留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火灾高温后混凝土内GFRP筋剪切性能退化试验与理论

陆春华 漆仲浩 葛浩 张云舒 张虹宇

陆春华, 漆仲浩, 葛浩, 等. 火灾高温后混凝土内GFRP筋剪切性能退化试验与理论[J]. 复合材料学报, 2023, 40(12): 6756-6765. doi: 10.13801/j.cnki.fhclxb.20230314.002
引用本文: 陆春华, 漆仲浩, 葛浩, 等. 火灾高温后混凝土内GFRP筋剪切性能退化试验与理论[J]. 复合材料学报, 2023, 40(12): 6756-6765. doi: 10.13801/j.cnki.fhclxb.20230314.002
LU Chunhua, QI Zhonghao, GE Hao, et al. Experimental and theoretical investigation on shear performance degradation of GFRP bars in concrete after fire and high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6756-6765. doi: 10.13801/j.cnki.fhclxb.20230314.002
Citation: LU Chunhua, QI Zhonghao, GE Hao, et al. Experimental and theoretical investigation on shear performance degradation of GFRP bars in concrete after fire and high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6756-6765. doi: 10.13801/j.cnki.fhclxb.20230314.002

火灾高温后混凝土内GFRP筋剪切性能退化试验与理论

doi: 10.13801/j.cnki.fhclxb.20230314.002
基金项目: 国家自然科学基金(51878319;51578267)
详细信息
    通讯作者:

    陆春华,博士,教授,硕士生/博士生导师,研究方向为混凝土结构基本性能及耐久性、FRP筋混合配筋混凝土结构性能E-mail: lch79@ujs.edu.cn

  • 中图分类号: TU524;TB33

Experimental and theoretical investigation on shear performance degradation of GFRP bars in concrete after fire and high temperature

Funds: National Natural Science Foundation of China (51878319; 51578267)
  • 摘要: 为研究火灾高温后混凝土内玻璃纤维增强树脂复合材料(GFRP)筋材的剪切性能,选取了100℃、150℃、200℃、300℃、350℃、400℃、500℃、650℃及800℃共9个温度工况,对混凝土内GFRP筋进行了高温作用及水平剪切试验;结合本试验及已有相关试验结果,对高温后混凝土内GFRP筋水平剪切强度预测方法进行了探讨。试验及分析结果表明:300℃高温以内,混凝土内GFRP筋表面温度存在滞后现象,其高温劣化程度明显低于裸筋,剪切强度退化也较缓慢;随着温度超过300℃及混凝土表面裂缝不断发展,内部GFRP筋受高温侵蚀逐步加大,剪切强度出现急剧下降,并出现与裸筋相似的退化规律;在300℃(接近树脂热分解温度)高温下,GFRP筋剪切强度随恒温时间的增加而线性下降,恒温1~3 h时其剪切强度保留率从76.4%降为46.5%。结合双曲正切函数模型,建立了高温后混凝土内GFRP筋水平剪切强度预测模型,其预测值与试验值吻合较好。最后,以剪切强度保留系数0.7为基准,给出了不同保护层厚度下GFRP筋的耐火时间预测值,供工程应用参考。

     

  • 图  1  混凝土试件详图

    Figure  1.  Detailed pictures of concrete specimens

    图  2  混凝土试件的热电偶布置及受热面

    Figure  2.  Thermocouple arrangement and heated surfaces of concrete specimens

    t—Top surface; s—Side surface at left; s'—Side surface at right

    图  3  800℃工况升温曲线

    Figure  3.  Heating curves under target temperature of 800°C

    图  4  水平剪切试验装置

    Figure  4.  Device for horizontal shear test

    图  5  不同温度工况下混凝土外观变化

    Figure  5.  Appearance changes of concrete under different temperature conditions

    图  6  混凝土与筋材表面的升温过程对比

    Figure  6.  Comparison of heating processes between the surfaces of concrete and bar

    图  7  高温后GFRP筋的外观形态

    Figure  7.  Appearance of GFRP bars after exposure to high temperatures

    图  8  GFRP筋水平剪切的荷载-位移曲线

    Figure  8.  Load-displacement curves of GFRP bars in horizontal shear tests

    图  9  GFRP筋的剪切破坏形态及端部详图

    Figure  9.  Shear failure modes and end details of tested GFRP bars

    图  10  高温后混凝土内GFRP筋水平剪切强度保留率

    Figure  10.  Retention rate of horizontal shear strength of GFRP bars embedded in concrete after high temperature

    图  11  高温后混凝土内GFRP筋水平剪切强度预测模型对比分析

    Figure  11.  Comparative analysis of prediction models for horizontal shear strength of GFRP bars embedded in concrete after high temperature

    R2—Correlation coefficient

    图  12  火灾中混凝土构件内部温度场

    Figure  12.  Temperature fields inside concrete components in fires

    C—Thickness of concrete cover

    图  13  GFRP筋水平剪切强度保留系数预测值

    Figure  13.  Prediction values for horizontal shear strength retention factor of GFRP bars after high temperature

