Research progress in photothermal conversion mechanism and performance enhancement of the microencapsulated phase change materials
-
摘要: 微胶囊相变材料解决了相变材料易泄露、易腐蚀的问题,被广泛应用在太阳能利用、调温纤维与织物、节能建筑和传热流体等领域。但常规相变微胶囊由于芯壳结构,削弱了光热转换性能,存在光热转换性能差的问题,通过添加光热材料对相变微胶囊改性可以有效提高光热转换性能。本文首先总结了相变微胶囊芯材、壳材的选择及各类材料的特点。重点阐述了有机光热材料、碳基材料、半导体材料、金属基材料等光热材料的特点及其光热转换机制。同时,引入光热转换效率,概述了不同改性材料对相变微胶囊光热性能的提升。最后展望了光热转换改性相变微胶囊未来的发展方向。Abstract: Microencapsulated phase change materials (MPCM) can effectively prevent leakage and corrosion of phase change materials, which are widely utilized in the fields of solar energy utilization, thermo-regulated fibers and fabrics, energy saving buildings and heat transfer fluids. However, there is a problem that the core-shell structure of conventional MPCM weakens the photothermal conversion performance. The poor performance can be effectively improved by modifying MPCM with the addition of photothermal materials. In this paper, the materials of MPCM’s core and shell and their characteristics are summarized. The characteristics and photothermal conversion mechanisms of photothermal materials, including organic photothermal materials, carbon-based materials, semiconductor materials, metal-based materials and other photothermal materials, are illustrated. Additionally, photothermal conversion efficiency is introduced to evaluate the enhancement of photothermal properties of modified MPCM with different modified photothermal materials. Finally, future trend of modified MPCM with photothermal conversion is prospected.
-
水环境问题在世界范围内日益突出,包括水资源短缺、水污染和水资源退化,特别是在发展中国家更为严重[1,2,3]。从海水中获取淡水资源无疑是最便捷的方法。目前海水淡化的技术包括反渗透、蒸馏、多级闪蒸、电渗析等[4,5] 。然而,大多数传统方法不可避免地容易受到复杂操作、大量能源消耗和二次污染的影响。太阳能界面水蒸发系统以其绿色无污染引起人们的关注[6,7,8] 。各种光热材料已被用于太阳能海水淡化和废水净化,例如半导体[9,10]、水凝胶[11]、碳材料[12]和Mxene材料[13,14],它们利用太阳能将热量集中在水-空气界面之间,使水分子获得足够的能量转化为蒸汽,从而实现水的快速蒸发[15]。
塑料是人类生产的特殊材料,具有工业聚合物的许多理想特性,例如重量轻、防水、价格低廉、坚固、持久和柔韧[16,17]。对塑料的需求飙升导致产量以惊人的速度增长,以使用和用途最广泛的热塑性塑料聚酯塑料(PET)为例,约占所有塑料使用量的13%(约88亿吨)[18]。而大多数塑料都会变成废物,最后造成环境污染[19,20]。利用废弃塑料可以制造具有一系列具有纳米结构和形态的碳质材料,例如多级多孔碳、碳纳米管(CNT)、石墨烯、碳量子点和碳基复合材料[21,22]。因此可以利用PET废料转化为碳材料,来减少塑料污染。 近年来金属有机框架(MOF)成为研究的热点,它是由金属节点和有机连接器组成的一类独特的多孔晶体材料,由氧或氮的有机配体和过渡金属共同组成的网状框架[23],由于具有比表面积大、孔隙率高和灵活可调控等结构优势,被应用于不同的领域,如吸附[24]、分离[25]、催化[26]。在此背景下,利用废旧PET生产可调控的MOF材料成为可能,既能降低MOF的生产成本,也能解决塑料污染问题,助力实现碳中和。
本文报道了利用水热法将废旧PET和FeCl3·6H2O复合制备了Fe-MOF,然后在氮气氛围下管式炉中碳化生成Fe3O4/C,所生成的碳基材料具有高比表面积和多孔结构,利用该材料制成的太阳能蒸发器具有亲水性强、水运输快和2.63 kg·m−2·h−1的高蒸发速率。该多功能复合蒸发器对盐水、含有重金属离子和有机染料的污水都具有良好的蒸发速率。为日后从不同渠道获取淡水提供了可能性。
1. 实验材料及方法
1.1 化学药品和材料
废旧的PET是从网上购买;FeCl3·6H2O(纯度≥99%)来自国药公司;N, N-二甲基甲酰胺(DMF)(纯度≥99.9%)、戊二醛(纯度≥50%)、亚甲基蓝(纯度≥70.0%)、明胶(纯度≥99%)、氯化钠纯度(≥99.8%)均来自阿拉丁;无纺棉布购自金华树无纺布科技。
1.2 Fe-MOF前驱体的制备
首先,将废旧的PET裁剪成1 cm2的薄片,在剪之前将PET进行酒精消毒去除污染物,然后将12 mmol的PET和6 mmol的FeCl3·6H2O放入高压反应釜中,之后,加入15 mL去离子水和30 mL的DMF。然后将反应釜放入风箱中,在180℃的风箱中反应24H,缓慢冷却后,通过离心机分离Fe-MOF,以
5000 r/min离心三分钟,用去离子水洗涤三次,最后一次离心完毕后,留下沉淀,将所得产物放入风箱中干燥,得到棕红色产物为Fe-MOF。1.3 Fe3O4/C-X和柔性蒸发膜的制备
将2 g的Fe-MOF在氮气氛围下放入管式炉中加热,升温速率为5℃/min,保温两个小时,所得黑色产物记作Fe3O4/C-x,其中x (500°C,600°C,700°C)为碳化温度。利用同样的方法将PET直接碳化制备的碳材料记作C-x。然后,采用浸涂法制备柔性Fe3O4/C-x蒸发膜:首先,将80 mg明胶加入到4 mL的水中,在35℃的恒温水浴锅中以550 r/min的速度搅拌20 min制成2 wt%明胶溶液,之后将80 mg的Fe3O4/C-x加入明胶溶液中,继续以相同的转速搅拌20分钟,得到混合液,将混合溶液均匀地涂覆在一块棉布(直径= 5 cm)上,在室温下干燥,干燥完后在3 wt% 戊二醛溶液中交联2小时。同样的方法,用C-x材料和明胶/戊二醛对棉布改性,制备C-x蒸发膜和棉布改性蒸发膜。
1.4 表征
利用扫描电子显微镜(SEM 日本Hitachi Regulus 8100)和透射电子显微镜(TEM 美国FEI Tecnai F20)进行形貌分析;比表面积和孔隙度利用美国Quantachrome Autosorb IQ进行分析,通过密度泛函理论(DFT)或Barret-Joyner-Halenda(BJH)模型计算孔径分布;X射线衍射(XRD)在SmartLab-SE衍射仪上进行,利用美国赛默飞公司Nicolet is50进行FT-IR测试,利用美国Thermo Scientific K-Alpha进行XPS分析;紫外/可见/近红外光利用PE Lambda 950进行测量,水接触角从Dataphysics OCA20获得。
1.5 太阳能界面蒸发系统
太阳能界面蒸发系统由光源部分和测量部分组成,光源由(CEL-S500 L)提供,由电子天平(DNA303 A)记录重量变化,采用红外摄像机(DMI220)测量蒸发器表面温度。太阳能蒸发速率为(m,kg·m−2·h−1)和光热转换效率(η,%),可有下面公式计算:
m=Δm/(S×t) η=m′×hLV/(3600×P) 其中Δm是水质量变化(kg),S表示有效光照面积(m2)、P在表示照明强度(kW/m−2),t表示光照时间(h),m'表示暗中蒸发率减去蒸发率后的蒸发率,hLV代表水蒸发焓(kJ /kg−1)。
2. 结果与讨论
2.1 微观形貌、结构性能和元素分析
为了研究Fe-MOF的结构,对其进行红外分析。图1(a)所示,在
