留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于透明质酸自组装胶体粒子功能乳液的制备及缓释性能

范欣怡 闫昕 杨晗 林慧婷 许茂东 张翠歌

范欣怡, 闫昕, 杨晗, 等. 基于透明质酸自组装胶体粒子功能乳液的制备及缓释性能[J]. 复合材料学报, 2023, 41(0): 1-9
引用本文: 范欣怡, 闫昕, 杨晗, 等. 基于透明质酸自组装胶体粒子功能乳液的制备及缓释性能[J]. 复合材料学报, 2023, 41(0): 1-9
Xinyi FAN, Xin YAN, Han YANG, Huiting LIN, Maodong XU, Cuige ZHANG. Preparation and release properties of functional emulsion based on hyaluronic acid self-assembled colloidal particles[J]. Acta Materiae Compositae Sinica.
Citation: Xinyi FAN, Xin YAN, Han YANG, Huiting LIN, Maodong XU, Cuige ZHANG. Preparation and release properties of functional emulsion based on hyaluronic acid self-assembled colloidal particles[J]. Acta Materiae Compositae Sinica.

基于透明质酸自组装胶体粒子功能乳液的制备及缓释性能

基金项目: 国家自然科学基金(22072001,51703001)﹔国家级大学生创新创业训练计划项目(202110363064)
详细信息
    通讯作者:

    张翠歌,博士,副教授,硕士生导师,研究方向为功能高分子材料 E-mail: zcg17131@ahpu.edu.cn

  • 中图分类号: O636.1

Preparation and release properties of functional emulsion based on hyaluronic acid self-assembled colloidal particles

Funds: National Natural Science Foundation of China (No.22072001, No.51703001); National College Student Innovation and Entrepre neurship Training Program (No. 202110363064)
  • 摘要: 近年来,功能乳液因含有某种特定功能的功能因子,引起人们广泛的兴趣。多重乳液是是功能乳液的一种,含有一种或多种功能因子,在一定程度上可实现对水溶性或脂溶性功能因子的缓释。但是,多重乳液需分步制备,制备过程复杂,难以大规模生产;多重乳液属于热力学不稳定体系,乳液滴间易发生宏观聚合,导致乳液稳定性较差;缺乏能长期稳定乳液的食品级乳化剂,在食品应用领域受限。本文以大分子自组装技术制备自组装胶体粒子,在生物大分子透明质酸和溶菌酶自组装过程中引入水溶性功能因子(微量金属Zn2+)。以自组装胶体粒子为颗粒乳化剂,稳定含脂溶性功能因子(维生素D3)的大豆油,得到功能Pickering乳液。制备的乳液对水溶性和脂溶性功能因子均具有较好的缓释性能。本文给出了一种功能乳液制备的新方法,制备的乳液在食品、医药和化妆品领域具有潜在的应用。功能乳液制备方法及功能因子缓释示意图

     

  • 图  1  维生素D3(VD3)-溶菌酶(Lys)-Zn2+/生物大分子透明质酸(HA)功能乳液制备方法及功能因子缓释示意图

    Figure  1.  Schematic illustration of preparation method of vitamin D3 (VD3)- lysozyme (Lys)-Zn2+/Bio-macromolecules hyaluronic acid (HA) functional emulsion and slow release of functional factors

    图  2  Lys-Zn2+/HA胶体粒子的粒径,ζ电位和多分散度随Lys浓度的变化

    Figure  2.  Variation of particle size, ζ-potential and polydispersity of Lys-Zn2+/HA colloidal particles with Lys concentration

    图  3  Lys-Zn2+/HA胶体粒子的粒径分布(a)和SEM图(b)

    Figure  3.  Particle size distribution (a) and SEM image (b) of Lys-Zn2+/HA colloidal particles

    图  4  Lys-Zn2+/HA胶体粒子粒径,ζ电位和多分散度随pH的变化,胶体粒子的浓度为1 mg/mL

    Figure  4.  Variation of Lys-Zn2+/HA colloidal particle size,ζ-potential and polydispersity with pH, the concentration of colloidal particles is 1 mg/mL

