Antibacterial and Antifungal Properties of halloysite nanotubes by loaded Linalool
-
摘要: 芳樟醇具有良好的抗菌和抗氧化性,但易挥发且热稳定性差。埃洛石纳米管(HNTs)存在特殊中空孔道结构并具有保护和释放活性物质的功能,常作为纳米载体。因此,开展HNTs负载芳樟醇(LNL)的研究并进行抗菌试验。采用真空负压法将LNL负载到3 mol/L盐酸酸化后的埃洛石纳米管(AC-HNTs)管腔内部,制备出芳樟醇-酸化埃洛石纳米管(L-AC-HNTs)新型防霉抗菌剂。以竹制品中常见的大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)、黑曲霉菌(Aspergillus niger)、桔青霉菌(Penicillium oryzae)为目标菌种,考察不同添加量L-AC-HNTs的抑菌效果,测试其热稳定性和缓释性并进行表征分析。结果表明,添加1.5%(W/V)的L-AC-HNTs对以上几种细菌和霉菌的抑菌效果最佳,抑菌率均达到了100%。L-AC-HNTs的热分解速率峰值温度达到279.9 ℃,比纯LNL提高了81.5 ℃,AC-HNTs在50 ℃下挥发72 h后对LNL的保留率仍为94.6%,仅损失了3.4%,而纯LNL保留率为8%,酸化刻蚀后LNL负载量从5.0%最高提升至15.6%。L-AC-HNTs具有广谱抑菌性和热稳定性,为其在竹制品中的应用提供参考。Abstract: Linalool has good antibacterial and antifungal properties, but is volatile and thermally unstable. Halloysite nanotubes (HNTs) are often used as nanocarriers because of their special hollow pore structure and their ability to protect and release active substances. Therefore, the study of HNTs loaded with linalool (LNL) was carried out and antimicrobial tests were performed. Preparation of linalool acidified halloysite nanotubes (L-AC-HNTs) as a novel antibacterial and antifungal agent by loading LNL into the lumen of 3 mol/L hydrochloric acid acidified halloysite nanotubes (AC-HNTs) using a vacuum-negative pressure method. The inhibitory effects of different additive amounts of L-AC-HNTs were investigated on Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Penicillium oryzae, which are commonly found in bamboo products. The thermal stability and slow-release properties of the additive were also tested and characterised. The results showed that 1.5% (W/V) of L-AC-HNTs had the best inhibitory effect on the above bacteria and fungi, and the inhibition rate reached 100%. The peak thermal decomposition rate of L-AC-HNTs reached 279.9℃, which was 81.5℃ higher than that of the pure LNL, and the retention rate of LNL after volatilisation of the AC-HNTs at 50℃ for 72 h was 94.6%, with only the loss of LNL. 94.6%, with only 3.4% loss, while the retention rate of pure LNL was 8%, and the LNL loading increased from 5.0% to 15.6% at the highest after acid etching.The broad-spectrum bacteriostatic property and thermal stability of L-AC-HNTs provide references to its application in bamboo products.