3435 cm−1上存在一个峰,这代表着Fe-MOF中存在O—H键;在1682 cm−1处出现了C=O吸收峰;在1501 cm−1,1467 cm−1,1427 cm−1的峰是苯环的骨架震动,这表明了PET水解生成了对苯二甲酸;559 cm−1是Fe—O的特征吸收峰。以上这些共同表明了Fe-MOF是由对苯二甲酸和Fe(III)组成,并且两者间形成Fe—O键[27,28]。煅烧后的FT-IR图像出现明显变化(图1(a)),在1300 -1500 cm−1处的吸收峰大量消失,说明大部分的MOF结构被破坏,在后续的XRD结果中也有体现。而对于Fe3O4/C-500,Fe3O4/C-600,Fe3O4 /C-700,则表现出相似的红外吸收峰。随着煅烧温度的增加,在3435 cm−1处的O—H在逐渐增强,说明暴露出更多的活性金属位点,并允许更多的水分子与之接触,这对材料的亲水性能有很大帮助。值得注意的是, 559 cm−1处的吸收峰依旧存在,表明煅烧并未完全破坏Fe-MOF的结构。图1(b)是不同材料的XRD谱图,Fe-MOF衍射图谱与模拟的Fe-MOF以及文献报道的衍射图谱一致[29,30],进一步证明Fe-MOF的成功制备。Fe3O4/C-x与Fe-MOF相比,在2θ=24.2°、25.2°27.9°处所对应的MOF衍射峰消失,在2θ=30°、35.6°、43.2°、57°出现了新的衍射峰,所对应的分别是Fe3O4的(220)、(331)、(400)和(511)晶面,这与Fe3O4(PDF#72-
2303 )的相同,表明煅烧将之后生成了Fe3O4,且衍射峰较为清晰。在17.4°的的衍射峰对应的是MOF骨架,而经过煅烧之后Fe3O4 -x的MOF骨架的衍射峰强度明显减弱,与FT-IR分析结果相对应,且偏移到18.2°,可能由于Fe-MOF骨架的轻微扩张和部分分解的有机基团造成。显而易见,随着Fe3O4 -x煅烧温度的不断增强,Fe3O4的衍射峰在逐渐增强,说明更高的温度有利于Fe3O4的形成,但在600°C和700°C峰的强度相差不大。通过扫描电镜对Fe-MOF和Fe3O4/C-600的形貌进行表征,可以看到Fe-MOF是由大小在1-0.5 μm左右球形颗粒组成(图2(a)),其表面较为光滑,相互堆叠,而Fe3O4/C -600是由100 nm左右的球状微粒相互团聚堆叠组成(图2(b)、(c)),球形微粒变小的原因是高温碳化导致的。与Fe-MOF相比,可以很明显的看到Fe3O4/C-600含有许多的介孔或微孔,这些孔隙是在碳化过程中产生的气体所致,而这些孔隙为后面水的运输提供了帮助。进一步研究Fe3O4/C-600的微观结构,用高分辨率电镜(HRTEM)对其进行表征,从图2(c)可以看到在Fe3O4/C-600纳米颗粒的表面覆盖了一层薄碳层,阻止其进行迁移和积累,还可以清晰看到Fe3O4的(-102)晶面,晶格间距为0.26 nm。
为了进一步确定样品表面的化学状态,采用X射线光电子能谱(XPS)对样品进行测试。如图3(a)所示Fe-MOF和Fe3O4/C-600的XPS全谱图,可以看到主要元素为C、O。Fe-MOF和Fe3O4/C-600中的Fe,C,O元素其相对含量总结如表1所示
表 1 Fe-MOF和Fe3O4/C-600的元素含量(at%)Table 1. Elemental content of Fe-MOF and Fe3O4/C-600(at%)Sample C O Fe Fe-MOF 68.43 29.43 2.15 Fe3O4/C-600 75.89 19.48 4.64 由表1可知,在煅烧之后Fe3O4/C-600的C含量由68.43%提升到75.89%,同时,O含量由29.43%下降到19.48%,说明在煅烧过程中Fe-MOF发生碳化。图3(b)是C1 s的高分辨率谱图,从图中可知Fe-MOF和Fe3O4/C-600共有三个拟合峰,其中284.80 eV的位置对应碳原子中的C—C/C=C键,288.99 eV±0.7 eV对应C=O键;而286.54 eV±0.2 eV则对应C—O键;图3(c)是O1 s的高分辨率谱图,从图中可知Fe-MOF和Fe3O4/C-600也共有三个拟合峰,其结合能分别为529.79 eV±0.6 eV,531.87 eV±0.2 eV和533.30 eV±0.3 eV,分别属于Fe—O键、C=O键,和C—O键,和Fe-MOF煅烧过后相比,Fe3O4/C-600在530.39 eV所代表Fe—O键的峰明显增强。Fe-MOF和Fe3O4/C-600在O1 s的531.87 eV±0.2 eV和C1 s的288.99 eV±0.7 eV代表的是C=O,两者相比,Fe3O4/C-600的峰明显减弱,这归因于Fe-MOF在碳化的过程中,有机连接剂对羧酸盐基团的分解。图3(d)是Fe2 p的高分辨率谱图,其中Fe-MOF的结合能级在710.57 eV和724.09 eV处的峰分别与Fe2 p3/2、Fe2 p1/2的轨道自旋值相匹配,而718.12 eV处的卫星峰与724.09 eV处的Fe2 p1/2接近,说明该峰代表的是Fe2+的氧化物;在煅烧之后,该卫星峰由718.12 eV转化为713.54 eV,与Fe 2 p3/2峰更为接近,这说明该峰代表的是Fe3+的氧化物,这证明了在经过煅烧之后的Fe-MOF生成了Fe3O4与C的复合光热材料。
2.2 Fe3O4/C-x膜的亲水性、光吸收性和热吸收性
考虑到亲水性是太阳能蒸发过程中供水的关键因素,测试了Fe3O4/C-600膜的润湿性,水接触角如图4所示,测试发现:在水滴滴下的2 s后,Fe3O4/C-500膜的水接触角为16°,而Fe3O4/C-600膜的水接触角为27°,Fe3O4/C-700膜的水接触角为44°,可以看到Fe3O4/C-500和Fe3O4/C-600具有很好的润湿性能,而在水滴滴下的48 s后,Fe3O4/C-500膜的水接触角为10°,而Fe3O4/C-600膜则在48 s内完全浸没,Fe3O4/C-700膜的水接触角为30°,这表明了Fe3O4/C-600膜的亲水性较好。
Fe-MOF和Fe3O4/C-600的吸附-脱附等温线如图5(a)、(b)所示,Fe3O4/C-600属于IV型等温线,有明显的回滞环,说明其具有多孔性,含有丰富的介孔和微孔。孔径分布结果表明,Fe-MOF的孔径分布范围在0-100 nm,其比表面积为2.99 m2g−1,平均孔径为3.08 nm,而Fe3O4/C-600的孔径分布范围也在0-100 nm之间,其比表面积增加到20.88 m2g−1,平均孔径为3.44 nm;这表明了Fe-MOF在煅烧之后,比表面积大幅增加,由2.99 m2g−1增加到20.88 m2g−1,增幅高达700%;而孔径也从3.084 nm增加到3.44 nm。这为增强材料的亲水性和光吸收率提供了帮助。
光热材料的光吸收特性决定了其光热转化的效率,因此在200 nm-
2500 nm范围内对Fe3O4/C -x和Fe-MOF进行吸光率测试,由图6(a)可知:Fe-MOF在200-2500 nm范围内的光吸收较差(平均吸光率仅为60%),而在煅烧之后的Fe3O4/C -x在200 nm-2500 nm的光吸收能力(平均吸光率为91%)均比Fe-MOF强,特别是在可见光范围内要比Fe-MOF的吸光率大得多,主要是因为,其一碳化之后Fe3O4/C-x为黑色粉末更容易吸光,其二Fe3O4/C -x的多孔结构会使阳光进行多次反射从而增加吸光率,在之前的研究中也有类似的情况出现[31,32]。在200-2500 nm的范围内的Fe3O4/C -x吸光能力能始终维持在一个相当高的值,并且对该波长范围内的光吸收能力基本稳定。也就是说,在日光的大部分范围内,与Fe-MOF相比,Fe3O4/C -x材料的光吸收能力明显较强。图6(b)、(c)显示了棉布和Fe3O4/C -600膜的表面温度变化,Fe3O4/C-600膜表面温度在3 min内迅速上升到59.5°C,并逐渐稳定在63°C,而棉布在照射15 min后温度只有35°C左右,当光照结束后Fe3O4/C -600的温度能够迅速降下来,说明具有很强的光反应能力。上述结果表明,Fe3O4/C -600膜在太阳能转化为热能方面具有优异的性能。综上所述,由于Fe3O4/C-600具有良好的光吸收、光热转化和亲水性能因此后面的蒸发实验以Fe3O4/C-600为主。
2.3 Fe3O4/C-x膜的界面太阳能驱动蒸汽生成
实验采用自制的测试系统,进行太阳能界面水蒸发实验。为了减小误差的影响,保证所有的膜大小一致,测试环境温度为27℃、湿度为32%,由图7(a)所示,水的损失量随着时间的增加而增加,且呈现出线性关系,如图7(b)所示C-x、Fe -MOF、Fe3O4/C-500、Fe3O4/C-600、Fe3O4/C-700的蒸发速率分别为1.32 kg·m−2·h−1、2.19 kg·m−2·h−1、2.35 kg·m−2·h−1、2.63 kg·m−2·h−1、1.99 kg·m−2·h−1均远大于棉布的0.71 kg·m−2·h−1的蒸发速率,而Fe -MOF、Fe3O4/C-x的蒸发速率明显大于C-x,说明Fe的加入对蒸发速率有明显的提升,特别是Fe3O4/C-600的蒸发速率高达2.63 kg·m−2·h−1,这得益于球形纳米颗粒的内部结构提高光热转换能力和丰富的微孔/中孔增强亲水性能。如图7(c)为了验证Fe3O4/C-600蒸发膜的稳定性,进行了连续循环实验,在20个小时的实验中其蒸发效率都能保持在2.63 kg·m−2·h−1左右,说明其有良好的稳定工作能力。
为了验证其淡化海水的能力,在实验室用不同NaCl浓度的盐水进行模拟,如图7(d)所示,1 wt%、3.5 wt%、6 wt% 、10 wt%各浓度所对应的蒸发速率为2.72 kg·m−2·h−1、2.31 kg·m−2·h−1、2.26 kg·m−2·h−1、 2.1 kg·m−2·h−1,可以看到即使是在10 wt%的NaCl浓度下,蒸发速率也能保持在2 kg·m−2·h−1以上,特别是1 wt% 浓度的盐水,蒸发速率高于纯水,原因是较低浓度的盐水在蒸发过程中能够提高蒸气压,从而加快蒸发速率,这种现象在之前的研究中也有过报道[33]。
