留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

埃洛石纳米管负载芳樟醇及其防霉抗菌性能

张原菘 甘雯馨 曾钦志 赵伟刚 陈奶荣 饶久平

张原菘, 甘雯馨, 曾钦志, 等. 埃洛石纳米管负载芳樟醇及其防霉抗菌性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 张原菘, 甘雯馨, 曾钦志, 等. 埃洛石纳米管负载芳樟醇及其防霉抗菌性能[J]. 复合材料学报, 2024, 42(0): 1-12.
ZHANG Yuansong, GAN Wenxin, ZENG Qinzhi, et al. Antibacterial and Antifungal Properties of halloysite nanotubes by loaded Linalool[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Yuansong, GAN Wenxin, ZENG Qinzhi, et al. Antibacterial and Antifungal Properties of halloysite nanotubes by loaded Linalool[J]. Acta Materiae Compositae Sinica.

埃洛石纳米管负载芳樟醇及其防霉抗菌性能

基金项目: 国家自然科学基金 (32371795);中央引导地方科技发展资金项目(2023L3044);福建农林大学科技创新专项基金项目(KFB23138)
详细信息
    通讯作者:

    饶久平,博士,教授,博士生导师,研究方向为生物质复合材料 E-mail: rjustin@fafu.edu.cn

  • 中图分类号: TB332

Antibacterial and Antifungal Properties of halloysite nanotubes by loaded Linalool

Funds: National Natural Science Foundation of China (No.32371795); Center Leading Local Science and Technology Development Special Project (No.2023L3044); Fujian Agriculture and Forestry University Science and Technology Innovation Special Fund Project (No.KFB23138)
  • 摘要: 芳樟醇具有良好的抗菌和抗氧化性,但易挥发且热稳定性差。埃洛石纳米管(HNTs)存在特殊中空孔道结构并具有保护和释放活性物质的功能,常作为纳米载体。因此,开展HNTs负载芳樟醇(LNL)的研究并进行抗菌试验。采用真空负压法将LNL负载到3 mol/L盐酸酸化后的埃洛石纳米管(AC-HNTs)管腔内部,制备出芳樟醇-酸化埃洛石纳米管(L-AC-HNTs)新型防霉抗菌剂。以竹制品中常见的大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)、黑曲霉菌(Aspergillus niger)、桔青霉菌(Penicillium oryzae)为目标菌种,考察不同添加量L-AC-HNTs的抑菌效果,测试其热稳定性和缓释性并进行表征分析。结果表明,添加1.5%(W/V)的L-AC-HNTs对以上几种细菌和霉菌的抑菌效果最佳,抑菌率均达到了100%。L-AC-HNTs的热分解速率峰值温度达到279.9 ℃,比纯LNL提高了81.5 ℃,AC-HNTs在50 ℃下挥发72 h后对LNL的保留率仍为94.6%,仅损失了3.4%,而纯LNL保留率为8%,酸化刻蚀后LNL负载量从5.0%最高提升至15.6%。L-AC-HNTs具有广谱抑菌性和热稳定性,为其在竹制品中的应用提供参考。

     

  • 图  1  芳樟醇-酸化埃洛石纳米管(L-AC-HNTs)防霉抗菌剂制备流程

    Figure  1.  linalool acidified halloysite nanotubes (L-AC-HNTs) antibacterial and antifungal agent preparation process

    图  2  HNTs负载芳樟醇(LNL)标准曲线

    Figure  2.  Standard curve of HNTs loaded with linalool (LNL)

    图  3  不同添加量L-AC-HNTs 对(a)Aspergillus Niger;(b) Penicillium citrinsis;(c)Colibacillus;(d)Staphylococcus Aureus的防霉抗菌效果

    Figure  3.  Antibacterial and antifungal effects of different levels of L-AC-HNTs on (a) Aspergillus Niger; (b) Penicillium citrinsis; (c) Escherichia coli; (d) Staphylococcus Aureus

