和GO@P-g-C3N4的XPS全谱图;(b) GO和(c) P-g-C3N4的O 1s高分辨率XPS谱图;(d) GO、(e) P-g-C3N4和(f) GO@P-g-C3N4的C 1s高分辨率XPS谱图;(g) P-g-C3N4和(h) GO@P-g-C3N4的N 1s高分辨率XPS谱图;(i) B-g-C3N4、P-g-C3N4、GO和GO@P-g-C3N4的Raman谱图

    Figure  3.  (a) XPS survey spectra of P-g-C3N4, GO and GO@P-g-C3N4; High-resolution O 1s XPS spectra of (b) GO and (c) P-g-C3N4; High-resolution C 1s XPS spectra of (d) GO, (e) P-g-C3N4 and (f) GO@P-g-C3N4; High-resolution N 1s XPS spectra of (g) P-g-C3N4 and (h) GO@P-g-C3N4; (i) Raman spectra of B-g-C3N4, P-g-C3N4, GO and GO@P-g-C3N4

    图  4  (a) P-g-C3N4和GO@P-g-C3N4的N2吸附-解吸等温线及(b)孔径分布图

    Figure  4.  (a) N2 adsorption/desorption isotherms and (b) pore size distributions of P-g-C3N4 and GO@P-g-C3N4

    图  5  (a) P-g-C3N4和GO@P-g-C3N4的UV-Vis DRS及对应的(b) Kubelka-Munk曲线

    Figure  5.  (a) UV-Vis DRS of P-g-C3N4 and GO@P-g-C3N4 and (b) corresponding Kubelka-Munk curves

    图  6  P-g-C3N4和GO@P-g-C3N4的光致发光谱图

    Figure  6.  Photoluminescence spectra of P-g-C3N4 and GO@P-g-C3N4

    图  7  P-g-C3N4和GO@P-g-C3N4的光电流时间曲线

    Figure  7.  Photocurrent time curves of P-g-C3N4 and GO@P-g-C3N4

    图  8  对照组和不同光催化剂对E. coliS. aureus的光催化抑菌率

    Figure  8.  Photocatalytic inhibition rates of E. coli and S. aureus under control and different photocatalysts

    图  9  不同光催化剂作用下的E. coliS. aureus菌落琼脂平板照片

    Figure  9.  Images of the agar plates of bacterial colonies formed by E. coli and S. aureus under different photocatalys

    图  10  不同质量比GO@P-g-C3N4E. coliS. aureus的光催化抑菌率

    Figure  10.  Photocatalytic inhibition rates of E. coli and S. aureus under different mass ratios

    图  11  不同质量比GO@P-g-C3N4作用下E. coliS. aureus菌落琼脂平板照片

    Figure  11.  Images of the agar plates of bacterial colonies formed by E. coli and S. aureus under different mass ratios

    图  12  GO@P-g-C3N4-80%在不同光照时间下对E. coliS. aureus的光催化抑菌率

    Figure  12.  Photocatalytic inhibition rates of E. coli and S. aureus by GO@P-g-C3N4-80% after different irradiation times

    图  13  GO@P-g-C3N4-80%在不同光照时间下的E. coliS. aureus菌落琼脂平板照片

    Figure  13.  Images of the agar plates of bacterial colonies formed by E. coli and S. aureus in the presence of GO@P-g-C3N4-80% after different irradiation times

    图  14  GO@P-g-C3N4-80%在三次循环过程中对E. coliS. aureus的光催化抑菌率

    Figure  14.  Photocatalytic inhibition rates of E. coli and S. aureus by GO@P-g-C3N4-80% during the three cycles

    图  15  GO@P-g-C3N4-80%在三次循环过程中的E. coliS. aureus菌落琼脂平板照片

    Figure  15.  Images of the agar plates of bacterial colonies formed by E. coli and S. aureus in the presence of GO@P-g-C3N4-80% during the three cycles