废水排放造成的淡水污染日益严重,特别是一些重金属离子,例如 Fe3+ 、Mn2+和 Cr2+等金属离子,人们不可避免会使用一些受重金属离子污染的水,长时间的积累可能会导致中毒甚至死亡[34]。工业废水排放的染料对水资源也会造成很大的污染,如亚甲基蓝(MB)是污染水中常见的污染物之一,长期暴露于高浓度的MB可导致皮肤癌、脑和心脏损伤等疾病[35]。为了验证Fe3O4/C-600对水中金属离子的蒸发效率,用3 wt%的(NaCl、KCl、MnCl2、FeCl3)金属盐进行模拟(图7(e)),可以发现所制备材料不仅对各种金属离子都有着2.3 kg·m−2·h−1以上的蒸发速率,而且对价态较高的金属离子具有更高的蒸发速率,原因可能是较高价态的金属离子和Fe3O4/C纳米颗粒产生更强的离子共振效应,增强光热转换。图7(f)所示,蒸发3 wt%浓度亚甲基蓝水,吸光度从蒸发前的3 g/L·cm下降到蒸发后的
0.0233 g/L·cm,降解率达到了99.2%,从插图中也可以看到水的颜色从蓝色到无色透明。2.4 室外界面太阳能蒸发
为了验证Fe3O4/C-600的实际蒸发能力,进行户外蒸发3.5 wt%NaCl盐水的实验,实验所用到的蒸发装置如8(a)所示,该装置由蒸发器和Fe3O4/C-600膜组成,蒸汽在顶部的半球形罩内凝结,由下面的水槽进行收集,实验地点为淮南,温度 26℃-33℃、湿度为36%,实验时间为9:00—19:00。图8(b)为蒸发了一个小时的图片,我们可以看到在顶部有大量的小水珠凝结。图8(c)、(d)所示在蒸发过程中界面最高温度可达40.5℃、最高蒸发量为0.77 kg·m−2·h−1,十个小时的蒸发时间共产水4.78 kg·m−2,因此,一个1平方米的该装置产生的淡水可以满足两个成年人每天的饮水量。上述结果表明,Fe3O4/C-600蒸发器在淡水生产方面有着良好潜力。
3. 结 论
综上所述,利用废旧废聚酯(PET)水热合成了Fe -MOF,获得了低成本、快速的合成MOF结构的方法。
(1) Fe3O4/C-600纳米颗粒由100 nm左右的球状微粒构成,具有较高比表面积(20.88 m2g−1)、多孔性,用其制成的柔性蒸发膜拥有良好光吸收、亲水性和光热转换能力,蒸发速率在2.63 kg·m−2·h−1、光热转换率为97.3%。
(2)对含有重金属离子水的蒸发率保持在2 kg·m−2·h−1以上,特别是对盐水的蒸发有着较高的水平,即使是在10 wt%的NaCl浓度下,蒸发速率也能保持在2.1 kg·m−2·h−1,并且在蒸发前后水中亚甲基蓝的去除率高达99.2%。
(3)由Fe3O4/C-600组成的蒸发器在室外蒸发也有着优异的表现,在蒸发过程中界面最高温度可达40.5℃、最高蒸发量为0.77 kg·m−2·h−1,十个小时的蒸发时间共产水4.78 kg·m−2。
因此Fe3O4/C-600蒸发膜在废旧塑料资源化利用和获取淡水方面有着不错的潜力。
-
图 5 (a) MPCM制备原理图;(b) 不同壳层SiO2 (SCN)、SiO2/聚多巴胺(SCN/PDA)、SiO2/聚吡咯(SCN/PPy)、SiO2/聚多巴胺掺杂聚吡咯(SCN/PAP)的MPCM光吸收强度曲线;(c) 不同比例的PAP∶ SCN的MPCM光吸收强度曲线[122]
CTAB—Cetyl trimethyl ammonium bromide; n-OD—n-octadecane; TEOS—Tetraethyl orthosilicate; PY—Pyrrole; DA—Dopamine; SCN micro-PCMs—n-OD@SiO2 microencapsulated phase change materials; PAP—Polydopamine-doped polypyrrole complexes
Figure 5. (a) Preparation principle of MPCM; (b) Light absorption intensity curves of MPCM with different shells n-OD@SiO2 (SCN), SCN/polydopamine (PDA), SCN/polypyrrole (PPy), SCN/polydopamine-doped polypyrrole complexes (PAP); (c) Light absorption intensity curves of PAP∶SCN MPCM with different ratios[122]
图 7 (a) 不同样品的紫外-可见光谱[134];(b) 不同量SiC的MPCM的时间-温度曲线[138];(c) 不同MPCM的温度-时间响应曲线;(d) 不同样品的各波段光响应曲线[139]
UVA—Ultraviolet visible A (400-320 nm); UVB—Ultraviolet visible B (320-280 nm); UVC—Ultraviolet visible C (100-280 nm); CA—Capric acid
Figure 7. (a) Ultraviolet visible spectra of the different samples[134]; (b) Time-temperature curves of the MPCM with different amount of SiC[138]; (c) Temperature-time response curves of different MPCM; (d) Light response curves of different samples at different wavelengths[139]
图 8 (a)样品M0(正十八烷@CuS-SiO2 MPCM)及其不同反应温度M4 (60℃)、M2 (70℃)、M5 (80℃)下的吸收光谱[145];(b)不同样品的吸收光谱[147]
NIR—Near-infrared
Figure 8. (a) Absorbance spectra of samples M0 (n-octadecane@CuS-SiO2 MPCM), different reaction temperature M4 (60℃), M2 (70℃), M5 (80℃)[145]; (b) Absorption spectra of different samples[147]
表 1 相变微胶囊(MPCM)常见的芯材材料
Table 1 Common core materials of microencapsulated phase change materials (MPCM)
Material Melting enthalpy/(J·g−1) Melting temperature/℃ Ref. Organic material Paraffin n-hexadecane 254.7 20.84 [23] n-octadecane 230.0 28.2 [24] n-eicosane 189.0 18-30 [25] Alcohol n-dodecanol 200.0 18-28 [26] Myristyl alcohol 220.0 38 [27] Fatty acid Palmitic acid 226.2 65 [28] Lauric acid 232.6 44.2 [29] Capric acid 177.0 31.84 [30] Inorganic material Carbonate Na2CO3 275.7 854 [31] Nitrate NaNO3 180.0 300 [32] KNO3 100.0 334 [33] Hydrated salt Na2SO4·10H2O 251.0 32.4 [34] Na2HPO4·12H2O 177.8 34.72 [35] CaCl2·6H2O 200.0 29.5 [36] Metal and alloy Li 433.78 186 [37] Ti 232.0 60.5 [37] Al-Mg-Zn (60/34/6wt%) 329.1 450.31 [38] Classification Representative category Material Semiconductor materials with defect structures Copper chalcogenide CuS, Cu7S4, Cu9S5 Transition metal oxide MoO3, WO3, CuO, Cu2O Semiconductor materials with intrinsic absorption band gap Transition metal compounds CdS, CdSe, MoS2, MoSe, WS2 Carbide SiC, ZrC Others ZnO, TiO2, NiO, Ti4O7 -
[1] KANNAN N, VAKEESAN D. Solar energy for future world: A review[J]. Renewable and Sustainable Energy Reviews,2016,62:1092-1105. DOI: 10.1016/j.rser.2016.05.022
[2] 宋之平. 从可持续发展的战略高度重新审视热电联产[J]. 中国电机工程学报, 1998(4):2-7. SONG Zhiping. Rediscovering the combined heat and power in terms of the sustainable development[J]. Proceedings of the CSEE,1998(4):2-7(in Chinese).