    NT—Shear strength retention coefficient; T—Temperature

    表  1  玻璃纤维增强树脂复合材料(GFRP)筋基本力学性能

    Table  1.   Basic mechanical properties of glass fiber reinforced polymer (GFRP) bars

    Bar typeTensile strength/MPaTensile elastic modulus/GPaBending strength/MPaHorizontal shear strength/MPa
    GFRP884.632.8875.847.7
    下载: 导出CSV

    表  2  混凝土配合比及基本参数

    Table  2.   Concrete mix ratio and basic parameters

    Strength grade of concreteWater binder ratioMaterial/(kg·m−3)Measured compressive strength/MPa
    WaterCementSandStones
    C300.49220449615111633.8
    下载: 导出CSV

    表  3  不同温度工况下GFRP筋的水平剪切强度及保留率

    Table  3.   Horizontal shear strength and retention rate of GFRP bars under different temperature conditions

    T/℃F/NS/MPaStatistical characteristicsR/%
    No.1No.2No.3No.1No.2No.3μ/MPaCOV
    20 7995.3 8607.5 7656.2 47.1 50.8 45.1 47.7 0.06 100.0
    100 7791.4 7415.2 7379.4 45.9 43.7 43.5 44.4 0.03 93.1
    150 6976.8 7375.1 7878.1 41.1 43.5 46.5 43.7 0.06 91.6
    200 6480.6 6766.1 6707.3 38.2 39.9 39.6 39.2 0.02 82.3
    300 6564.2 5134.5 6827.3 38.7 30.3 40.3 36.4 0.15 76.4
    350 1654.7 1006.1 1335.2 9.8 5.9 7.9 7.9 0.24 16.5
    400 315.5 1333.5 1.9 7.9 4.9 0.87 10.2
    500 266.9 326.1 1.6 1.9 1.7 0.14 3.7
    Notes: T—Temperature; F—Maximum load; S—Horizontal shear strength; μ—Average value; COV—Coefficient of variation; R—Retention rate of horizontal shear strength.
    下载: 导出CSV

    表  4  300℃下不同恒温时间t作用后GFRP筋水平剪切强度及保留率

    Table  4.   Horizontal shear strength and retention rate of GFRP bars after different constant temperature time t at 300℃

    t/hF/NS/MPaStatistical characteristicsR/%
    No.1No.2No.3No.1No.2No.3μ/MPaCOV
    16563.35134.46828.338.730.340.336.40.1576.4
    25784.64268.15111.334.125.230.129.80.1562.5
    34315.83798.13232.125.522.419.122.30.1446.5
    下载: 导出CSV

    表  5  不同保护层厚度下GFRP筋的耐火时间

    Table  5.   Fire resistance time for GFRP bars with different cover thickness

    Case C/mm tf
    Case one 40 65
    Case two 50 83
    Case three 60 190
    Note: tf—Fire resistance time.
    下载: 导出CSV
  • [1] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [2] 陆春华, 吴小龙, 徐可, 等. 普通/钢纤维混凝土混合配筋梁裂缝和挠度计算分析[J]. 南京工业大学学报(自然科学版), 2022, 44(2):197-206.

    LU Chunhua, WU Xiaolong, XU Ke, et al. Calculation analysis of the cracking and deflection of ordinary/steel fiber concrete hybrid-reinforced beams[J]. Journal of Nanjing Tech University (Natural Science Edition),2022,44(2):197-206(in Chinese).
    [3] 王晓璐, 查晓雄. 高温下GFRP筋力学性能的试验研究[J]. 华南理工大学学报(自然科学版), 2011, 39(9):75-81.

    WANG Xiaolu, CHA Xiaoxiong. Experimental investigation into mechanical behavior of GFRP rebars at elevated temperature[J]. Journal of South China University of Technology (Natural Science Edition),2011,39(9):75-81(in Chinese).
    [4] 李趁趁, 王英来, 赵军, 等. 高温后FRP筋纵向拉伸性能[J]. 建筑材料学报, 2014, 17(6):1076-1081. doi: 10.3969/j.issn.1007-9629.2014.06.024

    LI Chenchen, WANG Yinglai, ZHAO Jun, et al. Longitudinal tensile properties of FRP bars after high temperature[J]. Journal of Building Materials,2014,17(6):1076-1081(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.06.024
    [5] ASHRAFI H, BAZLI M, NAJAFABADI E P, et al. The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures[J]. Construction and Building Materials,2017,157:1001-1010. doi: 10.1016/j.conbuildmat.2017.09.160
    [6] 朱德举, 徐旭锋, 郭帅成, 等. 高温后玄武岩和玻璃纤维增强复合材料筋的力学性能[J]. 湖南大学学报(自然科学版), 2021, 48(7):151-159. doi: 10.16339/j.cnki.hdxbzkb.2021.07.018

