留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FRP非均匀约束海水海砂混凝土方柱轴压性能

杨俊龙 王吉忠 卢世伟 张丽华 王子茹

杨俊龙, 王吉忠, 卢世伟, 等. FRP非均匀约束海水海砂混凝土方柱轴压性能[J]. 复合材料学报, 2022, 39(6): 2801-2809. doi: 10.13801/j.cnki.fhclxb.20210708.004
引用本文: 杨俊龙, 王吉忠, 卢世伟, 等. FRP非均匀约束海水海砂混凝土方柱轴压性能[J]. 复合材料学报, 2022, 39(6): 2801-2809. doi: 10.13801/j.cnki.fhclxb.20210708.004
YANG Junlong, WANG Jizhong, LU Shiwei, et al. Axial compressive behavior of FRP nonuniformly wrapped seawater sea-sand concrete in square columns[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2801-2809. doi: 10.13801/j.cnki.fhclxb.20210708.004
Citation: YANG Junlong, WANG Jizhong, LU Shiwei, et al. Axial compressive behavior of FRP nonuniformly wrapped seawater sea-sand concrete in square columns[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2801-2809. doi: 10.13801/j.cnki.fhclxb.20210708.004

FRP非均匀约束海水海砂混凝土方柱轴压性能

doi: 10.13801/j.cnki.fhclxb.20210708.004
基金项目: 中央高校基本科研业务费项目(DUT20JC02)
详细信息
    通讯作者:

    王吉忠,博士,教授,研究方向为FRP-混凝土组合结构 E-mail:wangjz@dlut.edu.cn

  • 中图分类号: TU398+.9

Axial compressive behavior of FRP nonuniformly wrapped seawater sea-sand concrete in square columns

  • 摘要: 为扩大纤维增强树脂复合材料(FRP)-海水海砂混凝土(SSC)组合结构的应用范围,改善FRP约束海水海砂混凝土柱脆性破坏特性,对碳纤维增强树脂复合材料(CFRP)非均匀约束海水海砂混凝土方柱的轴压性能进行了研究。试验结果表明:由于CFRP非均匀约束试件中沿高度方向CFRP厚度并不相等,因而整个破坏过程具有明显的预兆,故脆性行为得到明显改善。相比于相同体积率下的全包裹和条带约束试件,其具有更优越的力学性能,尤其是在净距比较小的情况下。随着外部CFRP条带净距的下降和层数的增加,试件的极限强度和变形能力显著提高。具体而言,由于FRP条带净距的降低导致试件的极限强度增幅在5.4%~18.5%不等,而在净距比固定状态下,当外部条带层数增大1倍后,极限强度与应变的最大增幅分别为15.8%和21.8%。最后基于试验数据,对现有部分代表性应力-应变模型对于非均匀约束混凝土的适用性进行了讨论,并给出了所有模型对于试件极限状态的预测精度与误差大小。

     

  • 图  1  CFRP非均匀约束SSC试件加固方案

    Figure  1.  Nonuniform wrapping schemes of CFRP nonuniformly wrapped SSC tested specimens

    图  2  加载装置与测点布置

    Figure  2.  Test setup and instrumentations

    图  3  CFRP非均匀约束SSC试件破坏模式

    Figure  3.  Failure modes of CFRP nonuniformly wrapped SSC specimens

    图  4  CFRP非均匀约束SSC试件轴向应力-轴向应变曲线

    Figure  4.  Axial stress-axial strain curves of CFRP nonuniformly wrapped SSC specimens

    图  5  不同约束形式下CFRP非均匀约束SSC试件试验结果对比

    Figure  5.  Comparison of CFRP nonuniformly wrapped SSC specimens under different wrapping schemes

    图  6  不同净距比下CFRP非均匀约束SSC试件极限状态对比

    Figure  6.  Comparison of ultimate conditions of CFRP nonuniformly wrapped SSC specimens under different clear spacing ratios

    图  7  挑选模型对CFRP非均匀约束SSC试件极限状态的预测精度

    Figure  7.  Predicted accuracy of selected models in calculating ultimate conditions of CFRP nonuniformly wrapped SSC specimens

    AAE—Average absolute error; SD—Standard deviation; AVE—Average

    图  8  各模型对CFRP非均匀约束SSC试件极限状态预测值与试验值对比

    Figure  8.  Comparison of ultimate conditions between test results and theoretical predictions of CFRP nonuniformly wrapped SSC specimens

    表  1  碳纤维增强树脂复合材料(CFRP)非均匀约束海水海砂混凝土(SSC)件参数和试验结果

    Table  1.   Details and test results of carbon fiber reinforced polymer (CFRP) nonuniformly wrapped seawater sea-sand concrete (SSC) specimens

    Group
    Specimen ID
    w/mm
    s/mm
    s/b
    nP/ply
    Test results
    fcc/MPafcc/fcofcu/MPafcu/fcoεcu/%εcu/εcoεh,rup/%
    1