    图  4  HNTs、L-AC-HNTs、LNL的(a)热重曲线;(b)微商热重曲线图;(c)LNL负载前后保留率

    Figure  4.  (a) Thermogravimetric profiles of HNTs, L-AC-HNTs, LNL; (b) Microcommercial thermogravimetric profiles; (c) Retention before and after LNL loading

    图  5  (a)LNL红外光谱图;(b)HNTs、AC-HNTs、L-AC-HNTs红外光谱图

    Figure  5.  (a) Infrared spectra of LNL; (b) Infrared spectra of HNTs、AC-HNTs、L-AC-HNTs

    图  6  (a) HNTs;(b) AC-HNTs;(c) L-AC-HNTs的扫描电镜(能量色散X射线光谱)

    Figure  6.  SEM (EDX) images of (a) HNTs; (b) AC-HNTs; (c) L-AC-HNTs

    图  7  (a) HNTs;(b) AC-HNTs;(c) L-AC-HNTs的高倍率透射电镜(能量色散X射线光谱)

    Figure  7.  TEM(EDX) images of (a) HNTs; (b) AC-HNTs; (c) L-AC-HNTs

    图  8  LNL、HNTs、AC-HNTs、L-AC-HNTs的X-射线衍射图

    Figure  8.  XRD patterns of LNL、HNTs、AC-HNTs、L-AC-HNTs

    图  9  (a) HNTs、AC-HNTs、L-AC-HNTs的XPS全谱;(b) Al2p的XPS光谱;(c) Si2p的XPS光谱

    Figure  9.  (a) XPS full spectrum of HNTs, AC-HNTs, L-AC-HNTs; (b) XPS spectrum of Al2p; (c) XPS spectrum of Si2p

    图  10  (a) HNTs、AC-HNTs、L-AC-HNTs的氮气等温吸附-脱附曲线;(b)酸化前后HNTs对不同添加量LNL负载量

    Figure  10.  (a) Nitrogen isothermal adsorption-desorption curves of HNTs、AC-HNTs、L-AC-HNTs; (b) Loadings of HNTs to different additions of LNL before and after acidification

    表  1  HNTs,AC-HNTs和L-AC-HNTs中Si、Al和C元素含量

    Table  1.   Content of Si、Al and C elements in HNTs, AC-HNTs and L-AC-HNTs

    Samples Si Atomic/% Al Atomic /% C Atomic /%
    HNTs 14.20% 12.39% 14.83%
    AC-HNTs 14.18% 12.26% 13.19%
    L-AC-HNTs 12.84% 11.2% 24.59%
    下载: 导出CSV

    表  2  HNTs,AC-HNTs和L-AC-HNTs的比表面积和孔径结构数据

    Table  2.   SBET and porosity data of HNTs, AC-HNTs and L-AC-HNTs

    SamplesSBET/(m2·g−1)Vpore/(cm3·g−1)
    HNTs13.53890.04
    AC-HNTs37.28930.09
    L-AC-HNTs28.81000.08
    Notes:SBET is the specific surface area,Vpore is the total pore volume.
    下载: 导出CSV
  • [1] ZHANG J, HUANG Q, Du C, et al. Preparation and Anti-Mold Properties of Nano-ZnO/Poly(N-isopropylacrylamide) Composite Hydrogels[J]. 2020, 25(18): 4135.
    [2] 李能, 陈玉和, 包永洁, 等. 国内外竹材防腐的研究进展[J]. 中南林业科技大学学报, 2012, 32(6): 172-176.

    LI Neng, CHEN Yuhe, BAO Yongjie, et al. Research progress of bamboo preservation in China and abroad[J]. Journal of Central South University of Forestry and Technology, 2012, 32(6): 172-176(in Chinese).
    [3] ZHANG J, ZHANG B, CHEN X, et al. Antimicrobial Bamboo Materials Functionalized with ZnO and Graphene Oxide Nanocomposites[J]. 2017, 10(3): 239.
    [4] 李宇. 防霉型超薄竹刨花板的制备与性能研究[D]. 福州: 福建农林大学, 2023.