    图  5  不同pH值VD3-Lys-Zn2+/HA乳液数码照片和乳液滴的显微镜照片(a);乳液滴平均粒径和多分散度随pH的变化(b);乳液滴平均粒径随时间的变化(c)。乳液为制备一天的乳液。胶体粒子的浓度为1 mg/mL

    Figure  5.  Digital photographs of VD3-Lys-Zn2+/HA emulsions and microscope photographs of emulsion droplets with different pH (a); average particle diameter and polydispersity of emulsion droplets as a function of pH (b); average particle diameter of emulsion droplets as a function of time (c). The emulsions were incubated 1 day after homogenization. The concentration of colloidal particles is 1 mg/mL

    图  6  Lys-Zn2+/HA胶体粒子粒径, ζ电位和多分散度随盐浓度的变化,pH 5.1,胶体粒子的浓度为1 mg/mL

    Figure  6.  Variation of Lys-Zn2+/HA colloidal particle size, ζ-potential and polydispersity with salt concentration, pH 5.1, the concentration of colloidal particles is 1 mg/mL

    图  7  不同盐浓度VD3-Lys-Zn2+/HA乳液数码照片和乳液滴的显微镜照片(a);乳液滴平均粒径和多分散度随盐浓度的变化(b);乳液滴平均粒径随时间的变化(c)。乳液为制备一天的乳液。pH 5.1,胶体粒子的浓度为1 mg/mL

    Figure  7.  Digital photographs of VD3-Lys-Zn2+/HA emulsions and microscope photographs of emulsion droplets with different salt concentrations (a); average particle diameter and polydispersity of emulsion droplets as a function of salt concentration (b); average particle diameter of emulsion droplets as a function of time (c). The emulsions were incubated 1 day after homogenization. pH 5.1, the concentration of colloidal particles is 1 mg/mL

    图  8  VD3-Lys-Zn2+/HA乳液在不同缓冲液里Zn2+和VD3的体外释放曲线,pH 5.1

    Figure  8.  In vitro release of Zn2+ and VD3 in VD3-Lys-Zn2+/HA emulsion with different buffer solution, pH 5.1

  • [1] ZHAO Q L, XIE T T, HONG X, et al. Modification of functional properties of perilla protein isolate by high-intensity ultrasonic treatment and the stability of o/w emulsion[J]. Food Chemistry,2021,368:130848.
    [2] SINGH C K S, LIM H P, TEY B T, et al. Spray-dried alginate-coated Pickering emulsion stabilized by chitosan for improved oxidative stability and in vitro release profile[J]. Carbohydrate Polymers,2021,251:117110. doi: 10.1016/j.carbpol.2020.117110
    [3] DELSHADI R D, BAHRAMI A, TAFTI A G, et al. Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles[J]. Trends in Food Science & Technology,2020,104:72-83.
    [4] YANG J, ZHOU Q W, HUANG Z H, et al. Mechanisms of in vitro controlled release of astaxanthin from starch-based double emulsion carriers[J]. Food Hydrocolloids,2021,119:106837. doi: 10.1016/j.foodhyd.2021.106837
    [5] GUO J, JIANG J G, GU X L, et al. Encapsulation of β-carotene in calcium alginate hydrogels templated by oil-in-water-in-oil (O/W/O) double emulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,608:125548. doi: 10.1016/j.colsurfa.2020.125548
    [6] SNOUSSI A, CHOUAIBI M, BOUZOUITA N, et al. Microencapsulation of catechin using water-in-oil-in-water (W1/O/W2) double emulsions: Study of release kinetics, rheological, and thermodynamic properties[J]. Journal of Molecular Liquids,2020,311:113304. doi: 10.1016/j.molliq.2020.113304
    [7] LAMBA H, SATHISH K, SABIKHI L. Double emulsions: emerging delivery system for plant bioactives[J]. Food Bioprocess Technol,2015,8(4):709-728. doi: 10.1007/s11947-014-1468-6
    [8] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science,2002,295(5564):2418-2421. doi: 10.1126/science.1070821
    [9] FUJII S, CAI Y, WEAVER J V M, et al. Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers[J]. J. Am. Chem. Soc.,2005,127(20):7304-7305. doi: 10.1021/ja050049a
    [10] YI C L, YANG Y Q, ZHUY Y, et al. Self-assembly and emulsification of poly {[styrene-alt-maleic acid]-co-[styrene-alt-(N-3, 4-dihydroxyphenylethyl-maleamic acid)]}[J]. Langmuir,2012,28(25):9211-9222. doi: 10.1021/la301605a
    [11] YI C L, LIU N, ZHENG J C, et al. Dual-responsive poly (styrene-alt-maleic acid)-graft-poly(N-isopropyl acrylamide) micelles as switchable emulsifiers[J]. J. Colloid Interface Sci.,2012,380(1):90-98. doi: 10.1016/j.jcis.2012.04.067
    [12] 王娟勤, 白绘宇, 易成林, 等. HA/PDM 自组装复合胶体粒子及其乳化性能 [J]. 物理化学学报, 2013, 29(05): 1028-1034.

