留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

彩色碳纤维的制备及其色彩响应性

孟丽 MDNAHIDUL ISLAM 薛俊杰 惠耀祖 许培俊 陈小明

孟丽, MD NAHIDUL ISLAM, 薛俊杰, 等. 彩色碳纤维的制备及其色彩响应性[J]. 复合材料学报, 2024, 42(0): 1-6.
引用本文: 孟丽, MD NAHIDUL ISLAM, 薛俊杰, 等. 彩色碳纤维的制备及其色彩响应性[J]. 复合材料学报, 2024, 42(0): 1-6.
MENG Li, MD NAHIDUL ISLAM, XUE Junjie, et al. Preparation of colored carbon fiber and its color responsiveness[J]. Acta Materiae Compositae Sinica.
Citation: MENG Li, MD NAHIDUL ISLAM, XUE Junjie, et al. Preparation of colored carbon fiber and its color responsiveness[J]. Acta Materiae Compositae Sinica.

彩色碳纤维的制备及其色彩响应性

基金项目: 国家自然科学基金(51978072);陕西省重点研发计划项目(2022GY-371,2023QCY-LL-26);长安大学中央高校基本科研业务费专项资助(300102312404)
详细信息
    通讯作者:

    许培俊,男,1984年生,博士,教授,博士生导师,研究方向为聚合物基复合材料。 E-mail: xupeijun@chd.edu.cn

  • 中图分类号: TB332

Preparation of colored carbon fiber and its color responsiveness

Funds: National Natural Science Foundation of China (No.51978072); Key Research and Development Program of Shaanxi (No.2022GY-371, 2023QCY-LL-26); Supported by the Fundamental Research Funds for the Central Universities of Chang'an University (No.300102312404)
  • 摘要: 碳纤维(CF)具有极为优异的力学性能、耐热性、良好的导电性,在航空航天、军事和体育等领域被广泛应用。然而,由于CF自身类石墨结构缺乏极性基团,导致其表面呈现出化学惰性,传统染料难以对CF上色,限制了CF在光学领域的彩色响应以及传感领域的深入研究。采用工艺简单快捷的电泳沉积法(EPD)分别在碳纤维单丝和织物表面沉积不同粒径的聚苯乙烯(PS)微球,构造不同的光子晶体结构色。利用光子晶体带隙可调的性质调控反射波长,从而在碳纤维表面实现结构色响应变化。研究发现:在外加电场作用下,PS微球组装成有序堆积的光子晶体结构。随粒径的差异可呈现出不同的结构色:如蓝色、绿色、紫色、海军蓝等。其中,采用粒径为250 nm微球排布的碳布获得了较高的色彩饱和度。通过改变微球间隙中的填充溶剂,还能够使其内部折射率发生变化,从而呈现出可逆的色彩响应性变化。

     

  • 图  1  彩色碳纤维的制备(a)电泳沉积法制备示意图 (b)结构色产生机制示意图

    Figure  1.  Preparation of colored carbon fiber (a) Schematic diagram of electrophoretic deposition preparation (b) Schematic diagram of the mechanism of structural color generation

    图  2  自制聚苯乙烯微球的SEM显微形貌

    Figure  2.  SEM morphology of self-made polystyrene microspheres

    图  3  彩色碳纤维单丝的显微照片(a)光学显微镜 (b) SEM

    Figure  3.  Photomicrograph of a color carbon fiber monofilament (a) Optical microscope (b) SEM

    图  4  彩色碳纤维布的光学显微照片和SEM显微形貌(a, e) 200 nm (b, f) 250 nm (c, g) 300 nm (d, h) 350 nm

    Figure  4.  Optical micrographs and SEM micrographs of colored carbon fiber cloths. (a, e) 200 nm. (b, f) 250 nm. (c, g) 300 nm. (d, h) 350 nm

    图  5  彩色碳纤维的紫外-可见吸收光谱

    Figure  5.  UV-Vis absorption spectrum of colored CF

    图  6  彩色碳纤维的CIE谱图

    Figure  6.  CIE spectrum of colored CF

    图  7  彩色碳纤维颜色变化机制图

    Figure  7.  Color change mechanism of colored carbon fiber

    图  8  绿色碳纤维对不同溶剂的响应性变色行为

    Figure  8.  Discoloration behavior of green carbon fiber in response to different solvents

    表  1  不同粒径的聚苯乙烯微球Zeta电位

    Table  1.   Zeta potential of polystyrene microspheres with different particle sizes