    C(W3A2F)S-1 30 105 0.7 2








    47.4 1.31 42.6 1.17 1.21 6.05 1.08
    C(W3A2F)S-2 30 105 0.7 49.2 1.36 43.7 1.20 1.39 6.93 1.17
    C(W4A2F)S-1 40 90 0.6 51.3 1.41 45.8 1.26 1.49 7.46 1.19
    C(W4A2F)S-2 40 90 0.6 50.7 1.40 45.1 1.24 1.37 6.83 1.20
    C(W5A2F)S-1 50 75 0.5 52.6 1.45 49.5 1.36 1.57 7.86 1.25
    C(W5A2F)S-2 50 75 0.5 51.9 1.43 46.9 1.29 1.43 7.14 1.02
    C(W6A2F)S-1 60 60 0.4 52.7 1.45 50.5 1.39 1.87 9.37 1.20
    C(W6A2F)S-2 60 60 0.4 51.8 1.43 48.8 1.34 1.72 8.62 1.15
    C(W3B2F)S-1 30 30 0.2 52.4 1.44 50.4 1.39 1.97 9.83 1.28
    C(W3B2F)S-2 30 30 0.2 53.0 1.46 51.9 1.43 2.03 10.15 1.30
    2








    C(W3A4F)S-1 30 105 0.7 4








    50.5 1.39 50.5 1.39 1.62 8.08 1.11
    C(W3A4F)S-2 30 105 0.7 49.0 1.35 49.0 1.35 1.45 7.27 0.92
    C(W4A4F)S-1 40 90 0.6 51.7 1.43 51.7 1.43 1.62 8.12 1.22
    C(W4A4F)S-2 40 90 0.6 53.6 1.48 53.6 1.48 1.44 7.22 1.13
    C(W5A4F)S-1 50 75 0.5 53.0 1.46 53.0 1.46 1.74 8.69 1.16
    C(W5A4F)S-2 50 75 0.5 55.1 1.52 55.1 1.52 1.92 9.59 1.17
    C(W6A4F)S-1 60 60 0.4 58.0 1.60 58.0 1.60 2.23 11.16 1.21
    C(W6A4F)S-2 60 60 0.4 56.8 1.56 56.8 1.56 1.91 9.55 1.15
    C(W3B4F)S-1 30 30 0.2 59.2 1.63 59.2 1.63 2.17 10.87 1.26
    C(W3B4F)S-2 30 30 0.2 58.7 1.62 58.7 1.62 2.54 12.71 1.23
    Notes: In specimen ID: C—CFRP; W3, W4, W5, W6—Width of CFRP are 30 mm, 40 mm, 50 mm and 60 mm, respectively; A, B—CFRP number are 3 and 5, respectively; 2, 4—Layer number of CFRP; F—Bottom is wrapped with CFRP; S—SSC; 1, 2—Specimen number. fco—Compressive strength of unconfined concrete; w, s—Width and clear spacing of primary strips, respectively; b—Width of section edge; nP—Number of layers of external CFRP strips; fcc—Peak strength of confined concrete; fcu, εcu—Ultimate strength and corresponding strain of confined concrete, respectively; εh,rup—Hoop rupture strain of primary strips at the midheight outside the overlapping zone.
    下载: 导出CSV
  • [1] TENG J G, XIANG Y, YU T, et al. Development and mechanical behaviour of ultra-high-performance seawater sea-sand concrete[J]. Advances in Structural Engineering,2019,22(14):3100-3120. doi: 10.1177/1369433219858291
    [2] 卢予奇, 赵羽习. 海砂颗粒形态评价与海拌混凝土性能研究[J]. 海洋工程, 2020, 38(6):124-130.

    LU Y Q, ZHAO Y X. Morphological evaluation of sea sand particles and basic properties of marine-mixed concrete[J]. The Ocean Engineering,2020,38(6):124-130(in Chinese).
    [3] XIAO J, QIANG C, NANNI A, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction and Building Materials,2017,155:1101-1111. doi: 10.1016/j.conbuildmat.2017.08.130
    [4] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11.

    TENG J G. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese).
    [5] 张家玮, 邵利君, 刘生纬, 等. 硫酸盐环境中CFRP约束劣化混凝土柱的力学性能[J]. 复合材料学报, 2021, 38(3):996-978.

    ZHANG J W, SHAO L J, LIU S W, et al. Mechanical properties of CFRP confined pre-damaged concrete columns in sulfate environment[J]. Acta Materiae Compositae Sinica,2021,38(3):996-978(in Chinese).
    [6] 王桢, 亢景付, 王堃, 等. FRP锚钉锚固长度对FRP加固混凝土构件拉拔性能影响的试验研究[J]. 硅酸盐通报, 2017, 36(4):1365-1370.

    WANG Z, KANG J F, WANG K, et al. Experimental investigation on the pullout properties of concrete structures strengthened by FRP influenced by anchorage depth[J]. Bulletin of the Chinese Ceramic Society,2017,36(4):1365-1370(in Chinese).
    [7] 冯鹏, 王杰, 张枭, 等. FRP与海砂混凝土组合应用的发展与创新[J]. 玻璃钢/复合材料, 2014, 12:13-18.