    图  16  GO@P-g-C3N4-80%三次循环后的XRD谱图

    Figure  16.  XRD spectrum of GO@P-g-C3N4-80% after third cycles

    图  17  (a-d) S. aureus和(a*-d*) E. coli在GO@P-g-C3N4-80%的催化下分别照射不同时间后的SEM图

    Figure  17.  SEM images of (a-d) S. aureus and (a*-d*) E. coli after irradiation for different times under the catalysis of GO@P-g-C3N4-80%

    图  18  P-g-C3N4和GO@P-g-C3N4在(a)黑暗条件下和(b)光照5 min后的DMPO-·O2 ESR谱;GO@P-g-C3N4在黑暗条件下和光照5 min后的(c) DMPO-·OH ESR谱和(d) TEMPO-e ESR谱

    Figure  18.  EPR spectra of DMPO−•O2 over P-g-C3N4 and GO@P-g-C3N4 under irradiation times of (a) 0 and (b) 5 min; EPR spectra of (c) DMPO−•OH and (d) TEMPO-e with GO@P-g-C3N4 under irradiation times of 0 and 5 min

    图  19  GO@P-g-C3N4在可见光照射下的抗菌示意图

    Figure  19.  Schematic representation of the antibacterial properties of the GO@P-g-C3N4 under irradiation with visible light

  • [1] DING H Y, HAN D L, HAN Y, et al. Visible Light Responsive CuS/ Protonated g-C3N4 Heterostructure for Rapid Sterilization[J]. Journal of Hazardous Materials, 2020, 393(5): 122423.
    [2] 张子琪, 孙彦东, 张雪, 等. 非金属掺杂的g-C3N4光催化材料制备及应用研究进展[J]. 材料工程, 2023, 51(12): 47-58.

    ZHANG Ziqi, SUI Yandong, ZHANG Xue, et al. Research progress in preparation and application of non-metal-doped g-C3N4 photocatalytic materials[J]. Journal of Materials Engineering, 2023, 51(12): 47-58(in Chinese).
    [3] YANG X T, YU Q J, WANG X M, et al. Progress in the application of spray-type antibacterial coatings for disinfection[J]. Trends in Food Science & Technology, 2023, 135: 131-143.
    [4] SHE P, LI S M, LI X J, et al. Photocatalytic antibacterial agents based on inorganic semiconductor nanomaterials: a review[J]. Nanoscale, 2024: 2040-3364.
    [5] 陈媛媛, 唐晓宁, 崔帅, 等. 活性氧抗菌机理及其研究进展[J]. 工程科学学报, 2023, 45(6): 967-978.

    CHEN Yuanyuan, TANG Xiaoning, CUI Shuai, et al. Active oxygen antibacterial mechanism and its research progress[J]. Chinese Journal of Engineering, 2023, 45(6): 967-978.
    [6] 王鹏鸽, 张静, 王震宇, 等. 光催化反应中活性氧物种产生及抗菌机制研究[J]. 地球环境学报, 2023, 14(5): 539-556. doi: 10.7515/JEE221022

    WANG Pengge, ZHANG Jing, WANG Zhenyu, et al. Generation and antimicrobial mechanisms of reactive oxygen species in photocatalysis[J]. Journal of Earth Environment, 2023, 14(5): 539-556(in Chinese). doi: 10.7515/JEE221022
    [7] 严婉铒, 尚子茗, 袁庆科, 等. 固定化改性TiO2光催化消毒性能与机理研究[J]. 环境科学学报, 2023, 43(3): 162-174.

    YAN Wan’er, SHANG Ziming, YUAN Qingke, et al. Investigation of performance and mechanism of photocatalytic disinfection by immobilized modified TiO2[J]. Acta Scientiae Circumstantiae, 2023, 43(3): 162-174(in Chinese).
    [8] 吴健博, 石亮, 郑小强, 等. g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究[J]. 复合材料学报, 2023, 40(1): 323-333.

