留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于透明质酸自组装胶体粒子功能乳液的制备及缓释性能

范欣怡 闫昕 杨晗 林慧婷 许茂东 张翠歌

范欣怡, 闫昕, 杨晗, 等. 基于透明质酸自组装胶体粒子功能乳液的制备及缓释性能[J]. 复合材料学报, 2023, 40(10): 5803-5811. doi: 10.13801/j.cnki.fhclxb.20230118.001
引用本文: 范欣怡, 闫昕, 杨晗, 等. 基于透明质酸自组装胶体粒子功能乳液的制备及缓释性能[J]. 复合材料学报, 2023, 40(10): 5803-5811. doi: 10.13801/j.cnki.fhclxb.20230118.001
FAN Xinyi, YAN Xin, YANG Han, et al. Preparation and release properties of functional emulsion based on hyaluronic acid self-assembled colloidal particles[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5803-5810. doi: 10.13801/j.cnki.fhclxb.20230118.001
Citation: FAN Xinyi, YAN Xin, YANG Han, et al. Preparation and release properties of functional emulsion based on hyaluronic acid self-assembled colloidal particles[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5803-5810. doi: 10.13801/j.cnki.fhclxb.20230118.001

基于透明质酸自组装胶体粒子功能乳液的制备及缓释性能

doi: 10.13801/j.cnki.fhclxb.20230118.001
基金项目: 国家自然科学基金(22072001;51703001);国家级大学生创新创业训练计划项目(202110363064)
详细信息
    通讯作者:

    张翠歌,博士,副教授,硕士生导师,研究方向为功能高分子材料 E-mail: zcg17131@ahpu.edu.cn

  • 中图分类号: O636.1

Preparation and release properties of functional emulsion based on hyaluronic acid self-assembled colloidal particles

Funds: National Natural Science Foundation of China (22072001; 51703001); National College Student Innovation and Entrepre Neurship Training Program (202110363064)
  • 摘要: 功能乳液因含有某种特定功能的功能因子,成为目前研究的热点。生物大分子透明质酸(HA)、溶菌酶(Lys)和微量金属元素锌可静电自组装制备Lys-Zn2+/HA胶体粒子。研究了不同原料浓度对胶体粒子性质的影响,确定最佳组装条件。用纳米粒度仪和扫描电镜对最佳组装条件下胶体粒子的尺寸和形貌进行表征。结果显示:形成的胶体粒子为球形结构,粒径约 300 nm。此胶体粒子具有表面活性,可二次组装在油(含脂溶性维生素D3)-水界面稳定水包油型功能Pickering乳液。详细研究了pH和盐浓度对胶体粒子性质和乳化性能的影响。在最佳乳液性能下,研究了乳液对微量金属和维生素D3功能因子的缓释性能。结果表明:乳液对水溶性和脂溶性功能因子均具有一定的缓释性能。制备的功能乳液在食品、医药和化妆品领域具有潜在的应用。

     

  • 图  1  维生素D3 (VD3)-溶菌酶(Lys)-Zn2+/生物大分子透明质酸(HA)功能乳液制备方法及功能因子缓释示意图

    Figure  1.  Schematic illustration of preparation method of vitamin D3 (VD3)-lysozyme (Lys)-Zn2+/bio-macromolecules hyaluronic acid (HA) functional emulsion and slow release of functional factors

    图  2  Lys-Zn2+/HA胶体粒子的粒径、Zeta电位和多分散度随Lys浓度的变化

    Figure  2.  Variation of particle size, Zeta potential and polydispersity of Lys-Zn2+/HA colloidal particles with Lys concentration

    图  3  Lys-Zn2+/HA胶体粒子的粒径分布(a)和SEM图像(b)

    Figure  3.  Particle size distribution (a) and SEM image (b) of Lys-Zn2+/HA colloidal particles

    C—Autocorrelation functions; τ—Decay time constant

    图  4  Lys-Zn2+/HA胶体粒子粒径、Zeta电位和多分散度随pH的变化(胶体粒子的浓度为1 mg/mL)

    Figure  4.  Variation of Lys-Zn2+/HA colloidal particle size, Zeta potential and polydispersity with pH (Concentration of colloidal particles is 1 mg/mL)