[3] 赵梦阳, 张宇昂, 唐炳涛. 聚氨酯型复合定形相变储能材料研究进展[J]. 精细化工, 2020, 37(11):2182-2192, 2215. ZHAO Mengyang, ZHANG Yu'ang, TANG Bingtao. Research process in polyurethane form-stable composite phase change materials[J]. Fine Chemicals,2020,37(11):2182-2192, 2215(in Chinese).
[4] HUANG X, ZHU C Q, LIN Y X, et al. Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review[J]. Applied Thermal Engineering,2019,147:841-855. DOI: 10.1016/j.applthermaleng.2018.11.007
[5] ZHANG Q, WANG H C, LING Z Y, et al. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability[J]. Solar Energy Materials and Solar Cells,2015,140:158-166. DOI: 10.1016/j.solmat.2015.04.008
[6] ZHOU H, LYU L Q, ZHANG Y Z, et al. Preparation and characterization of a shape-stable xylitol/expanded graphite composite phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2021,230:111244. DOI: 10.1016/j.solmat.2021.111244
[7] PATIL N G, CHAUDHARI S S, MAHANWAR P A. Microencapsulation of polymeric phase change materials (MPCM) for thermal energy storage in industrial coating applications[J]. Journal of Polymer Engineering,2023,43(5):419-442. DOI: 10.1515/polyeng-2022-0291
[8] 郝敏, 李忠辉, 吴秋芳, 等. 相变材料封装技术的研究进展[J]. 材料导报, 2014, 28(9):98-103. HAO Min, LI Zhonghui, WU Qiufang, et al. Research progress of encapsulation technology for phase change material[J]. Materials Reports,2014,28(9):98-103(in Chinese).
[9] ZHENG H F, TIAN G J, YANG C W, et al. Experimental study on performance of phase change microcapsule cold storage solar composite refrigeration system[J]. Renewable Energy,2022,198:1176-1185. DOI: 10.1016/j.renene.2022.08.133
[10] CHEN Y B, CUI S Q, JIN H, et al. Fabrication of phase change microcapsules with controllable size via regenerated nanochitin stabilized pickering and their applications for lyocell fiber[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,655:130308. DOI: 10.1016/j.colsurfa.2022.130308
[11] WANG Y B, LI Q, MIAO W J, et al. The thermal performances of cement-based materials with different types of microencapsulated phase change materials[J]. Construction and Building Materials,2022,345:128388. DOI: 10.1016/j.conbuildmat.2022.128388
[12] KONG M, ALVARADO J L, TERRELL W, et al. Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube[J]. International Journal of Heat and Mass Transfer,2016,101:901-914. DOI: 10.1016/j.ijheatmasstransfer.2016.05.047
[13] ZHENG Z L, CHANG Z, XU G K, et al. Microencapsulated phase change materials in solar-thermal conversion systems: Understanding geometry-dependent heating efficiency and system reliability[J]. ACS Nano,2017,11(1):721-729. DOI: 10.1021/acsnano.6b07126
[14] LIU J K, WULIU Y S, ZHU X B, et al. Synthesized acrylate monomers to improve photothermal conversion efficiency and fire safety of PEG/black phosphorus (BP) phase change composites[J]. Composites Science and Technology,2023,238:110028. DOI: 10.1016/j.compscitech.2023.110028
[15] YE X Y, MA Y J, TIAN Z Y, et al. Shape-stable MXene/sodium alginate/carbon nanotubes hybrid phase change material composites for efficient solar energy conversion and storage[J]. Composites Science and Technology,2022,230:109794. DOI: 10.1016/j.compscitech.2022.109794
[16] 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10):5554-5576. GONG Xue, WANG Chengyao, ZHU Qunzhi. Research progress on preparation and application of microcapsule phase change materials[J]. Chemical Industry and Engi-neering Progress,2021,40(10):5554-5576(in Chinese).
[17] CHEN R, GE X, LI X X, et al. Facile preparation method of phase change microcapsule with organic-inorganic silicone shell for battery thermal management[J]. Composites Science and Technology,2022,228:109662. DOI: 10.1016/j.compscitech.2022.109662
[18] HAMAD G B, YOUNSI Z, NAJI H, et al. A comprehensive review of microencapsulated phase change materials synthesis for low-temperature energy storage applications[J]. Applied Sciences,2021,11:11900. DOI: 10.3390/app112411900
[19] WANG K W, YAN T, PAN W G. Optimization strategies of microencapsulated phase change materials for thermal energy storage[J]. Journal of Energy Storage,2023,68:107844. DOI: 10.1016/j.est.2023.107844
[20] 郝旭波, 牛宝联, 郭昊天, 等. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2):854-871. DOI: 10.16085/j.issn.1000-6613.2022-0654 HAO Xubo, NIU Baolian, GUO Haotian, et al. Modification of microencapsulated phase change material and its utilization in photothermal conversion[J]. Chemical Industry and Engineering Progress,2023,42(2):854-871(in Chinese). DOI: 10.16085/j.issn.1000-6613.2022-0654
[21] AGBOSSOU A, ZHANG Q, SEBALD G, et al. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: Theoretical analysis[J]. Sensors and Actuators A: Physical,2010,163(1):277-283. DOI: 10.1016/j.sna.2010.06.026
[22] FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion and Management,2003,45(9):1597-1615.
[23] JEONG S G, JEON J, LEE J H, et al. Optimal preparation of PCM/diatomite composites for enhancing thermal pro-perties[J]. International Journal of Heat and Mass Transfer,2013,62:711-717. DOI: 10.1016/j.ijheatmasstransfer.2013.03.043
[24] 蔡迪, 李静. 硬脂醇改性的氧化石墨烯/正十八烷复合相变材料的热物性研究[J]. 化工学报, 2020, 71(10):4826-4835. CAI Di, LI Jing. Study on thermal properties of stearyl alcohol modified graphene oxide/n-octadecane compo-site phase change materials[J]. CIESC Journal,2020,71(10):4826-4835(in Chinese).
[25] KARASZEWSKA A, KAMIŃSKA I, NEJMAN A, et al. Thermal-regulation of nonwoven fabrics by microcapsules of n-eicosane coated with a polysiloxane elastomer[J]. Materials Chemistry and Physics,2019,226:204-213. DOI: 10.1016/j.matchemphys.2019.01.029
[26] 宋晓秋, 曹龙迪, 叶琳. 聚甲基丙烯酸甲酯包覆十二醇微胶囊的制备及表征[J]. 复合材料学报, 2017, 34(1):191-197. SONG Xiaoqiu, CAO Longdi, YE Lin. Preparation and characterization of n-dodecanol microcapsules in poly(methyl methacrylate)[J]. Acta Materiae Compositae Sinica,2017,34(1):191-197(in Chinese).