    category Particle size /nm Zeta potential /mv
    PS-h 250 −32
    PS-c 200 −42
    PS-c 250 −35
    PS-c 300 −35
    PS-c 350 −37
    Note: Homemade microspheres are abbreviated as PS-h and commercially purchased microspheres are labeled as PS-c.
    下载: 导出CSV
  • [1] BHANUPRAKASH L, PARASURAM S, VARGHESE S. Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: Mechanical and electrical properties[J]. Composites Science and Technology, Elsevier, 2019, 179: 134-144. doi: 10.1016/j.compscitech.2019.04.034
    [2] LIN Z, JIA X, Yang J, et al. High structural stability of colored carbon fiber cloths modified by FeOOH[J]. Applied Surface Science, 2021, 545: 148994. doi: 10.1016/j.apsusc.2021.148994
    [3] ZHANG W, DENG X, SUI G, et al. Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites[J]. Carbon, Pergamon, 2019, 145: 629-639. doi: 10.1016/j.carbon.2019.01.063
    [4] QIN J, WANG C, WANG Y, et al. Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength[J]. Nanotechnology, 2018, 29(39): 395602. doi: 10.1088/1361-6528/aad10c
    [5] YU J, LEE C H, KAN C-W, et al. Fabrication of Structural-Coloured Carbon Fabrics by Thermal Assisted Gravity Sedimentation Method[J]. Nanomaterials, 2020, 10(6): 1133. doi: 10.3390/nano10061133
    [6] XU H, ZHU Y, GUO Y, et al. Bio-inspired structural coloration of carbon fiber based on thin film interference: Synergistically enhancing thermal durability, tensile strength and interface properties of colored fiber[J]. Reactive and Functional Polymers, 2024, 194: 105789. doi: 10.1016/j.reactfunctpolym.2023.105789
    [7] LIU H, ZHANG Y, JIN M, et al. Preparation of carbon fiber substrates with structural colors based on photonic crystals[J]. Dyes and Pigments, 2022, 203: 110338. doi: 10.1016/j.dyepig.2022.110338
    [8] ZHAO K, CHENG J, SUN N, et al. Photonic Janus Carbon Fibers with Structural Color Gradient for Multicolored, Wirelessly Wearable Thermal Management Devices[J]. Advanced Materials Technologies, 2022, 7(5): 2101057. doi: 10.1002/admt.202101057
    [9] 张子璐 , 刘云燕 , 谢新媛 , 邓民威, 李风煜. 多彩结构色-柔性光子晶体材料与应用[J]. 包装工程, 2022, 43(19): 40–48.

    ZHANG Zi-Lu, LIU Yun-Yan, XIE Xin-Yuan, DENG Min-Wei, LI Feng-Yu. Versatile Structure Color-Flexible Photonic Crystal Material and Its Application[J]. Packaging Engineering, 2022, 43(19): 40-48(in Chinese).
    [10] ZHOU S, ZHANG C, FU Z, et al. Color construction of multi-colored carbon fibers using glucose[J]. Nature Communications, Nature Publishing Group, 2024, 15(1): 1979.
    [11] WEI B, ZHANG Z, YANG D, et al. Lattice Transformation-Induced Retroreflective Structural Colors[J]. ACS Applied Materials & Interfaces, American Chemical Society, 2023, 15(40): 47350–47358.
    [12] XIE X, ZHANG Z, JIANG Q, et al. A Rainbow Structural Color by Stretchable Photonic Crystal for Saccharide Identification[J]. ACS Nano, American Chemical Society, 2022, 16(12): 20094-20099.
    [13] HU Y, WEI B, YANG D, et al. Chameleon-Inspired Brilliant and Sensitive Mechano-Chromic Photonic Skins for Self-Reporting the Strains of Earthworms[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11672-11680.
    [14] LAI X, PENG J, CHENG Q, et al. Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami[J]. Angewandte Chemie International Edition, 2021, 60(26): 14307-14312. doi: 10.1002/anie.202103045
    [15] ZHANG Z, WEI B, HU Y, et al. Extraordinary sensitive mechanochromic hydrogels for visually detecting ultrasmall pressure[J]. Cell Reports Physical Science, 2023, 4(5): 101387. doi: 10.1016/j.xcrp.2023.101387
    [16] SUN L, CHEN Z, XU D, et al. Electroconductive and Anisotropic Structural Color Hydrogels for Visual Heart-on-a-Chip Construction[J]. Advanced Science, 2022, 9(16): 2105777. doi: 10.1002/advs.202105777
    [17] WANG X, WANG Y, LU C, et al. Chameleon-inspired flexible photonic crystal lens-shaped dynamic pressure sensor based on structural color shift[J]. Cell Reports Physical Science, 2023, 4(7): 101490. doi: 10.1016/j.xcrp.2023.101490
    [18] LIU G, HAN P, CHAI L, et al. Fabrication of cotton fabrics with both bright structural colors and strong hydrophobicity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 124991. doi: 10.1016/j.colsurfa.2020.124991
    [19] WEI L, SHANG S, ZHENG Y, et al. Iridescent structural colors printing on cellulose fabrics with robust structural coloration[J]. Dyes and Pigments, 2024, 221: 111824. doi: 10.1016/j.dyepig.2023.111824
    [20] NIU W, ZHANG L, WANG Y, et al. Multicolored Photonic Crystal Carbon Fiber Yarns and Fabrics with Mechanical Robustness for Thermal Management[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32261-32268.
    [21] XU P, HOU J, CHENG J, et al. Color carbon fiber and its discoloration response[J]. Carbon, 2022, 199: 42-50. doi: 10.1016/j.carbon.2022.07.039
    [22] VUKUSIC P, SAMBLES J R, LAWRENCE C R. Colour mixing in wing scales of a butterfly[J]. Nature, Nature Publishing Group, 2000, 404(6777): 457-457.
    [23] CHEN F, YANG H, LI K, et al. Facile and Effective Coloration of Dye-Inert Carbon Fiber Fabrics with Tunable Colors and Excellent Laundering Durability[J]. ACS Nano, 2017, 11(10): 10330-10336. doi: 10.1021/acsnano.7b05139
    [24] ZHOU C, QI Y, ZHANG S, et al. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing[J]. Dyes and Pigments, 2020, 176: 108226. doi: 10.1016/j.dyepig.2020.108226
    [25] LI K, LI C, LI H, et al. Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing[J]. iScience, 2021, 24(2): 102121. doi: 10.1016/j.isci.2021.102121
    [26] HUANG N N, GAO J, SHENG S Z, et al. Structural Design of Intelligent Reversible Two-Way Structural Color Films[J]. Nano Letters, American Chemical Society, 2023, 23(16): 7389-7396.
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-29
  • 修回日期:  2023-12-09
  • 录用日期:  2023-12-09
  • 网络出版日期:  2024-09-21

目录

    /

    返回文章
    返回