    图  5  (a) 不同pH值VD3-Lys-Zn2+/HA乳液数码照片和乳液滴的显微镜照片;(b) 乳液滴平均粒径和多分散度随pH的变化;(c) 乳液滴平均粒径随时间的变化(乳液为制备一天的乳液,胶体粒子的浓度为1 mg/mL)

    Figure  5.  (a) Digital photographs of VD3-Lys-Zn2+/HA emulsions and microscope images of emulsion droplets with different pH; (b) Average particle diameter and polydispersity of emulsion droplets as a function of pH; (c) Average particle diameter of emulsion droplets as a function of time (The emulsions were incubated 1 day after homogenization, the concentration of colloidal particles is 1 mg/mL)

    图  6  Lys-Zn2+/HA胶体粒子粒径、Zeta电位和多分散度随盐浓度的变化(pH=5.1,胶体粒子的浓度为1 mg/mL)

    Figure  6.  Variation of Lys-Zn2+/HA colloidal particle size, Zeta potential and polydispersity with salt concentration (pH=5.1, the concentration of colloidal particles is 1 mg/mL)

    cNaCl—NaCl concentration

    图  7  (a) 不同盐浓度下VD3-Lys-Zn2+/HA乳液数码照片和乳液滴的显微镜图像;(b) 乳液滴平均粒径和多分散度随盐浓度的变化;(c) 乳液滴平均粒径随时间的变化 (乳液为制备一天的乳液,pH=5.1,胶体粒子的浓度为1 mg/mL)

    Figure  7.  (a) Digital photographs of VD3-Lys-Zn2+/HA emulsions and microscope images of emulsion droplets with different salt concentrations; (b) Average particle diameter and polydispersity of emulsion droplets as a function of salt concentration; (c) Average particle diameter of emulsion droplets as a function of time (The emulsions were incubated 1 day after homogenization, pH=5.1, the concentration of colloidal particles is 1 mg/mL)

    图  8  VD3-Lys-Zn2+/HA乳液在不同缓冲液里Zn2+和VD3的体外释放曲线

    Figure  8.  In vitro release curves of Zn2+ and VD3 in VD3-Lys-Zn2+/HA emulsion with different buffer solution

    PBS—Phosphate buffer; SIF—Artificial intestinal fluid

  • [1] ZHAO Q L, XIE T T, HONG X, et al. Modification of functional properties of perilla protein isolate by high-intensity ultrasonic treatment and the stability of O/W emulsion[J]. Food Chemistry,2021,368:130848.
    [2] SINGH C K S, LIM H P, TEY B T, et al. Spray-dried alginate-coated Pickering emulsion stabilized by chitosan for improved oxidative stability and in vitro release profile[J]. Carbohydrate Polymers,2021,251:117110. doi: 10.1016/j.carbpol.2020.117110
    [3] DELSHADI R, BAHRAMI A, TAFTI A G, et al. Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles[J]. Trends in Food Science & Technology,2020,104:72-83.
    [4] YANG J, ZHOU Q W, HUANG Z H, et al. Mechanisms of in vitro controlled release of astaxanthin from starch-based double emulsion carriers[J]. Food Hydrocolloids,2021,119:106837. doi: 10.1016/j.foodhyd.2021.106837
    [5] GUO J, JIANG J G, GU X L, et al. Encapsulation of β-carotene in calcium alginate hydrogels templated by oil-in-water-in-oil (O/W/O) double emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,608:125548. doi: 10.1016/j.colsurfa.2020.125548
    [6] SNOUSSI A, CHOUAIBI M, BOUZOUITA N, et al. Microencapsulation of catechin using water-in-oil-in-water (W1/O/W2) double emulsions: Study of release kinetics, rheological, and thermodynamic properties[J]. Journal of Molecular Liquids,2020,311:113304. doi: 10.1016/j.molliq.2020.113304
    [7] LAMBA H, SATHISH K, SABIKHI L. Double emulsions: Emerging delivery system for plant bioactives[J]. Food and Bioprocess Technology,2015,8(4):709-728. doi: 10.1007/s11947-014-1468-6
    [8] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science,2002,295(5564):2418-2421. doi: 10.1126/science.1070821
    [9] FUJII S, CAI Y L, WEAVER J V M, et al. Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers[J]. Journal of the American Chemical Society,2005,127(20):7304-7305. doi: 10.1021/ja050049a
    [10] YI C L, YANG Y Q, ZHU Y, et al. Self-assembly and emulsification of poly {[styrene-alt-maleic acid]-co-[styrene-alt-(N-3, 4-dihydroxyphenylethyl-maleamic acid)]}[J]. Langmuir,2012,28(25):9211-9222. doi: 10.1021/la301605a
    [11] YI C L, LIU N, ZHENG J C, et al. Dual-responsive poly(styrene-alt-maleic acid)-graft-poly(N-isopropyl acrylamide) micelles as switchable emulsifiers[J]. Journal of Colloid and Interface Science,2012,380(1):90-98. doi: 10.1016/j.jcis.2012.04.067
    [12] 王娟勤, 白绘宇, 易成林, 等. HA/PDM 自组装复合胶体粒子及其乳化性能[J]. 物理化学学报, 2013, 29(5): 1028-1034.