    WU Jianbo, SHI Liang, ZHENG Xiaoqiang, et al. g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 323-333(in Chinese).
    [9] 宋婷婷, 栾静敏, 孙海峰, 等. 光催化抑菌和降解有机物的聚乙烯醇/二氧化钛@氮化碳复合纳米纤维膜[J]. 高分子材料科学与工程, 2023, 39(10): 129-140.

    SONG Tingting, LUAN Jingmin, SUN Haifeng, et al. Polyvinyl alcohol/titanium dioxide @ carbon nitride composite nanofiber membrane with bacteriostasis and pollution degradation[J]. Polymer Materials Science & Engineering, 2023, 39(10): 129-140(in Chinese).
    [10] 牛凤延, 何齐升, 武世然, 等. 光沉积Pt复合石墨相氮化碳实现高效光催化产氢[J]. 复合材料学报, 2024, 41(1): 219-226.

    NIU Fengyan, HE Qisheng, WU Shiran, et al. Photodeposition Pt composite graphitic carbon nitride realizes efficient photocatalytic hydrogen production[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 219-226(in Chinese).
    [11] CHAVA R K, KANG M. Engineering morphology and nitrogen content on graphitic carbon nitrides for efficient solar to hydrogen conversion reaction[J]. Applied Surface Science, 2023, 635: 157742. doi: 10.1016/j.apsusc.2023.157742
    [12] 刘源, 赵华, 李会鹏, 等. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77. doi: 10.11868/j.issn.1001-4381.2021.000810

    LIU Yuan, ZHAO Hua, LI Huipeng, et al. Preparation of carbon-chlorine co-doped mesoporous g-C3N4 by bubble template method and photocatalytic performance[J]. Journal of Materials Engineering, 2022, 50(9): 70-77(in Chinese). doi: 10.11868/j.issn.1001-4381.2021.000810
    [13] 郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs异质结制备及其可见光催化性能[J]. 复合材料学报, 2023, 40(2): 904-910.

    GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 904-910(in Chinese).
    [14] SU Q, LI Y, HU R, et al. Heterojunction photocatalysts based on 2D materials: The role of configuration[J]. Advanced Sustainable Systems, 2020, 4(9): 2000130. doi: 10.1002/adsu.202000130
    [15] ZHANG G R, LI X J, LI N, et al. Face-to-face heterojunctions within 2D/2D porous NiCo oxyphosphide/g-C3N4 towards efficient and stable photocatalytic H2 evolution[J]. Nano Research, 2023, 16: 6568-6576. doi: 10.1007/s12274-022-5352-6
    [16] REN X T, GUO M S, XUE L L, et al. Photoelectrochemical performance and S-scheme mechanism of ternary GO/g-C3N4/TiO2 heterojunction photocatalyst for photocatalytic antibiosis and dye degradation under visible light[J]. Applied Surface Science, 2023, 630: 157446. doi: 10.1016/j.apsusc.2023.157446
    [17] 刘洋洋, 易敏, 陈涛, 等. 石墨烯-有机物复合光催化材料及其应用[J]. 复合材料学报, 2023, 40(4): 1937-1950.

    LIU Yangyang, YI Min, CHEN Tao, et al. Applications of graphene-organic compound photocatalytic materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1937-1950(in Chinese).
    [18] XIE L, NI J, TANG B, et al. A self-assembled 2D/2D-type protonated carbon nitride-modified graphene oxide nanocomposite with improved photocatalytic activity[J]. Applied Surface Science, 2018, 434: 456-463. doi: 10.1016/j.apsusc.2017.10.193
    [19] 张家晶, 郑永杰, 荆涛, 等. 3D花状MoS2/O-g-C3N4 Z型异质结增强光催化剂降解双酚A[J]. 复合材料学报, 2022, 39(12): 5778-5791.

    ZHANG Jiajing, ZHENG Yongjie, JING Tao, et al. 3D flower-shaped MoS2/O-g-C3N4 Z-type heterojunction enhances the photocatalyst degradation of bisphenol A[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5778-5791(in Chinese).
    [20] 李冬梅, 刘小勇, 黄毅, 等. AgI/GO/超薄g-C3N4异质结光催化剂的制备及其可见光催化特性研究[J]. 环境科学学报, 2022, 42(6): 90-100.