    FENG P, WANG J, ZHANG X, et al. Development and innovation on combining FRP and sea sand concrete for structures[J]. Fiber Reinforced Plastics/Composites,2014,12:13-18(in Chinese).
    [8] CHEN G, LIU P, JIANG T, et al. Effects of natural seawater and sea sand on the compressive behaviour of unconfined and carbon fibre-reinforced polymer-confined concrete[J]. Advances in Structural Engineering,2020,23(14):3102-3116. doi: 10.1177/1369433220920459
    [9] ZENG J J, GAO W Y, DUAN Z J, et al. Axial compressive behavior of polyethylene terephthalate/carbon FRP-confined seawater sea-sand concrete in circular columns[J]. Construction and Building Materials,2020,234:117383. doi: 10.1016/j.conbuildmat.2019.117383
    [10] YANG J, WANG J, WANG Z. Axial compressive behavior of partially CFRP confined seawater sea-sand concrete in circular columns-Part I: Experimental study[J]. Composite Structures,2020,246:112373. doi: 10.1016/j.compstruct.2020.112373
    [11] 柏佳文, 魏洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报, 2021, 38(9):3084-3093.

    BAI J W, WEI, Y, ZHANG Y R, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica,2021,38(9):3084-3093(in Chinese).
    [12] LI Y L, ZHAO X L, RAMAN R S. Mechanical properties of seawater and sea sand concrete-filled FRP tubes in artificial seawater[J]. Construction and Building Materials,2018,191:977-993. doi: 10.1016/j.conbuildmat.2018.10.059
    [13] PHAM T M, HADI M N S, YOUSSEF J. Optimized FRP wrapping schemes for circular concrete columns[J]. Journal of Composites for Construction,2015,19(6):04015015. doi: 10.1061/(ASCE)CC.1943-5614.0000571
    [14] YANG J L, WANG J, WANG Z. Behavior and modeling of CFRP nonuniformly wrapped circular seawater sea-sand concrete (SSC) columns under axial compression[J]. Construction and Building Materials,2021,299:123887. doi: 10.1016/j.conbuildmat.2021.123887
    [15] LI P, YANG T, ZENG Q, et al. Axial stress-strain behavior of carbon FRP-confined seawater sea-sand recycled aggregate concrete square columns with different corner radii[J]. Composite Structures,2021,262:113589. doi: 10.1016/j.compstruct.2021.113589
    [16] YANG J, LU S, WANG J, et al. Behavior of CFRP partially wrapped square seawater sea-sand concrete columns under axial compression[J]. Engineering Structures,2020,222:111119. doi: 10.1016/j.engstruct.2020.111119
    [17] ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M[S]. West Conshonocken: ASTM, 2017.
    [18] SHEIKH S, UZUMERI S. Strength and ductility of tied concrete columns[J]. Journal of the Structural Division,1980,106(5):1079-1102. doi: 10.1061/JSDEAG.0005416
    [19] WEI Y Y, WU Y F. Unified stress-strain model of concrete for FRP-confined columns[J]. Construction and Building Materials,2012,26(1):381-392. doi: 10.1016/j.conbuildmat.2011.06.037
    [20] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete in rectangular columns[J]. Journal of Reinforced Plastics and Composites,2003,22(13):1149-1186. doi: 10.1177/0731684403035429
    [21] MAI A D, SHEIKH M N, YAMAKADO K, et al. Nonuniform CFRP wrapping to prevent sudden failure of FRP confined square RC columns[J]. Journal of Composites for Construction,2020,24(6):04020063. doi: 10.1061/(ASCE)CC.1943-5614.0001077
    [22] TRIANTAFILLOU T, MATTHYS S, AUDENAERT K. Externally bonded FRP reinforcement for RC structures[M]. Lausanne: International Federation for Structural Concrete, 2001.
    [23] HARAJLI M H, HANTOUCHE E, SOUDKI K. Stress-strain model for fiber-reinforced polymer jacketed concrete columns[J]. ACI Structural Journal,2006,103(5):672-682.
    [24] YOUSSEF M N, FENG M Q, MOSALLAM A S. Stress-strain model for concrete confined by FRP composites[J]. Composites Part B: Engineering,2007,38(5):614-628.
    [25] LIM J C, OZBAKKALOGLU T. Design model for FRP-confined normal-and high-strength concrete square and rectangular columns[J]. Magazine of Concrete Research,2014,66(20):1020-1035. doi: 10.1680/macr.14.00059
    [26] GUO Y C, XIAO S H, LUO J W, et al. Confined concrete in fiber-reinforced polymer partially wrapped square columns: Axial compressive behavior and strain distributions by a particle image velocimetry sensing technique[J]. Sensors,2018,18(12):4418. doi: 10.3390/s18124418
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  952
  • HTML全文浏览量:  412
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-06-26
  • 录用日期:  2021-06-30
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回