    WANG Juanqin, BAI Huiyu, YI Chenglin, et al. Self-assembled HA/PDM particles and emulsification properties[J]. Acta Physico-Chimica Sinica, 2013, 29(5):1028-1034(in Chinese).
    [13] ZHU Y, WANG J Q, LI X J, et al. Self-assembly and emulsification of dopamine-modified hyaluronan[J]. Carbohydrate Polymers,2015,123:72-79. doi: 10.1016/j.carbpol.2015.01.030
    [14] ZHANG C G, ZHU Y, ZHANG R L, et al. Pickering emulsions stabilized by composite nanoparticles prepared from lysozyme and dopamine modified poly(γ-glutamic acid): Effects of pH value on the stability of the emulsion and the activity of lysozyme[J]. RSC Advances,2015,5(110):90651-90658. doi: 10.1039/C5RA10737G
    [15] ZHANG C G, ZHANG R L, ZHU Y, et al. Influence of ionic strength on gel-like Pickering emulsions stabilized by self-assembled colloidal nanoparticles containing lysozyme[J]. Colloid and Polymer Science,2020,298(9):1249-1262. doi: 10.1007/s00396-020-04700-w
    [16] 张翠歌, 朱叶, 罗静, 等. Papain/HA-Phe 自组装复合纳米粒子及乳化性能[J]. 高分子学报, 2016(7):963-970.

    ZHANG Cuige, ZHU Ye, LUO Jing, et al. Self-assembled Papain/HA-Phe composite nanoparticles and emulsification properties[J]. Acta Polymerica Sinica,2016(7):963-970(in Chinese).
    [17] JIMÉNEZ-COLMENERO F. Potential applications of multiple emulsions in the development of healthy and functional foods[J]. Food Research International,2013,52(1):64-74. doi: 10.1016/j.foodres.2013.02.040
    [18] GAN L M, LIAN N, CHEW C H, et al. Polymerization of styrene in a winsor I-like system[J]. Langmuir,1994,10(7):2197-2201. doi: 10.1021/la00019a027
    [19] LIU H, WANG C Y, ZOU S W, et al. Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification[J]. Langmuir,2012,28(30):11017-11024. doi: 10.1021/la3021113
    [20] LIU X, YI C, ZHU Y, et al. Pickering emulsions stabilized by self-assembled colloidal particles of copolymers of P(St-alt-MAn)-co-P(VM-alt-MAn)[J]. Journal of Colloid and Interface Science,2010,351(2):315-322. doi: 10.1016/j.jcis.2010.04.056
    [21] LI W J, PENG H L, NING F J, et al. Amphiphilic chitosan derivative-based core-shell micelles: Synthesis, characterisation and properties for sustained release of vitamin D3[J]. Food Chemistry,2014,152:307-315. doi: 10.1016/j.foodchem.2013.11.147
    [22] CUI X M, LI X L, XU Z L, et al. Fabrication and characterization of chitosan/poly(lactic-co-glycolic acid) core-shell nanoparticles by coaxial electrospray technology for dual delivery of natamycin and clotrimazole[J]. Frontiers in Bioengineering and Biotechnology,2021,9:635485. doi: 10.3389/fbioe.2021.635485
  • 加载中
图(8)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  231
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-12-18
  • 录用日期:  2022-12-31
  • 网络出版日期:  2023-01-19
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回