留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全有机三明治结构PI-ANFm-PI薄膜的制备及其介电性能

段广宇 胡凤英 郑雨露 梁莹浩 石宜蕊 胡祖明

段广宇, 胡凤英, 郑雨露, 等. 全有机三明治结构PI-ANFm-PI薄膜的制备及其介电性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 段广宇, 胡凤英, 郑雨露, 等. 全有机三明治结构PI-ANFm-PI薄膜的制备及其介电性能[J]. 复合材料学报, 2024, 42(0): 1-11.
DUAN Guangyu, HU Fengying, ZHENG Yulu, et al. Preparation of All-Organic Sandwich-Structured PI-ANFm-PI films and Their Dielectric Properties[J]. Acta Materiae Compositae Sinica.
Citation: DUAN Guangyu, HU Fengying, ZHENG Yulu, et al. Preparation of All-Organic Sandwich-Structured PI-ANFm-PI films and Their Dielectric Properties[J]. Acta Materiae Compositae Sinica.

全有机三明治结构PI-ANFm-PI薄膜的制备及其介电性能

基金项目: 国家重点研发项目(2021YFB3700101);河南工程学院博士培育基金(D2021009)。
详细信息
    通讯作者:

    段广宇,博士,副教授,硕士生导师,研究方向为高性能聚合物电介质材料 E-mail: duanguangyu@dhu.edu.cn

  • 中图分类号: TB332

Preparation of All-Organic Sandwich-Structured PI-ANFm-PI films and Their Dielectric Properties

Funds: Project supported by National Key R&D Program of China (2021YFB3700101), Foundation for Doctorate Research of Henan University of Engineering (D2021009)
  • 摘要: 为了打破聚合物电介质材料介电常数和击穿强度间的内禀矛盾关系,优化其在高温、强电场环境中的介电性能和击穿强度。本研究采用浸渍提拉法,基于聚酰亚胺(polyimide, PI)溶液和芳纶纳米纤维薄膜(aramid nanofiber film, ANFm)构筑了具有三明治结构的全有机PI-ANFm-PI (P-A-P)复合电介质薄膜。ANFm表面粗糙度的降低以及P-A-P复合薄膜内部电子-空穴对的构建有效抑制了漏电流的形成。当PI溶液浓度为7 wt%时,P-A-P复合薄膜在25 ℃和150 ℃下的击穿强度分别达411.6 MV/m和350.7 MV/m,较ANFm分别提升了58.4%和44.7%;此外,由于空间电荷极化强度的降低,P-A-P复合薄膜的介电稳定性和绝缘性能明显改善。上述研究结果表明,在ANFm表面形成高绝缘层有助于改善ANFm的击穿强度以及降低其内部漏电流密度,有望为开发新型全有机高温电介质薄膜提供新方法和新思路。

     

  • 图  1  芳纶纳米纤维薄膜 (ANFm)和PI-ANFm-PI (P-A-P)薄膜的制备流程图

    Figure  1.  Scheme of fabrication procedures for aramid nanofiber film (ANFm) and polyimide-ANFm- polyimide (P-A-P) films

    PI—Polyimide; NMP—N-methylpyrrolidone; DMSO—Dimethyl sulphoxide

    图  2  (a)去质子化过程中ANF/DMSO分散液的光学图片;ANF的TEM图(b),PPTA和ANF的红外光谱(c)和XRD谱图(d)

    Figure  2.  (a) Digital photos of an ANF/DMSO dispersion during deprotonation process; (b) TEM image of ANF; FTIR spectra (c) and XRD patterns (d) of PPTA and ANF

    图  3  横截面形貌ANFm(a),P-A-P-3(b),P-A-P-7(c);表面形貌ANFm(d),P-A-P-3(e),P-A-P-7(f);光学图片ANFm(g),P-A-P-3(h),P-A-P-7(i)

    Figure  3.  Cross-sectional morphologies of ANFm (a), P-A-P-3(b), P-A-P-7 (c). Surface morphologies of ANFm (d), P-A-P-3 (e), P-A-P-7 (f). Digital photos of ANFm (g), P-A-P-3 (h), P-A-P-7 (i)

    图  4  ANFm和P-A-P复合薄膜:(a) 25℃和(b) 150℃的击穿强度威布尔分布,(c) 25℃和150℃的击穿强度对比图;(d力学性能,(e)漏电流密度;(f) ANFm、P-A-P-3和P-A-P-7薄膜击穿强度、漏电流密度和杨氏模量的雷达图

    Figure  4.  Weibull statistic of E of ANFm and P-A-P films at (a) 25℃ and (b) 150℃. (c) Eb of the ANFm and P-A-P films extracted from Weibull plots. (d) Mechanical properties of ANFm and P-A-P films. (e) The current density of ANFm and P-A-P films. (f) Comparison of E, current density and Young’s modulus of ANFm, P-A-P-3 and P-A-P-7