    LI Y. Research on the preparation and performance of mould-proof ultra-thin bamboo particleboard[D]. Fuzhou: Fujian Agriculture and Forestry University, 2023(in Chinese)
    [5] 余辉龙, 杜春贵, 刘宏治, 等. 竹材防霉研究进展与发展前景[J]. 竹子学报, 2016, 35(2): 46-51. doi: 10.3969/j.issn.1000-6567.2016.02.011

    YU Huilong, DU Chungui, LIU Hongzhi, et al. Progress and development prospect of bamboo mould prevention research[J]. Journal of Bamboo Research, 2016, 35(2): 46-51(in Chinese). doi: 10.3969/j.issn.1000-6567.2016.02.011
    [6] CAO C, XIE P, ZHOU Y, et al. Characterization, Thermal Stability and Antimicrobial Evaluation of the Inclusion Complex of Litsea cubeba Essential Oil in Large-Ring Cyclodextrins (CD9–CD22)[J]. 2023, 12(10): 2035.
    [7] FERRAZ C A, LEFERINK N G H, KOSOV I, et al. Isopentenol Utilization Pathway for the Production of Linalool in Escherichia coli Using an Improved Bacterial Linalool/Nerolidol Synthase[J]. ChemBioChem, 2021, 22(13): 2325-2334. doi: 10.1002/cbic.202100110
    [8] MACZKA W, DUDA-MADEJ A, GRABARCZYK M, et al. Natural Compounds in the Battle against Microorganisms—Linalool[J]. 2022, 27(20): 6928.
    [9] PRAKASH A, VADIVEL V, RUBINI D, et al. Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium[J]. Food Bioscience, 2019, 28: 57-65. doi: 10.1016/j.fbio.2019.01.018
    [10] RINALDI M A, TAIT S, TOOGOOD H S, et al. Bioproduction of Linalool From Paper Mill Waste[J]. 2022, 10: 892869.
    [11] ZHOU C, ZHANG S Q, LI Y M, et al. Preparation, characterization and properties of linalool and acyclic cucurbit n urils inclusion complexes[J]. Flavour and Fragrance Journal, 2024, 39(1): 23-32. doi: 10.1002/ffj.3764
    [12] Xiuli DONG, AMBROSE E. BOND, Liju YANG. Essential oil-incorporated carbon nanotubes filters for bacterial removal and inactivation[J]. PLOS ONE, 2019, 14(12): e0227220. doi: 10.1371/journal.pone.0227220
    [13] SAADAT S, PANDEY G, THARMAVARAM M, et al. Nano-interfacial decoration of Halloysite Nanotubes for the development of antimicrobial nanocomposites[J]. Advances in Colloid and Interface Science, 2020, 275: 102063. doi: 10.1016/j.cis.2019.102063
    [14] LIU M, JIA Z, JIA D, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite[J]. Progress in Polymer Science, 2014, 39(8): 1498-1525. doi: 10.1016/j.progpolymsci.2014.04.004
    [15] 靳肖贝. 纳米埃洛石负载IPBC竹材防霉剂的制备与性能研究[D]. 北京: 中国林业科学研究院, 2018.

    JIN Xiaobei. Preparation and Performance of IPBC Bamboo Preservatives Supported on Nano-sized Halloysite [D]. Beijing: Chinese Academy of Forestry, 2018. (in Chinese)
    [16] CUI R, ZHU B, YAN J, et al. Development of a Sodium Alginate-Based Active Package with Controlled Release of Cinnamaldehyde Loaded on Halloysite Nanotubes[J]. 2021, 10(6): 1150.
    [17] 吕佳帅男, 狄凯莹, 蔡鹏麟, 等. 埃洛石复配2-羧乙基苯基次膦酸对环氧树脂阻燃及力学性能的影响[J]. 复合材料学报, 2021, 38(1): 120-128.