    LI Dongmei, LIU Xiaoyong, HUANG Yi, et al. The synthesis of ultrathin heterojunction photocatalyst AgI/GO/g-C3N4 and its photocatalytic performance[J]. Acta Scientiae Circumstantiae, 2022, 42(6): 90-100(in Chinese).
    [21] PEI S, WEI Q, HUANG K, et al. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation[J]. Nature Communications, 2018, 9(1): 1-9. doi: 10.1038/s41467-017-02088-w
    [22] 王淑勤, 李晓雪, 武金锦. TiO2/GO的制备及其室温可见光催化脱硝性能[J]. 燃料化学学报, 2022, 50(10): 1307-1315. doi: 10.1016/S1872-5813(22)60025-2

    WANG Shuqin, LI Xiaoxue, WU Jinjin. Preparation of TiO2/graphene oxide and their photocatalytic properties at room temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1307-1315(in Chinese). doi: 10.1016/S1872-5813(22)60025-2
    [23] NASIR M S, YANG G R, AYUB I, et al. ZIF-67 derived CoSx mediated 1D hollow carbon nitride for high photocatalytic hydrogen performance[J]. Materials Today Chemistry, 2024, 35: 101880. doi: 10.1016/j.mtchem.2023.101880
    [24] 谭杰, 李志锋, 杨晓飞, 等. 球磨干湿环境对原位硫掺杂氮化碳可见光催化性能的影响[J]. 无机化学学报, 2020, 36(3): 475-484. doi: 10.11862/CJIC.2020.052

    TAN Jie, LI Zhifeng, YANG Xiaofei, et al. Effect of dry and wet environment of ball milling on visible light catalytic performance of sulfur-doped carbon nitride[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(3): 475-484(in Chinese). doi: 10.11862/CJIC.2020.052
    [25] 姜鹏程, 王周福, 王玺堂, 等. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053. doi: 10.11896/cldb.20010111

    JIANG Pengcheng, WANG Zhoufu, WANG Xitang, et al. Synthesis of graphite-like carbon nitride in different atmospheres and its thermal stability[J]. Materials Reports, 2021, 35(6): 6048-6053(in Chinese). doi: 10.11896/cldb.20010111
    [26] HOU Y S, ZHANG Y, XUE J, et al. Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification[J]. Chemical Engineering Journal, 2021, 420(P1): 129574.
    [27] 于晓慧, 苏海伟, 邹建平, 等. 利用掺杂诱导的金属-N 活性位点和带隙调控提升石墨相氮化碳的光催化产氢性能[J]. 催化学报, 2022, 43(2): 421-432. doi: 10.1016/S1872-2067(21)63849-4

    YU Xiaohui, SU Haiwei, ZOU Jianping, et al. Doping-induced metal-N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance[J]. Chinese journal of catalysis, 2022, 43(2): 421-432(in Chinese). doi: 10.1016/S1872-2067(21)63849-4
    [28] 阎鑫, 卢锦花, 惠小艳, 等. g-C3N4/MoS2纳米片/氧化石墨烯三元复合催化剂的制备及可见光催化性能[J]. 无机材料学报, 2018, 33(5): 515-520. doi: 10.15541/jim20170263

    YAN Xin, LU Jinhua, HUI Xiaoyan, et al. Preparation and visible light photocatalytic property of g-C3N4/MoS2 nanosheets/GO ternary composite photocatalyst[J]. Journal of Inorganic Materials, 2018, 33(5): 515-520(in Chinese). doi: 10.15541/jim20170263
  • 加载中
计量
  • 文章访问数:  38
  • HTML全文浏览量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-12
  • 录用日期:  2024-05-11
  • 网络出版日期:  2024-05-31

目录

    /

    返回文章
    返回