    图  5  (a)和(b)PI和ANF的静电势分布及各静电势范围内的面积百分比;(c)PI和ANF的分子轨道能级示意图;(d)电子-空穴对的形成与作用机制

    Figure  5.  The ESP distributions and normalized ESP area distribution statistics of (a) PI and (b) ANF. (c) The molecular orbital energy levels of PI and ANF. (d) Schematic diagram of electron-hole pair formed by Coulomb force at the heterojunction region between PI and ANF

    图  6  ANFm和P-A-P复合薄膜:(a)介电常数,(b)介电损耗,(c)电导率;P-A-P-7在25℃和150℃下的(d)介电常数,(e)介电损耗,(f)电导率

    Figure  6.  (a) Dielectric constant, (b) dielectric loss and (c) conductivity of ANFm and P-A-P films. (d) Dielectric constant, (e) dielectric loss and (f) conductivity of P-A-P-7 at 25℃ and 150℃

  • [1] ZHA J W, XIAO M Y, WAN B, et al. Polymer dielectrics for high-temperature energy storage: constructing carrier traps[J]. Progress in Materials Science, 2023, 140: 101208. doi: 10.1016/j.pmatsci.2023.101208
    [2] LI H, REN L L, ZHOU Y, et al. Recent progress in polymer dielectrics containing boron nitride nanosheets for high energy density capacitors[J]. High Voltage, 2020, 5(4): 365-376. doi: 10.1049/hve.2020.0076
    [3] ZHA J W, ZHENG M S, FAN B H, et al. Polymer-based dielectrics with high permittivity for electric energy storage: A review[J]. Nano Energy, 2021, 89: 106438. doi: 10.1016/j.nanoen.2021.106438
    [4] 董久锋, 邓星磊, 牛玉娟, 等. 面向高温介电储能应用的聚合物基电介质材料研究进展[J]. 物理学报, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006

    DONG JIUFENG, DENG XINGLEI, NIU YYJUAN, et al. Research progress of polymer-based dielectrics for high-temperature capacitor energy storage[J]. Acta Physica Sinica, 2020, 69(21): 217701(in Chinese). doi: 10.7498/aps.69.20201006
    [5] 李琦, 李曼茜. 高温聚合物薄膜电容器介电材料评述与展望[J]. 高电压技术, 2021, 47(9): 3105-3123.