    LV Jiashuainan, GENG Kaiying, CAI Penglin, et al. Effects of halloysite nanotubes and 2-carboxyethyl phenylphosphonic acid on flame retardant and mechanical properties of epoxy resin[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 120-128(in Chinese).
    [18] ZHENG H, MEI J, LIU F, et al. Preparation and characterization of carvacrol essential oil-loaded halloysite nanotubes and their application in antibacterial packaging[J]. Food Packaging and Shelf Life, 2022, 34: 100972. doi: 10.1016/j.fpsl.2022.100972
    [19] 中国国家标准化管理委员会. 纳米无机材料抗菌性能检测方法: GB/T 21510-2008[S]. 北京: 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会, 2008.

    National Standardisation Administration of China. Test methods for antibacterial properties of nanometer inorganic materials: GB/T 21510-2008 [S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China, 2008. (in Chinese)
    [20] 郭俸钰, 陈文学, 陈海明, 等. 芳樟醇对大肠杆菌的抑菌作用机制[J]. 现代食品科技, 2020, 36(4): 113-118.

    GUO Fengyu, CHEN Wenxue, CHEN Haiming, et al. Antibacterial Mechanism of Linalool against Escherichia coli[J]. Modern Food Science and Technology, 2020, 36(4): 113-118(in Chinese).
    [21] LI Y-N, ZHANG S-B, LV Y-Y, et al. Mechanisms underlying the inhibitory effects of linalool on Aspergillus flavus spore germination[J]. Applied Microbiology and Biotechnology, 2022, 106(19): 6625-6640.
    [22] 刘明贤. 具有新型界面结构的聚合物—埃洛石纳米复合材料[D]. 广州: 华南理工大学, 2010.

    LIU Mingxian. Polymer-halloysite nanocomposites with novelinterfacestructure[D]. Guangzhou: SouthChina University of Technology, 2010. (in Chinese)
    [23] TELES R D M, MOUCHREK Filho V E. Thermal Analysis of the Essential Oil of Aniba rosaeodora Ducke by TGA and DSC[J]. Research, Society and Development, 2022, 11(3): e3411326085. doi: 10.33448/rsd-v11i3.26085
    [24] KREPKER M, SHEMESH R, DANIN POLEG Y, et al. Active food packaging films with synergistic antimicrobial activity[J]. Food Control, 2017, 76: 117-126. doi: 10.1016/j.foodcont.2017.01.014
    [25] REINECCIUS T A, REINECCIUS G A, PEPPARD T L. Encapsulation of Flavors using Cyclodextrins: Comparison of Flavor Retention in Alpha, Beta, and Gamma Types[J]. 2002, 67(9): 3271-3279.
    [26] WANG Q, ZHANG J, ZHENG Y, et al. Adsorption and release of ofloxacin from acid- and heat-treated halloysite[J]. Colloids and Surfaces B: Biointerfaces, 2014, 113: 51-58. doi: 10.1016/j.colsurfb.2013.08.036
    [27] ASEMPOUR F, AKBARI S, BAI D, et al. Improvement of stability and performance of functionalized halloysite nano tubes-based thin film nanocomposite membranes[J]. Journal of Membrane Science, 2018, 563: 470-480. doi: 10.1016/j.memsci.2018.05.070
    [28] 邢维奇. 埃洛石纳米管/有机硅复合材料的制备与性能[D]. 广州: 华南理工大学, 2016.