    ZHU Deju, XU Xufeng, GUO Shuaicheng, et al. Mechanical properties of basalt and glass fiber reinforced polymer tendons after exposed to elevated temperatures[J]. Journal of Hunan University (Natural Sciences),2021,48(7):151-159(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2021.07.018
    [7] GUO X K, XIONG C S, JIN Z Q, et al. A review on mechanical properties of FRP bars subjected to seawater sea sand concrete environmental effects[J]. Journal of Building Engineering,2022,58(15):105038.
    [8] AHMAD S M. Shear properties and durability of GFRP reinforcement bar aged in seawater[J]. Polymer Testing,2019,75:312-320.
    [9] 屈凯. 真实火灾下钢筋混凝土板温度场有限元分析[J]. 硅酸盐通报, 2020, 39(6):1815-1821. doi: 10.16552/j.cnki.issn1001-1625.2020.06.018

    QU Kai. FFinite element analysis on temperature distribution of reinforced concrete slabs in natural fire[J]. Bulletin of the Chinese Ceramic Society,2020,39(6):1815-1821(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2020.06.018
    [10] International Standards Organization (ISO). Fire resistance tests-Elements of building construction—Part 1: General requirements: ISO 834-1[S]. Geneve: International Organization for Standardization, 1999.
    [11] 中国国家标准化管理委员会. 拉挤玻璃纤维增强塑料杆力学性能试验方法: GB/T 13096—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Test method for mechanical properties of pultruded glass fiber reinforced plastic rods: GB/T 13096—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [12] American Society for Testing and Materials. Standard test method for apparent horizontal shear strength of pultruded reinforced plastic rods by the short-beam method: ASTM D4475-21[S]. West Conshohocken: ASTM, 2021.
    [13] 金浏, 张仁波, 杜修力, 等. 温度对混凝土结构力学性能影响的研究进展[J]. 土木工程学报, 2021, 54(3):1-18. doi: 10.15951/j.tmgcxb.2021.03.001

    JIN Liu, ZHANG Renbo, DU Xiuli, et al. Research progress on the influence of temperature on the mechanical performance of concrete structures[J]. China Civil Engineering Journal,2021,54(3):1-18(in Chinese). doi: 10.15951/j.tmgcxb.2021.03.001
    [14] 蔡启明, 陆春华, 延永东, 等. BFRP和GFRP筋剪切性能的温度效应[J]. 建筑材料学报, 2022, 25(4):395-400. doi: 10.3969/j.issn.1007-9629.2022.04.010

    CAI Qiming, LU Chunhua, YAN Yongdong, et al. Tempera-ture effect on shear properties of BFRP and GFRP bar[J]. Journal of Building Materials,2022,25(4):395-400(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.04.010
    [15] SAAFI M. Effect of fire on FRP reinforced concrete members[J]. Composite Structures,2002,58(1):11-20. doi: 10.1016/S0263-8223(02)00045-4
    [16] NIGRO E, CEFARELLI G, BILOTTA A, et al. Guidelines for flexural resistance of FRP reinforced concrete slabs and beams in fire[J]. Composites Part B: Engineering,2014,58:103-112. doi: 10.1016/j.compositesb.2013.10.007
    [17] ZHOU C H, PAN J J, ZHANG Z H, et al. Comparative study on the tensile mechanical behavior of GFRP bars under and after high temperature exposure[J]. Case Studies in Construction Materials, 2022, 16: e00905.
    [18] MOURITZ A P, GIBSON A G. Fire properties of polymer composite materials[M]. Dordrecht: Springer, 2006.
    [19] BISBY L A. Fire behaviour of fibre-reinforced polymer (FRP) reinforced or confined concrete[D]. Kingston: Queen's University at Kingston, 2003.
    [20] 中华人民共和国住房和城乡建设部, 国家质量监督检验检疫总局. 建筑设计防火规范: GB/T 50016—2014(2018)[S]. 北京: 中国计划出版社, 2018.

    Ministry of Housing and Urban Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine. Code for fire protection design of buildings: GB/T 50016—2014(2018)[S]. Beijing: China Planning Press, 2018(in Chinese).
    [21] 中华人民共和国住房和城乡建设部, 国家质量监督检验检疫总局. 混凝土结构设计规范: GB/T 50010—2010(2015)[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine. Code for design of concrete structures: GB/T 50010—2010(2015)[S]. Beijing: China Architecture Press, 2015(in Chinese).
    [22] HAJILOO H, GERRN M F, NOËL M, et al. Fire tests on full-scale FRP reinforced concrete slabs[J]. Composite Structures,2017,179:705-719. doi: 10.1016/j.compstruct.2017.07.060
    [23] American Concrete Institute. Guide for the design and construction of structural concrete reinforced with FRP bars: ACI 440.1 R-15[S]. Farmington Hills: ACI, 2015.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  294
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-03
  • 修回日期:  2023-03-08
  • 录用日期:  2023-03-09
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回