    LI QI, LI MANXI. High-temperature polymer dielectrics for film capacitors: review and prospect[J]. High Voltage Engineering, 2021, 47(9): 3105-3123(in Chinese).
    [6] LI H, ZHOU Y, LIU Y, et al. Dielectric polymers for high-temperature capacitive energy storage[J]. Chemical Society Reviews, 2021, 50(11): 6369-6400. doi: 10.1039/D0CS00765J
    [7] LI Q, YAO F Z, LIU Y, et al. High-temperature dielectric materials for electrical energy storage[J]. Annual Review of Materials Research, 2018, 48: 219-243. doi: 10.1146/annurev-matsci-070317-124435
    [8] DUAN G Y, HU F Y, ZHANG R N, et al. Preparation of a novel cross-linked polyetherimide with enhanced breakdown strength and high-temperature energy storage performance[J]. High Voltage, 2023, 8(3): 630-639. doi: 10.1049/hve2.12280
    [9] ZHANG Q Y, CHEN X, ZHANG B, et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends[J]. Matter, 2021, 4(7): 2448-2459. doi: 10.1016/j.matt.2021.04.026
    [10] HASSAN Y A, HU H. Current status of polymer nanocomposite dielectrics for high-temperature applications[J]. Composites Part A: Applied Science and Manufacturing, 2020, 138: 106064. doi: 10.1016/j.compositesa.2020.106064
    [11] WANG Y F, CHEN J, LI Y, et al. Multilayered hierarchical polymer composites for high energy density capacitors[J]. Journal of materials chemistry A, 2019, 7(7): 2965-2980. doi: 10.1039/C8TA11392K
    [12] BAER E, ZHU L. 50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films[J]. Macromolecules, 2017, 50(6): 2239-2256. doi: 10.1021/acs.macromol.6b02669
    [13] WANG P, PAN Z B, WANG W, et al. Ultrahigh energy storage performance of a polymer-based nanocomposite via interface engineering[J]. Journal of Materials Chemistry A, 2021, 9(6): 3530-3539. doi: 10.1039/D0TA10044G
    [14] WANG C, HE G H, CHEN S, et al. Enhanced performance of all-organic sandwich structured dielectrics with linear dielectric and ferroelectric polymers[J]. Journal of Materials Chemistry A, 2021, 9(13): 8674-8684. doi: 10.1039/D1TA00974E
    [15] FENG Q K, ZHONG S L, PEI J Y, et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors[J]. Chemical Reviews, 2021, 122(3): 3820-3878.
    [16] SU L Y, MA X Y, ZHOU J L, et al. Large-scale preparation of high-performance boron nitride/aramid nanofiber dielectric composites[J]. Nano Research, 2022, 15: 8648-8655. doi: 10.1007/s12274-022-4456-6
    [17] VU M C, KANG H, PARK P J, et al. Scalable graphene fluoride sandwiched aramid nanofiber paper with superior high-temperature capacitive energy storage[J]. Chemical Engineering Journal, 2022, 444: 136504. doi: 10.1016/j.cej.2022.136504
    [18] SANKHLA S, NATH A, NEOGI S. Preparation of Aramid-Cellulose Nanofiber Films with Improved Mechanical and Dielectric Properties Utilizing Environmentally Friendly Hydrothermal Treatment for Electrical Insulation[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(23): 8420-8430.
    [19] MANZETTI S, LU T. The geometry and electronic structure of Aristolochic acid: possible implications for a frozen resonance[J]. Journal of Physical Organic Chemistry, 2013, 26(6): 473-483. doi: 10.1002/poc.3111
    [20] LU T, MANZETTI S. Wavefunction and reactivity study of benzo [a] pyrene diol epoxide and its enantiomeric forms[J]. Structural Chemistry, 2014, 25: 1521-1533. doi: 10.1007/s11224-014-0430-6
    [21] ZHANG J, LU T. Efficient evaluation of electrostatic potential with computerized optimized code[J]. Physical Chemistry Chemical Physics, 2021, 23(36): 20323-20328. doi: 10.1039/D1CP02805G
    [22] YANG M, CAO K Q, SUI L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954. doi: 10.1021/nn2014003
    [23] CHEN H J, BAI Q Y, LIU M C, et al. Ultrafast, cost-effective and scaled-up recycling of aramid products into aramid nanofibers: mechanism, upcycling, closed-loop recycling[J]. Green Chemistry, 2021, 23(19): 7646-7658. doi: 10.1039/D1GC01805A
    [24] YANG B, WANG L, ZHANG M Y, et al. Timesaving, high-efficiency approaches to fabricate aramid nanofibers[J]. ACS Nano, 2019, 13(7): 7886-7897. doi: 10.1021/acsnano.9b02258
    [25] LUO S B, ANSARIT Q, YU J Y, et al. Enhancement of dielectric breakdown strength and energy storage of all-polymer films by surface flattening[J]. Chemical Engineering Journal, 2021, 412: 128476. doi: 10.1016/j.cej.2021.128476
    [26] FENG M J, FENG Y, ZHANG T D, et al. Recent advances in multilayer-structure dielectrics for energy storage application[J]. Advanced Science, 2021, 8(23): 2102221. doi: 10.1002/advs.202102221
    [27] LI X, TUNG C H, PEY K L. The nature of dielectric breakdown[J]. Applied Physics Letters, 2008, 93(7).
    [28] FENG Q K, PING J B, ZHU J, et al. All-organic dielectrics with high breakdown strength and energy storage density for high-power capacitors[J]. Macromolecular Rapid Communications, 2021, 42(12): 2100116. doi: 10.1002/marc.202100116
    [29] YAN J J, WANG H, ZENG J Y, et al. Carboxylated poly(p-phenylene terephthalamide) reinforced polyetherimide for high-temperature dielectric energy storage[J]. Small, 2023, 19(42): 2304310. doi: 10.1002/smll.202304310
    [30] YAN C F, WAN Y T, LONG H P, et al. Improved capacitive energy storage at high temperature via constructing physical cross-link and electron-hole pairs based on p-type semiconductive polymer filler[J]. Advanced Functional Materials, 2024, 34(8): 2312238. doi: 10.1002/adfm.202312238
    [31] XU D, XU W H, SEERY T, et al. Rational design of soluble polyaramid for high-efficiency energy storage dielectric materials at elevated temperatures[J]. Macromolecular Materials and Engineering, 2020, 305(3): 1900820. doi: 10.1002/mame.201900820
    [32] THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects[J]. Chemical Reviews, 2016, 116(7): 4260-4317. doi: 10.1021/acs.chemrev.5b00495
    [33] JIANG Y D, ZHOU M J, SHEN Z H, et al. Ferroelectric polymers and their nanocomposites for dielectric energy storage applications[J]. APL materials, 2021, 9: 020905. doi: 10.1063/5.0039126
    [34] WANG T T, WEI C M, YAN L, et al. Thermally conductive, mechanically strong dielectric film made from aramid nanofiber and edge-hydroxylated boron nitride nanosheet for thermal management applications[J]. Composite Interfaces, 2021, 28(11): 1067-1080. doi: 10.1080/09276440.2020.1855573
    [35] DUAN G Y, CAO Y T, QUAN J Y, et al. Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength[J]. Journal of Materials Science, 2020, 55: 8170-8184 doi: 10.1007/s10853-020-04596-5
  • 加载中
计量
  • 文章访问数:  36
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-05-07
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-06-15

目录

    /

    返回文章
    返回