[27] 黄云峰, 闵洁, 叶琳, 等. 聚苯乙烯包覆正十四醇微胶囊的制备及表征[J]. 高分子材料科学与工程, 2017, 33(11):139-144. HUANG Yunfeng, MIN Jie, YE Lin, et al. Preparation and characterization of myristyl alcohol microcapsules coated with polystyrene[J]. Polymer Materials Science and Engineering,2017,33(11):139-144(in Chinese).
[28] ZENG J L, SUN S L, ZHOU L, et al. Preparation, morphology and thermal properties of microencapsulated palmitic acid phase change material with polyaniline shells[J]. Journal of Thermal Analysis and Calorimetry,2017,129(3):1583-1592. DOI: 10.1007/s10973-017-6352-y
[29] YANG X, LIU Y, LYU Z H, et al. Synthesis of high latent heat lauric acid/silica microcapsules by interfacial polymerization method for thermal energy storage[J]. Journal of Energy Storage,2021,33:102059. DOI: 10.1016/j.est.2020.102059
[30] 王信刚, 陈忠发, 徐伟, 等. 癸酸相变微胶囊的制备及热性能[J]. 精细化工, 2019, 36(11):2207-2212. WANG Xingang, CHEN Zhongfa, XU Wei, et al. Preparation and thermal properties of capric acid phase change microcapsules[J]. Fine Chemicals,2019,36(11):2207-2212(in Chinese).
[31] 江羽, 王倩, 王冬, 等. 高温相变储能微胶囊研究进展[J]. 工程科学学报, 2021, 43(1):108-118. JIANG Yu, WANG Qian, WANG Dong, et al. Research progress of high-temperature phase change energy storage microcapsules[J]. Chinese Journal of Engineering,2021,43(1):108-118(in Chinese).
[32] 吴凡, 莫丙忠, 何利娟, 等. 利用田口实验设计的NaNO3@SiO2微胶囊及其相变性能[J]. 材料导报, 2022, 36(14):93-97. WU Fan, MO Bingzhong, HE Lijuan, et al. Synthesis and phase change performance of NaNO3@SiO2 microcapsules by using taguchi experimental design[J]. Materials Reports,2022,36(14):93-97(in Chinese).
[33] ZHANG H F, BALRAM A, TIZNOBAIK H, et al. Microencapsulation of molten salt in stable silica shell via a water-limited sol-gel process for high temperature thermal energy storage[J]. Applied Thermal Engineering,2018,136:268-274. DOI: 10.1016/j.applthermaleng.2018.02.050
[34] ZHANG Z S, LIAN Y D, XU X N, et al. Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials[J]. Applied Energy,2019,255:113830. DOI: 10.1016/j.apenergy.2019.113830
[35] HUANG J, WANG T Y, ZHU P P, et al. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials[J]. Thermochimica Acta,2013,557:1-6. DOI: 10.1016/j.tca.2013.01.019
[36] HASSABO A G, MOHAMED A L, WANG H L, et al. Metal salts rented in silica microcapsules as inorganic phase change materials for textile usage[J]. Inorganic Che-mistry,2015,10(2):59-65.
[37] SINAGA R, DARKWA J, OMER S A, et al. The microencapsulation, thermal enhancement, and applications of medium and high-melting temperature phase change materials: A review[J]. International Journal of Energy Research,2022,46(8):10259-10300. DOI: 10.1002/er.7860
[38] SUN J Q, ZHANG R Y, LIU Z P, et al. Thermal reliability test of Al-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling[J]. Energy Conversion and Management,2007,48(2):619-624. DOI: 10.1016/j.enconman.2006.05.017
[39] REDDY K S, MUDGAL V, MALLICK T K. Review of latent heat thermal energy storage for improved material stability and effective load management[J]. Journal of Energy Storage,2018,15:206-227.
[40] SHARMA A, SHUKLA A, CHEN C R, et al. Development of phase change materials (PCMs) for low temperature energy storage applications[J]. Sustainable Energy Technologies and Assessments,2014,7:17-21. DOI: 10.1016/j.seta.2014.02.009
[41] CHEN Z, FANG G Y. Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review[J]. Renewable and Sustainable Energy Reviews,2011,15:4624-4632. DOI: 10.1016/j.rser.2011.07.090
[42] ISHAK S, MANDAL S, LEE H S, et al. Microencapsulation of stearic acid with SiO2 shell as phase change material for potential energy storage[J]. Scientific Reports,2020,10(1):15023. DOI: 10.1038/s41598-020-71940-9
[43] JIANG F Y, WANG X D, WU D Z. Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials[J]. Applied Energy,2014,134:456-468. DOI: 10.1016/j.apenergy.2014.08.061
[44] FINCH C A. Polymer for microcapsule walls[J]. Chemistry and Industry,1985,75:2-56.
[45] LI W T, ZHU X J, ZHAO N, et al. Preparation and properties of pelamine urea-formaldehyde microcapsules for self-healing of cementitious materials[J]. Materials,2016,9(3):1-17.
[46] ZHANG G Q, CAI C W, WANG Y L, et al. Preparation and evaluation of thermo-regulating bamboo fabric treated by microencapsulated phase change materials[J]. Textile Research Journal,2019,89(16):3387-3393. DOI: 10.1177/0040517518813681
[47] BUCURESCU A, BLAGA A C, ESTEVINHO B N, et al. Microencapsulation of curcumin by a spray-drying technique using gum arabic as encapsulating agent and release studies[J]. Food and Bioprocess Technology,2018,1:1795-1806.
[48] PEREIRA A R L, CATTELAN M G, NICOLETTI V R. Microencapsulation of pink pepper essential oil: Properties of spray-dried pectin/SPI double-layer versus SPI single-layer stabilized emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,581:123806. DOI: 10.1016/j.colsurfa.2019.123806
[49] LI D X, YAN Y D, OH D H, et al. Development of valsartan-loaded gelatin microcapsule without crystal change using hydroxypropylmethylcellulose as a stabilizer[J]. Drug Delivery, 2010, 17(5): 322-329.
[50] MU X T, JU X J, ZHANG L, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs[J]. Journal of Membrane Science,2019,590:117275. DOI: 10.1016/j.memsci.2019.117275
[51] 张毅, 徐箐, 牛晓峰, 等. 不同乳化剂作用下三聚氰胺-甲醛@正十八烷微胶囊相变复合材料微观形貌和热性能[J]. 复合材料学报, 2017, 34(3):661-667. ZHANG Yi, XU Jing, NIU Xiaofeng, et al. Effect of different emulsifier on the microstructure and thermal properties of melamine-formaldehyde@n-octadecane microencapsulated phase change composites[J]. Acta Materiae Compositae Sinica,2017,34(3):661-667(in Chinese).
[52] HUANG Q Z, GONG S, HAN W Q, et al. Preparation of TTO/UF resin microcapsule via in situ polymerisation and modelling of its slow release[J]. Journal of Microencapsulation,2020,37(4):297-304. DOI: 10.1080/02652048.2020.1735548
[53] LU S F, SHEN T W, XING J W, et al. Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization[J]. Materials Letters,2018,211:36-39. DOI: 10.1016/j.matlet.2017.09.074
[54] SHI T J, HU P, WANG J T. Preparation of polyurea microcapsules containing phase change materials using microfluidics[J]. Chemistry Select,2020,5(7):2342-2347.