    XING Weiqi. Preparation and properties of halloysite nanotubes/organosiliconcomposites[D]. Guangzhou: South China University of Technology, 2016. (in Chinese)
    [29] ZHU J, GUO N, ZHANG Y, et al. Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP[J]. Journal of Membrane Science, 2014, 465: 91-99. doi: 10.1016/j.memsci.2014.04.016
    [30] MENEZES P P, SERAFINI M R, QUINTANS-JUNIOR L J, et al. Inclusion complex of (−)-linalool and β-cyclodextrin[J]. Journal of Thermal Analysis and Calorimetry, 2014, 115(3): 2429-2437. doi: 10.1007/s10973-013-3367-x
    [31] JOUSSEIN E, PETIT S, CHURCHMAN J, et al. Halloysite clay minerals — a review[J]. Clay Minerals, 2005, 40(4): 383-426. doi: 10.1180/0009855054040180
    [32] ZHANG Y, FU L, YANG H. Insights into the physicochemical aspects from natural halloysite to silica nanotubes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414: 115-119.
    [33] ZHANG A-B, PAN L, ZHANG H-Y, et al. Effects of acid treatment on the physico-chemical and pore characteristics of halloysite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396: 182-188. doi: 10.1016/j.colsurfa.2011.12.067
    [34] WHITE R D, BAVYKIN D V, WALSH F C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions[J]. Nanotechnology, 2012, 23(6): 065705. doi: 10.1088/0957-4484/23/6/065705
    [35] VEISI H, DADRES N, MOHAMMADI P, et al. Green synthesis of silver nanoparticles based on oil-water interface method with essential oil of orange peel and its application as nanocatalyst for A3 coupling[J]. Materials Science and Engineering: C, 2019, 105: 110031. doi: 10.1016/j.msec.2019.110031
    [36] RMUTHU R N, RAJASHABALA S, KANNAN R. Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium[J]. Renewable Energy, 2016, 90: 554-564. doi: 10.1016/j.renene.2016.01.026
    [37] JIN J, ZHANG Y, OUYANG J, et al. Halloysite nanotubes as hydrogen storage materials[J]. Physics and Chemistry of Minerals, 2014, 41(5): 323-331. doi: 10.1007/s00269-013-0651-z
    [38] ABDULLAYEV E, JOSHI A, WEI W, et al. Enlargement of Halloysite Clay Nanotube Lumen by Selective Etching of Aluminum Oxide[J]. ACS Nano, 2012, 6(8): 7216-7226. doi: 10.1021/nn302328x
    [39] SONG S, ZHAO T, QIU F, et al. RETRACTED: Silver nanoparticle decorated halloysite nanotube for efficient antibacterial application[J]. Chemical Physics, 2019, 521: 51-54. doi: 10.1016/j.chemphys.2019.01.020
    [40] SPIRESCU V A, SUHAN R, NICULESCU A-G, et al. Biofilm-Resistant Nanocoatings Based on ZnO Nanoparticles and Linalool[J]. 2021, 11(10): 2564.
    [41] AL-GAASHANI R, ZAKARIA Y, GLADICH I, et al. XPS, structural and antimicrobial studies of novel functionalized halloysite nanotubes[J]. Scientific Reports, 2022, 12(1): 21633. doi: 10.1038/s41598-022-25270-7
    [42] ZHANG Y, FU L, SHU Z, et al. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance[J]. Nanoscale Research Letters, 2017, 12(1): 456. doi: 10.1186/s11671-017-2192-8
    [43] PAPOULIS D, KOMARNENI S, PANAGIOTARAS D, et al. Palygorskite–TiO2 nanocomposites: Part 2. photocatalytic activities in decomposing air and organic pollutants[J]. Applied Clay Science, 2013, 83-84: 198-202. doi: 10.1016/j.clay.2012.03.003
    [44] 谭道永, 曲天晨, 董发勤, 等. 管状埃洛石的微结构对其负载活性的制约[J]. 矿物学报, 2018, 38(4): 437-442.

    TAN Daoyong, QU Tianchen, DONG Faqin, et al. Constraint of the microstructure of tubular halloysite to its carrier performance[J]. Acta Mineralogica Sinica, 2018, 38(4): 437-442(in Chinese).
    [45] PANDA A K, MISHRA B G, MISHRAa D K, et al. Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 363(1): 98-104.
  • 加载中
计量
  • 文章访问数:  108
  • HTML全文浏览量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-20
  • 修回日期:  2024-06-24
  • 录用日期:  2024-06-28
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回