-
Key words:
- Halloysite /
- Linalool /
- Antibacterial and antifungal /
- Load /
- Thermal stability
-
表 1 HNTs,AC-HNTs和L-AC-HNTs中Si、Al和C元素含量
Table 1. Content of Si、Al and C elements in HNTs, AC-HNTs and L-AC-HNTs
Samples Si Atomic/% Al Atomic /% C Atomic /% HNTs 14.20% 12.39% 14.83% AC-HNTs 14.18% 12.26% 13.19% L-AC-HNTs 12.84% 11.2% 24.59% 表 2 HNTs,AC-HNTs和L-AC-HNTs的比表面积和孔径结构数据
Table 2. SBET and porosity data of HNTs, AC-HNTs and L-AC-HNTs
Samples SBET/(m2·g−1) Vpore/(cm3·g−1) HNTs 13.5389 0.04 AC-HNTs 37.2893 0.09 L-AC-HNTs 28.8100 0.08 Notes:SBET is the specific surface area,Vpore is the total pore volume. -
[1] ZHANG J, HUANG Q, Du C, et al. Preparation and Anti-Mold Properties of Nano-ZnO/Poly(N-isopropylacrylamide) Composite Hydrogels[J]. 2020, 25(18): 4135. [2] 李能, 陈玉和, 包永洁, 等. 国内外竹材防腐的研究进展[J]. 中南林业科技大学学报, 2012, 32(6): 172-176.LI Neng, CHEN Yuhe, BAO Yongjie, et al. Research progress of bamboo preservation in China and abroad[J]. Journal of Central South University of Forestry and Technology, 2012, 32(6): 172-176(in Chinese). [3] ZHANG J, ZHANG B, CHEN X, et al. Antimicrobial Bamboo Materials Functionalized with ZnO and Graphene Oxide Nanocomposites[J]. 2017, 10(3): 239. [4] 李宇. 防霉型超薄竹刨花板的制备与性能研究[D]. 福州: 福建农林大学, 2023.LI Y. Research on the preparation and performance of mould-proof ultra-thin bamboo particleboard[D]. Fuzhou: Fujian Agriculture and Forestry University, 2023(in Chinese) [5] 余辉龙, 杜春贵, 刘宏治, 等. 竹材防霉研究进展与发展前景[J]. 竹子学报, 2016, 35(2): 46-51. doi: 10.3969/j.issn.1000-6567.2016.02.011YU Huilong, DU Chungui, LIU Hongzhi, et al. Progress and development prospect of bamboo mould prevention research[J]. Journal of Bamboo Research, 2016, 35(2): 46-51(in Chinese). doi: 10.3969/j.issn.1000-6567.2016.02.011 [6] CAO C, XIE P, ZHOU Y, et al. Characterization, Thermal Stability and Antimicrobial Evaluation of the Inclusion Complex of Litsea cubeba Essential Oil in Large-Ring Cyclodextrins (CD9–CD22)[J]. 2023, 12(10): 2035. [7] FERRAZ C A, LEFERINK N G H, KOSOV I, et al. Isopentenol Utilization Pathway for the Production of Linalool in Escherichia coli Using an Improved Bacterial Linalool/Nerolidol Synthase[J]. ChemBioChem, 2021, 22(13): 2325-2334. doi: 10.1002/cbic.202100110 [8] MACZKA W, DUDA-MADEJ A, GRABARCZYK M, et al. Natural Compounds in the Battle against Microorganisms—Linalool[J]. 2022, 27(20): 6928. [9] PRAKASH A, VADIVEL V, RUBINI D, et al. Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium[J]. Food Bioscience, 2019, 28: 57-65. doi: 10.1016/j.fbio.2019.01.018 [10] RINALDI M A, TAIT S, TOOGOOD H S, et al. Bioproduction of Linalool From Paper Mill Waste[J]. 2022, 10: 892869. [11] ZHOU C, ZHANG S Q, LI Y M, et al. Preparation, characterization and properties of linalool and acyclic cucurbit n urils inclusion complexes[J]. Flavour and Fragrance Journal, 2024, 39(1): 23-32. doi: 10.1002/ffj.3764 [12] Xiuli DONG, AMBROSE E. BOND, Liju YANG. Essential oil-incorporated carbon nanotubes filters for bacterial removal and inactivation[J]. PLOS ONE, 2019, 14(12): e0227220. doi: 10.1371/journal.pone.0227220 [13] SAADAT S, PANDEY G, THARMAVARAM M, et al. Nano-interfacial decoration of Halloysite Nanotubes for the development of antimicrobial nanocomposites[J]. Advances in Colloid and Interface Science, 2020, 275: 102063. doi: 10.1016/j.cis.2019.102063 [14] LIU M, JIA Z, JIA D, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite[J]. Progress in Polymer Science, 2014, 39(8): 1498-1525. doi: 10.1016/j.progpolymsci.2014.04.004 [15] 靳肖贝. 