[55] SÁNCHEZ L, SÁNCHEZ P, LUCAS A D, et al. Microencapsulation of MPCM with a polystyrene shell[J]. Colloid and Polymer Science,2007,285:1377-1385. DOI: 10.1007/s00396-007-1696-7
[56] QIAO Z, MAO J. Multifunctional poly(melamine-urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity[J]. Materials Science and Engineering: B,2017,226:86-93. DOI: 10.1016/j.mseb.2017.08.016
[57] HAN P J, QIU X L, LU L X, et al. Fabrication and characterization of a new enhanced hybrid shell micro PCM for thermal energy storage[J]. Energy Conversion and Management,2016,126:673-685. DOI: 10.1016/j.enconman.2016.08.052
[58] ZHAO A Q, AN J L, YANG J L, et al. Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell[J]. Applied Energy,2018,215:468-478. DOI: 10.1016/j.apenergy.2018.02.057
[59] SALUNKHE P B, SHEMBEKAR P S. A review on effect of phase change material encapsulation on the thermal performance of a system[J]. Renewable and Sustainable Energy,2012,16:5603-5616. DOI: 10.1016/j.rser.2012.05.037
[60] PAN L, TAO Q H, ZHANG S D, et al. Preparation, characterization and thermal properties of micro-encapsulated phase change materials[J]. Solar Energy Materials and Solar Cells,2012,98:66-70. DOI: 10.1016/j.solmat.2011.09.020
[61] SARI A, SALEH T A, HEKIMOĞLU G, et al. Microencapsulated heptadecane with calcium carbonate as thermal conductivity-enhanced phase change material for thermal energy storage[J]. Journal of Molecular Liquids,2021,328:115508. DOI: 10.1016/j.molliq.2021.115508
[62] GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science: EES,2019,12(3):841-864.
[63] MALEKI M, KARIMIAN H, SHOKOUHIMEHR M, et al. Development of graphitic domains in carbon foams for high efficient electro/photo-to-thermal energy conversion phase change composites[J]. Chemical Engineering Journal,2019,362:469-481. DOI: 10.1016/j.cej.2019.01.032
[64] TAO P, CHANG C, TONG Z, et al. Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials[J]. Energy & Environmental Science,2019,12:1613-1621.
[65] TANG Z D, GAO H Y, CHEN X, et al. Advanced multifunctional composite phase change materials based on photo-responsive materials[J]. Nano Energy,2021,80:1-21.
[66] 赵建玲, 马晨雨, 李建强, 等. 基于全光谱太阳光利用的光热转换材料研究进展[J]. 材料工程, 2019, 47(6):11-19. DOI: 10.11868/j.issn.1001-4381.2018.000539 ZHAO Jianling, MA Chenyu, LI Jianqiang, et al. Research progress in photothermal conversion materials based on full spectrum sunlight utilization[J]. Journal of Materials Engineering,2019,47(6):11-19(in Chinese). DOI: 10.11868/j.issn.1001-4381.2018.000539
[67] WU X, CHEN G Y, ZHANG W, et al. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation[J]. Advanced Sustainable Systems,2017,1(6):1700046. DOI: 10.1002/adsu.201700046
[68] 陈瑞, 王晶晶, 乔宏志. 有机光热转换材料及其在光热疗法中的应用[J]. 化学进展, 2017, 29(Z2):329-336. DOI: 10.7536/PC160638 CHEN Rui, WANG Jingjing, QIAO Hongzhi. Organic photothermal conversion materials and their application in photothermal therapy[J]. Progress in Chemistry,2017,29(Z2):329-336(in Chinese). DOI: 10.7536/PC160638
[69] JIE Y, DAVID J, YASEEN M A, et al. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules[J]. Journal of the American Chemical Society,2010,132(6):1929-1938. DOI: 10.1021/ja908139y
[70] LIANG X L, DENG Z J, JING L J, et al. Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging[J]. Chemical Communications,2013,49(94):11029-11031. DOI: 10.1039/c3cc42510j
[71] SAXENA V, SADOQI M, SHAO J. Degradation kinetics of indocyanine green in aqueous solution[J]. Journal of Pharmaceutical Sciences,2003,92(10):2090-2097. DOI: 10.1002/jps.10470
[72] CHEN L, LI X, XIONG M M, et al. Development of novel nanoporphyrin biomaterials for NIR-II activated photothermal therapy against tumor in vivo[J]. Materials& Design,2023,225:111532.
[73] LI X S, PENG X H, ZHENG B D, et al. New application of phthalocyanine molecules: From photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates[J]. Chemical Science,2018,9(8):2098-2104. DOI: 10.1039/C7SC05115H
[74] JIAO Y, LIU K, WANG G T, et al. Supramolecular free radicals: Near-infrared organic materials with enhanced photothermal conversion[J]. Chemical Science,2015,6(7):3975-3980. DOI: 10.1039/C5SC01167A
[75] WU Y J, LYU F H, KAN J L, et al. Near-infrared and metal-free tetra(butylamino) phthalocyanine nanoparticles for dual modal cancer phototherapy[J]. RSC Advances,2020,10(43):25958-25965. DOI: 10.1039/D0RA03898A
[76] LIU Y L, AI K L, LIU J H, et al. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Advanced Materials,2013,25(9):1353-1359. DOI: 10.1002/adma.201204683
[77] ZHAO F, ZHOU X Y, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology,2018,13(6):489-495. DOI: 10.1038/s41565-018-0097-z
[78] YOU C Q, WU H H, WANG M X, et al. A strategy for photothermal conversion of polymeric nanoparticles by polyaniline for smart control of targeted drug delivery[J]. Nanotechnology,2017,28(16):165102. DOI: 10.1088/1361-6528/aa645f
[79] CAI Y, SI W L, HUANG W, et al. Organic dye based nanoparticles for cancer phototheranostics[J]. Small,2018,14(25):1704247. DOI: 10.1002/smll.201704247
[80] 梁国海, 邢达. 用于肿瘤光热治疗的有机纳米材料研究进展[J]. 中国激光, 2018, 45(2):247-256. LIANG Guohai, XING Da. Progress in organic nanomaterials for laser-induced photothermal therapy of tumor[J]. Chinese Journal of Lasers,2018,45(2):247-256(in Chinese).
[81] WU X H, JIANG Q S, GHIM D, et al. Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process[J]. Journal of Materials Chemistry A,2018,6(39):18799-18807. DOI: 10.1039/C8TA05738A
[82] TIAN Y, ZHANG J P, TANG S W, et al. Polypyrrole composite nanoparticles with morphology-dependent photothermal effect and immunological responses[J]. Small,2016,12(6):721-726. DOI: 10.1002/smll.201503319
[83] YANG J, CHOI J, BANG D, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Hyperthermia,2011,50:441-444.
[84] 陈志钢, 匡兴羽, 宋琳琳, 等. 近红外光驱动的纳米材料和器件的研究进展[J]. 无机化学学报, 2013, 29(8):1574-1590. CHEN Zhigang, KUANG Xingyu, SONG Linlin, et al. Research progress in NIR-light-driven nanomaterials and nanodevices[J]. Chinese Journal of Inorganic Chemistry,2013,29(8):1574-1590(in Chinese).