    WANG J Q, BAI H Y, YI C L, et al. Self-assembled HA/PDM particles and emulsification properties [J]. 2013, 29(05): 1028-1034 (in Chinese).
    [13] ZHU Y, WAGN J Q, BAI H Y, et al. Self-assembly and emulsification of dopamine modified hyaluronan[J]. Carbohydrate Polymers,2015,123:72-79. doi: 10.1016/j.carbpol.2015.01.030
    [14] ZHANG C G, ZHU Y, ZHANG R L, et al. Pickering emulsions stabilized by composite nanoparticles prepared from lysozyme and dopamine modified poly (γ-glutamic acid): effects of pH value on the stability of the emulsion and the activity of lysozyme[J]. RSC Adv.,2015,5:90651-90658. doi: 10.1039/C5RA10737G
    [15] ZHANG C G, ZHANG R L, ZHU Y, et al. Influence of ionic strength on gel-like Pickering emulsions stabilized by self-assembled colloidal nanoparticles containing lysozyme[J]. Colloid and Polymer Science,2020,298:1249-1262. doi: 10.1007/s00396-020-04700-w
    [16] 张翠歌, 朱叶, 罗静, 等. Papain/HA-Phe 自组装复合纳米粒子及乳化性能[J]. 高分子学报, 2016, 07(20):963-970.

    ZHANG C G, ZHU Y, LUO J, et al. Self-assembled Papain/HA-Phe composite nanoparticles and emulsification properties[J]. Acta Polymerica Sinica,2016,07(20):963-970(in Chinese).
    [17] COLMENERO F J. Potential applications of multiple emulsions in the development of healthy and functional foods[J]. Food Research International,2013,52(1):64-74. doi: 10.1016/j.foodres.2013.02.040
    [18] GAN L M, LIAN N, CHEW C H, et al. Polymerization of styrene in a winsor I-like system[J]. Langmuir,1994,10(7):2197-2201. doi: 10.1021/la00019a027
    [19] LIU H, WANG C Y, ZOU S W, et al. Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification[J]. Langmuir,2012,28(30):11017-11024. doi: 10.1021/la3021113
    [20] LIU X, YI C, ZHU Y, et al. Pickering emulsions stabilized by self-assembled colloidal particles of copolymers of P(St-alt-MAn)-co-P(VM-alt-MAn)[J]. J. Colloid Interface Sci.,2010,351(2):315-322. doi: 10.1016/j.jcis.2010.04.056
    [21] LI W J, PENG H L, NING F J, et al. Amphiphilic chitosan derivative-based core–shell micelles: Synthesis, characterisation and properties for sustained release of Vitamin D3[J]. Food Chemistry,2014,152:307-315. doi: 10.1016/j.foodchem.2013.11.147
    [22] CUI X M, LI X L, XU Z L, et al. Fabrication and characterization of chitosan/poly(lactic-co-glycolic acid) core-shell nanoparticles by co-axial electrospray technology for dual delivery of natamycin and clotrimazole[J]. Front. Bioeng. Biotechnol,2021,9:635485. doi: 10.3389/fbioe.2021.635485
  • 加载中
计量
  • 文章访问数:  119
  • HTML全文浏览量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-12-18
  • 录用日期:  2022-12-31
  • 网络出版日期:  2023-02-03

目录

    /

    返回文章
    返回