纳米埃洛石负载IPBC竹材防霉剂的制备与性能研究[D]. 北京: 中国林业科学研究院, 2018.JIN Xiaobei. Preparation and Performance of IPBC Bamboo Preservatives Supported on Nano-sized Halloysite [D]. Beijing: Chinese Academy of Forestry, 2018. (in Chinese) [16] CUI R, ZHU B, YAN J, et al. Development of a Sodium Alginate-Based Active Package with Controlled Release of Cinnamaldehyde Loaded on Halloysite Nanotubes[J]. 2021, 10(6): 1150. [17] 吕佳帅男, 狄凯莹, 蔡鹏麟, 等. 埃洛石复配2-羧乙基苯基次膦酸对环氧树脂阻燃及力学性能的影响[J]. 复合材料学报, 2021, 38(1): 120-128.LV Jiashuainan, GENG Kaiying, CAI Penglin, et al. Effects of halloysite nanotubes and 2-carboxyethyl phenylphosphonic acid on flame retardant and mechanical properties of epoxy resin[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 120-128(in Chinese). [18] ZHENG H, MEI J, LIU F, et al. Preparation and characterization of carvacrol essential oil-loaded halloysite nanotubes and their application in antibacterial packaging[J]. Food Packaging and Shelf Life, 2022, 34: 100972. doi: 10.1016/j.fpsl.2022.100972 [19] 中国国家标准化管理委员会. 纳米无机材料抗菌性能检测方法: GB/T 21510-2008[S]. 北京: 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会, 2008.National Standardisation Administration of China. Test methods for antibacterial properties of nanometer inorganic materials: GB/T 21510-2008 [S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China, 2008. (in Chinese) [20] 郭俸钰, 陈文学, 陈海明, 等. 芳樟醇对大肠杆菌的抑菌作用机制[J]. 现代食品科技, 2020, 36(4): 113-118.GUO Fengyu, CHEN Wenxue, CHEN Haiming, et al. Antibacterial Mechanism of Linalool against Escherichia coli[J]. Modern Food Science and Technology, 2020, 36(4): 113-118(in Chinese). [21] LI Y-N, ZHANG S-B, LV Y-Y, et al. Mechanisms underlying the inhibitory effects of linalool on Aspergillus flavus spore germination[J]. Applied Microbiology and Biotechnology, 2022, 106(19): 6625-6640. [22] 刘明贤. 具有新型界面结构的聚合物—埃洛石纳米复合材料[D]. 广州: 华南理工大学, 2010.LIU Mingxian. Polymer-halloysite nanocomposites with novelinterfacestructure[D]. Guangzhou: SouthChina University of Technology, 2010. (in Chinese) [23] TELES R D M, MOUCHREK Filho V E. Thermal Analysis of the Essential Oil of Aniba rosaeodora Ducke by TGA and DSC[J]. Research, Society and Development, 2022, 11(3): e3411326085. doi: 10.33448/rsd-v11i3.26085 [24] KREPKER M, SHEMESH R, DANIN POLEG Y, et al. Active food packaging films with synergistic antimicrobial activity[J]. Food Control, 2017, 76: 117-126. doi: 10.1016/j.foodcont.2017.01.014 [25] REINECCIUS T A, REINECCIUS G A, PEPPARD T L. Encapsulation of Flavors using Cyclodextrins: Comparison of Flavor Retention in Alpha, Beta, and Gamma Types[J]. 2002, 67(9): 3271-3279. [26] WANG Q, ZHANG J, ZHENG Y, et al. Adsorption and release of ofloxacin from acid- and heat-treated halloysite[J]. Colloids and Surfaces B: Biointerfaces, 2014, 113: 51-58. doi: 10.1016/j.colsurfb.2013.08.036 [27] ASEMPOUR F, AKBARI S, BAI D, et al. Improvement of stability and performance of functionalized halloysite nano tubes-based thin film nanocomposite membranes[J]. Journal of Membrane Science, 2018, 563: 470-480. doi: 10.1016/j.memsci.2018.05.070 [28] 邢维奇. 埃洛石纳米管/有机硅复合材料的制备与性能[D]. 广州: 华南理工大学, 2016.XING Weiqi. Preparation and properties of halloysite nanotubes/organosiliconcomposites[D]. Guangzhou: South China University of Technology, 2016. (in Chinese) [29] ZHU J, GUO N, ZHANG Y, et al. Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP[J]. Journal of Membrane Science, 2014, 465: 91-99. doi: 10.1016/j.memsci.2014.04.016 [30] MENEZES P P, SERAFINI M R, QUINTANS-JUNIOR L J, et al. Inclusion complex of (−)-linalool and β-cyclodextrin[J]. Journal of Thermal Analysis and Calorimetry, 2014, 115(3): 2429-2437. doi: 10.1007/s10973-013-3367-x [31] JOUSSEIN E, PETIT S, CHURCHMAN J, et al. Halloysite clay minerals — a review[J]. Clay Minerals, 2005, 40(4): 383-426. doi: 10.1180/0009855054040180 [32] ZHANG Y, FU L, YANG H. Insights into the physicochemical aspects from natural halloysite to silica nanotubes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414: 115-119. [33] ZHANG A-B, PAN L, ZHANG H-Y, et al. Effects of acid treatment on the physico-chemical and pore characteristics of halloysite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396: 182-188. doi: 10.1016/j.colsurfa.2011.12.067 [34] WHITE R D, BAVYKIN D V, WALSH F C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions[J]. Nanotechnology, 2012, 23(6): 065705. doi: 10.1088/0957-4484/23/6/065705 [35] VEISI H, DADRES N, MOHAMMADI P, et al. Green synthesis of silver nanoparticles based on oil-water interface method with essential oil of orange peel and its application as nanocatalyst for A3 coupling[J]. Materials Science and Engineering: C, 2019, 105: 110031. doi: 10.1016/j.msec.2019.110031 [36] RMUTHU R N, RAJASHABALA S, KANNAN R. Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium[J]. Renewable Energy, 2016, 90: 554-564. doi: 10.1016/j.renene.2016.01.026 [37] JIN J, ZHANG Y, OUYANG J, et al. Halloysite nanotubes as hydrogen storage materials[J]. Physics and Chemistry of Minerals, 2014, 41(5): 323-331. doi: 10.1007/s00269-013-0651-z [38] ABDULLAYEV E, JOSHI A, WEI W, et al. Enlargement of Halloysite Clay Nanotube Lumen by Selective Etching of Aluminum Oxide[J]. ACS Nano, 2012, 6(8): 7216-7226. doi: 10.1021/nn302328x [39] SONG S, ZHAO T, QIU F, et al. RETRACTED: Silver nanoparticle decorated halloysite nanotube for efficient antibacterial application[J]. Chemical Physics, 2019, 521: 51-54. doi: 10.1016/j.chemphys.2019.01.020 [40] SPIRESCU V A, SUHAN R, NICULESCU A-G, et al. Biofilm-Resistant Nanocoatings Based on ZnO Nanoparticles and Linalool[J]. 2021, 11(10): 2564. [41] AL-GAASHANI R, ZAKARIA Y, GLADICH I, et al. XPS, structural and antimicrobial studies of novel functionalized halloysite nanotubes[J]. Scientific Reports, 2022, 12(1): 21633. doi: 10.1038/s41598-022-25270-7 [42] ZHANG Y, FU L, SHU Z, et al. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance[J]. Nanoscale Research Letters, 2017, 12(1): 456. doi: 10.1186/s11671-017-2192-8 [43] PAPOULIS D, KOMARNENI S, PANAGIOTARAS D, et al. Palygorskite–TiO2 nanocomposites: Part 2. photocatalytic activities in decomposing air and organic pollutants[J]. Applied Clay Science, 2013, 83-84: 198-202. doi: 10.1016/j.clay.2012.03.003 [44] 谭道永, 曲天晨, 董发勤, 等. 管状埃洛石的微结构对其负载活性的制约[J]. 矿物学报, 2018, 38(4): 437-442.TAN Daoyong, QU Tianchen, DONG Faqin, et al. Constraint of the microstructure of tubular halloysite to its carrier performance[J]. Acta Mineralogica Sinica, 2018, 38(4): 437-442(in Chinese). [45] PANDA A K, MISHRA B G, MISHRAa D K, et al. Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 363(1): 98-104.
计量
- 文章访问数: 108
- HTML全文浏览量: 52
- 被引次数: 0