[85] QI J, FANG Y, KWOK R T K, et al. Highly stable organic small molecular nanoparticles as an advanced and biocompatible phototheranostic agent of tumor in living mice[J]. ACS Nano,2017,11(7):7177-7188. DOI: 10.1021/acsnano.7b03062
[86] SONG X J, CHEN Q, LIU Z. Recent advances in the development of organic photothermal nano-agents[J]. Nano Research,2015,8(2):340-354. DOI: 10.1007/s12274-014-0620-y
[87] WANG X, LIU Q C, WU S Y, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced Materials,2019,31(19):1807716. DOI: 10.1002/adma.201807716
[88] CAO R R, CHEN S, WANG Y Z, et al. Functionalized carbon nanotubes as phase change materials with enhanced thermal, electrical conductivity, light-to-thermal, and electro-to-thermal performances[J]. Carbon,2019,149:263-272. DOI: 10.1016/j.carbon.2019.04.005
[89] ZHANG X G, WEN R L, HUANG Z H, et al. Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials[J]. Energy and Buildings,2017,149:463-470. DOI: 10.1016/j.enbuild.2017.05.037
[90] SIAVASH I M, BAITALLAH E, ROUMEN P. EBSD characterization of Al7075/graphene nanoplates/carbon nanotubes composites processed through post-deformation annealing[J]. Transactions of Nonferrous Metals Society of China,2021,31(8):2250-2263. DOI: 10.1016/S1003-6326(21)65652-2
[91] WAN Y J, GONG L X, TANG L C, et al. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide[J]. Composites Part A: Applied Science and Manufacturing,2014,64:79-89. DOI: 10.1016/j.compositesa.2014.04.023
[92] LI Z, YOUNG R J, WANG R G, et al. The role of functional groups on graphene oxide in epoxy nanocomposites[J]. Polymer,2013,54(21):5821-5829. DOI: 10.1016/j.polymer.2013.08.026
[93] MEHRALI M, LATIBARI S T, MEHRALI M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide compo-site[J]. Energy Conversion and Management,2013,67:275-282. DOI: 10.1016/j.enconman.2012.11.023
[94] CHEN C J, KUANG Y D, HU L B. Challenges and opportunities for solar evaporation[J]. Joule,2019,3(3):683-718. DOI: 10.1016/j.joule.2018.12.023
[95] ZHOU L, LI X Q, NI G W, et al. The revival of thermal utilization from the sun: Interfacial solar vapor generation[J]. National Science Review,2019,6(3):562-578. DOI: 10.1093/nsr/nwz030
[96] HE W, ZHOU L, WANG M, et al. Structure development of carbon-based solar-driven water evaporation systems[J]. Science Bulletin,2021,66(14):1472-1483. DOI: 10.1016/j.scib.2021.02.014
[97] WANG T Y, HUANG H B, LI H L, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Materials,2021,36(4):683-701. DOI: 10.1016/S1872-5805(21)60066-5
[98] JAIN P K, HUANG X H, EL-SAYED I H, et al. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research,2008,41(12):1578-1586. DOI: DOI:10.1021/ar7002804
[99] BRONGERSMA M L, HALAS N J, NORDLANDER P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology,2015,10:25-34. DOI: 10.1038/nnano.2014.311
[100] PANG Y S, ZHANG J J, MA R M, et al. Solar-thermal water evaporation: A review[J]. Energy Letters,2020,5:437-456. DOI: 10.1021/acsenergylett.9b02611
[101] SANGHAK P, JIN L W, SUNGMIN P, et al. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy[J]. Scientific Reports,2019,9(1):141-147. DOI: 10.1038/s41598-018-37859-y
[102] LUO W X, HU X W, CHE Y H, et al. Form-stable phase change materials enhanced photothermic conversion and thermal conductivity by Ag-expanded graphite[J]. Journal of Energy Storage,2022,52:105060. DOI: 10.1016/j.est.2022.105060
[103] 张煜, 侯予, 陈良. 等离激元Au纳米流体集热器性能研究[J]. 西安交通大学学报, 2020, 54(8):44-49. DOI: 10.7652/xjtuxb202008006 ZHANG Yu, HOU Yu, CHEN Liang. Performance analysis of the collector of the nanofluid with plasmon Au[J]. Journal of Xi'an Jiao Tong University,2020,54(8):44-49(in Chinese). DOI: 10.7652/xjtuxb202008006
[104] LIU G H, XU J L, WANG K Y. Solar water evaporation by black photothermal sheets[J]. Nano Energy,2017,41:269-284. DOI: 10.1016/j.nanoen.2017.09.005
[105] KANG M, KIM Y. Au-coated Fe3O4@SiO2 core-shell particles with photothermal activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,600:124957. DOI: 10.1016/j.colsurfa.2020.124957
[106] CHANG C, YANG C, LIU Y M, et al. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation[J]. ACS Applied Materials & Interfaces,2016,8(35):21412-21418.
[107] GUO A K, FU Y, WANG G, et al. Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation[J]. RSC Advances,2017,7(8):4815-4824. DOI: 10.1039/C6RA26979F
[108] YUAN H K, KHOURY C G, HWANG H G, et al. Gold nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging[J]. Nano technology,2012,23(7):075102. DOI: 10.1088/0957-4484/23/7/075102
[109] IBRAHIM I, SEO D H, MCDONAGH A M, et al. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment[J]. Desalination,2021,500:114853. DOI: 10.1016/j.desal.2020.114853
[110] 郭星星, 高航, 殷立峰, 等. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4):580-596. DOI: 10.7536/PC180908 GUO Xingxing, GAO Hang, YIN Lifeng, et al. Photo-thermal conversion materials and their application in desalination[J]. Progress in Chemistry,2019,31(4):580-596(in Chinese). DOI: 10.7536/PC180908
[111] TIAN Q W, JIANG F R, ZOU R J, et al. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano,2011,5(12):9761-9771. DOI: 10.1021/nn203293t
[112] ZHANG C C, ZHANG Y Y, XIE W. Plasmonic metal/semiconductor hybrid nanomaterials for solar to chemical energy conversion[J]. Journal of Energy Chemistry,2021,63:40-53. DOI: 10.1016/j.jechem.2021.08.036
[113] UMLAUFF M, HOFFMANN J, KALT H, et al. Direct observation of free-exciton thermalization in quantum-well structures[J]. Physical Review B,1998,57(3):1390-1393. DOI: 10.1103/PhysRevB.57.1390
[114] HUANG X J, ZHANG W L, GUAN G Q, et al. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics[J]. Accounts of Chemical Research,2017,50(10):2529-2538. DOI: 10.1021/acs.accounts.7b00294
[115] WANG J, LI Y Y, DENG L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2017,29:1603730. DOI: 10.1002/adma.201603730
[116] WANG W T, UMAIR M M, QIU J J, et al. Electromagnetic and solar energy conversion and storage based on Fe3O4-functionalised graphene/phase change material nanocomposites[J]. Energy Conversion and Management,2019,196:1299-1305. DOI: 10.1016/j.enconman.2019.06.084
[117] 黄玥铭, 吴子华, 王嘉伟, 等. 有机复合相变材料光热转换和储热性能的研究进展[J]. 材料导报, 2022, 36(S2):440-448. HUANG Yueming, WU Zihua, WANG Jiawei, et al. Research progress in photothermal conversion and heat storage capacity of organic composite phase change materials[J]. Materials Reports,2022,36(S2):440-448(in Chinese).
[118] 吴京, 王先锋, 薛东, 等. 基于聚多巴胺包覆的光热相变微胶囊的制备及性能[J]. 精细化工, 2021, 38(3):489-495. DOI: 10.13550/j.jxhg.20200755 WU Jing, WANG Xianfeng, XUE Dong, et al. Preparation and properties of PDA-coated photothermal phase change microcapsules[J]. Fine Chemicals,2021,38(3):489-495(in Chinese). DOI: 10.13550/j.jxhg.20200755
[119] YUAN S P, YAN R, REN B B, et al. Robust, double-layered phase-changing microcapsules with superior solar-thermal conversion capability and extremely high energy storage density for efficient solar energy storage[J]. Renewable Energy,2021,180:725-733. DOI: 10.1016/j.renene.2021.08.128
[120] HAO D D, YANG Y D, XU B, et al. Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10789-10797.
[121] HU L C, LI X, DING L, et al. Flexible textiles with polypyrrole deposited phase change microcapsules for efficient photothermal energy conversion and storage[J]. Solar Energy Materials and Solar Cells,2021,224:110985. DOI: 10.1016/j.solmat.2021.110985
[122] LI P, ZOU F W, WANG X F, et al. In-situ deposition preparation of n-octadecane@silica@polydopamine-doped polypyrrole microcapsules for photothermal conversion and thermal energy storage of full-spectrum solar radiation[J]. Solar Energy,2022,240:388-398. DOI: 10.1016/j.solener.2022.05.052
[123] DREYER D R, PARK S J, BIELAWSKI C W, et al. The che-mistry of graphene oxide[J]. Chemical Society Reviews,2010,39(1):228-240. DOI: 10.1039/B917103G
[124] MAITHYA O M, LI X, FENG X L, et al. Microencapsulated phase change material via pickering emulsion stabilized by graphene oxide for photothermal conversion[J]. Journal of Materials Science,2020,55:1-12. DOI: 10.1007/s10853-019-03876-z
[125] YUAN K J, WANG H C, LIU J, et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance[J]. Solar Energy Mater and Solar Cells,2015 ,143:29-37.
[126] MA X C, LIU Y J, LIU H, et al. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector[J]. Solar Energy Materials and Solar Cells,2018,188:73-80. DOI: 10.1016/j.solmat.2018.08.021
[127] SHEN X N, JI M Z, ZHANG S M, et al. Fabrication of multi-walled carbon-nanotube-grafted polyvinyl-chloride composites with high solar-thermal-conversion performance[J]. Composites Science and Technology,2019,170:77-84. DOI: 10.1016/j.compscitech.2018.11.029
[128] MA X C, LIU H, CHEN C, et al. Synthesis of novel microencapsulated phase change material with SnO2/CNTs shell for solar energy storage and photo-thermal conversion[J]. Materials Research Express,2020,7(1):015513. DOI: 10.1088/2053-1591/ab657e
[129] ZHANG X, ZHANG Y H, YAN Y R, et al. Synthesis and characterization of hydroxylated carbon nanotubes modified microencapsulated phase change materials with high latent heat and thermal conductivity for solar energy storage[J]. Solar Energy Materials and Solar Cells,2022,236:111546. DOI: 10.1016/j.solmat.2021.111546
[130] WANG C L, ZHANG G L, ZHANG X S. Experimental and photothermal performance evaluation of multi-wall carbon-nanotube-enhanced microencapsulation phase change slurry for efficient photothermal conversion and storage[J]. Energies,2022,15(20):1-15.
[131] GUO M X, WU J B, LI F H, et al. A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New Carbon Materials,2020,35(4):436-443. DOI: 10.1016/S1872-5805(20)60501-7
[132] KISLOV N, LAHIRI J, VERMA H, et al. Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO[J]. Langmuir,2009,25(5):3310-3315. DOI: 10.1021/la803845f
[133] ZHENG H R, JIANG Y R, YANG S Y, et al. ZnO nanorods array as light absorption antenna for high-gain UV photodetectors[J]. Journal of Alloys and Compounds,2020,812:152158. DOI: 10.1016/j.jallcom.2019.152158
[134] LIU L, MIAO X W, CHENG X, et al. Preparation and characterization of ZnO/SiO2@n-octadecane nanocapsule for ultraviolet absorbing and photothermal conversion energy storage[J]. Journal of Energy Storage,2022,54:105363. DOI: 10.1016/j.est.2022.105363
[135] HUANG C W, LI Q T, YANG Y B, et al. A novel bifunctional microencapsulated phase change material loading with ZnO for thermal energy storage and light-thermal energy conversion[J]. Sustainable Energy & Fuels,2020,4(10):5203-5214.
[136] ZHOU T, WANG X, CHENG P, et al. Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles[J]. Express Polymer Letters,2013,7(7):585-594. DOI: 10.3144/expresspolymlett.2013.56
[137] 何科林, 沈荣晨, 郝磊, 等. 纳米SiC基光催化剂研究进展[J]. 物理化学学报, 2022, 38(11):27-50. DOI: 10.3866/PKU.WHXB202201021 HE Kelin, SHEN Rongchen, HAO Lei, et al. Advances in nanostructured silicon carbide phtocatalysts[J]. Acta Physico-Chimica Sinica,2022,38(11):27-50(in Chinese). DOI: 10.3866/PKU.WHXB202201021
[138] WANG X F, LI C H, ZHAO T. Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance[J]. Solar Energy Materials and Solar Cells,2018,183:82-91. DOI: 10.1016/j.solmat.2018.03.019
[139] WANG X G, ZHANG C Y, WANG K, et al. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde[J]. Journal of Colloid and Interface Science,2021,582:30-40. DOI: 10.1016/j.jcis.2020.08.014
[140] SHAHED U M K, MOFAREH A S, WILLIAM B I. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297(5590):2243-2245. DOI: 10.1126/science.1075035
[141] TANG B T, WEI H P, ZHAO D F, et al. Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping[J]. Solar Energy Materials and Solar Cells,2017,161:183-189. DOI: 10.1016/j.solmat.2016.12.003
[142] 马晨雨, 李晓禹, 张绘, 等. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23):4079-4083, 4099. DOI: 10.11896/j.issn.1005-023X.2018.23.008 MA Chenyu, LI Xiaoyu, ZHANG Hui, et al. Preparation and photothermal conversion performance characterization of submicron Ti4O7[J]. Materials Reports,2018,32(23):4079-4083, 4099(in Chinese). DOI: 10.11896/j.issn.1005-023X.2018.23.008
[143] ZHANG Y, LI X Y, LI J Q, et al. Solar-driven phase change microencapsulation with efficient Ti4O7 nanoconverter for latent heat storage[J]. Nano Energy,2018,53:579-586. DOI: 10.1016/j.nanoen.2018.09.018
[144] PU H H, HE P X, YANG D, et al. Polydopamine modified CuS particles filled cellulose fiber for photothermal conversion performance[J]. Industrial Crops & Products,2023,193:116188.
[145] LIU L, LIANG S Y, CHENG X, et al. Preparation and characterization of novel CuS/SiO2@n-octadecane phase-change nanocapsules enhanced photothermal conversion for solar energy utilization[J]. International Journal of Energy Research,2022,46(6):7411-7423. DOI: 10.1002/er.7648
[146] REN Y W, LIU H P, LIU X M, et al. Photoresponsive materials for antibacterial applications[J]. Cell Reports Physical Science,2020,1(11):100245. DOI: 10.1016/j.xcrp.2020.100245
[147] FAN X Y, QIU X L, LU L X, et al. Full-spectrum light-driven phase change microcapsules modified by CuS-GO nanoconverter for enhancing solar energy conversion and storage capability[J]. Solar Energy Materials and Solar Cells,2021,223:110937. DOI: 10.1016/j.solmat.2020.110937
-
目的
微胶囊相变材料解决了相变材料易泄露、易腐蚀的问题,被广泛应用在太阳能利用、调温纤维与织物、节能建筑和传热流体等领域。通过添加光热材料对相变微胶囊进行改性,可以将储热功能和吸光能力结合起来,不仅能够实现太阳热能的高效转换和储存,而且拓展了相变材料的应用范围。本文综述了相变微胶囊光热改性的材料选择和转换机制,为进一步开发功能性相变微胶囊提供参考。
方法归纳了相变微胶囊芯材和壳材的选择;从光热转换机制角度,综述了有机光热材料和无机光热材料(碳基材料、金属基材料、半导体材料)的光热特性和应用中存在的限制。引入光热转换效率描述使用不同光热材料制备的相变微胶囊太阳光吸收和光热转化能力,总结了轨道跃迁效应、能带效应和LSPR效应下对相变微胶囊光热性能的提升效果。
结果有机光热材料具有良好的生物相容性、生物降解性、低毒性,但易发生光降解;碳基材料种类丰富、易获得,但易发生反射和透射;金属基材料,有极低的光量子产率,但成本高、制备复杂、污染环境;半导体光热材料不易发生光漂白和光降解,但红外光区光吸收能力较差。轨道跃迁效应:聚多巴胺(PDA)和聚吡咯(PPy)有相似的π共轭结构,能有效提高相变微胶囊太阳辐射吸收能力,在PDA和PPy复合作用下,相变微胶囊光热转换效率提高至97.31%。氧化石墨烯(GO)具有π共轭结构及丰富的含氧官能团,GO改性SiO壳的相变微胶囊值提高至85%。碳纳米管(CNTs)与黑体特性相似,易发生轨道跃迁效应将吸收光能转换为热能,CNTs改性SnO壳的相变微胶囊值从50%提高至91.79%。能带效应:半导体材料ZnO对紫外光具有较高的折射率,ZnO改性三聚氰胺-甲醛壳的相变微胶囊值提高至75.2%。SiC在紫外光、可见光、近红外光范围内具有很高的太阳光吸收率,SiC改性三聚氰胺-脲醛壳的相变微胶囊值提高至74.4%。TiO具有较小的带隙(1.06 eV),价带-导带跃迁能力较强,TiO改性SiO壳相变微胶囊的值从40.26%提高到85.36%。LSPR效应:半导体材料CuS晶格缺陷形成空穴掺杂结构,易产生LSPR效应,添加CuS-GO在LSPR效应和能带跃迁效应协同作用下,改性相变微胶囊值可提高至97.1%。
结论引入光热材料,能够有效增强相变微胶囊的光热转换性能。未来可针对以下几方面深入研究:(1)研究实现全光谱利用的方法;(2)提高生物可降解性;(3)探索光热相变微胶囊的高效规模化生产路径。